Towards Encapsulating Data in Component-Based
Software Systems

Kung-Kiu Lau and Faris M. Taweel

School of Computer Science,
The University of Manchester,
Manchester, M13 9PL, UK
{kung-kiu, faris.taweel}@cs.manchester.ac.uk

Abstract. A component-based system consists of components linked by con-
nectors. Data can reside in components and/or in external data stores. Operations
on data, such as access, update and transfer are carried out during computations
performed by components. Typically, in current component models, control, com-
putation and data are mixed up in the components, while control and data are both
communicated by the connectors. As a result, such systems are tightly coupled,
making reasoning difficult. In this paper we propose an approach for encapsulat-
ing data by separating it from control and computation.

1 Introduction

A software system consists of three elements: control, computation, and data. The sys-
tem’s behaviour is the result of the interaction between these elements. Therefore, the
latter determines whether the system has desirable properties such as loose coupling
and ease of analysis and reasoning. It is reasonable to expect that it is advantageous
to encapsulate these elements, and separate them from one another, since this should
make reasoning more tractable. For example, some recent research in stimulus reactive
systems has focused on separating control flow from data flow [9,3].

Paradoxically perhaps, for component-based software systems, it is not any easier
to achieve such separation of concerns. A component-based system consists of com-
ponents linked by connectors, as exemplified by software architectures [17]. In such
a system, data can reside either in components or in external databases (which are
often also regarded as components). Operations on data, such as access, update and
transfer are carried out during computations performed by components. Typically, in
current component models, control, computation and data are mixed up in the com-
ponents, while control and data are both communicated by the connectors. As a re-
sult, such systems are tightly coupled, making reasoning difficult. More seriously,
this impedes component reuse, which is a key objective for component-based
development.

In this paper we introduce an approach for encapsulating data by separating it from
control and computation, in component-based systems. Our approach is based on
our earlier work on encapsulating control and computation in component-based

systems [10].
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2 Data in Current Component Models

In current component models, computation, control and data are intermixed (Fig. [I}).
Components initiate control and perform computation (Fig. [I(b)). Connectors provide
communication between components for both control and data (Fig. [[(c)). Some
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Fig. 1. Current component models

components may act as (external) databases, but for simplicity we will treat them all
as components.

In these models, data exists in components, and during the computation performed
by a component, data can be accessed from other components, updated, and transferred
to other components. Component models with external data stores provide special ab-
stractions modelling these sources. For example, EJB provides the entity bean
that connects to an external database; .NET provides the Dataset component, and
CCM [16] provides persistent components. .NET takes an extra step by providing a
database connector called the NET Data Adaptor Framework [14]. However, in these
models, data is not separated from computation or control.

In general, connection schemes in current component models use message passing,
and fall into two main categorlesﬂ (i) connection by direct message passing; and (i7)
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Fig. 2. Connection by message passing

connection by indirect message passing. Direct message passing corresponds to direct
method calls, as exemplified by objects calling methods in other objects (Fig. [2] (a)),
using method or event delegation, or remote procedure call (RPC). Component models
that adopt direct message passing schemes as composition operators are EJB, CCM,
COM [2] etc.

Indirect message passing corresponds to coordination (e.g. RPC) via connectors,
as exemplified by ADLs. Here, connectors are typically glue code or scripts that pass

! For a survey, see .
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messages between components indirectly. A connector, when notified by a component
invokes a method in another component (Fig. [2| (b)). Besides ADLs, other component
models that adopt indirect message passing schemes are JavaBeans [8], Koala [19],
SOFA [1]] etc.

In connection schemes by message passing, direct or indirect, control originates in
and flows from components (Fig. [[(b)). This is clearly the case in both Fig. 2l(a) and
(b). Furthermore, data resides in components, and as components perform computation
(invoked by message passing), data flows between components in tandem with control
flow (message passing) between them (Fig.[I(c)). This is the case in both Fig.2(a) and
(b), although data is not shown explicitly. Clearly in current component models, neither
control nor data is encapsulated.

3 Encapsulating Computation and Control

We are developing a component model [10] in which components encapsulate com-
putation (unlike objects or port-connector type components, Fig. 2)), and connectors
encapsulate control (unlike current component models, Fig. [I). In our model, compo-
nents do not call methods in other components, and control originates in and flows from
connectors, leaving components to encapsulate only computation. This is illustrated by
Fig. Bl We call our connectors exogenous connectors. Fig. 3] (a) shows an example
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Fig. 3. Connection by exogenous connectors

of exogenous connection. Here components do not call methods in other components.
Instead, all method calls are initiated and coordinated by exogenous connectors. The
latter thus encapsulate control, as is clearly illustrated by Fig.[3l(b), in contrast to Fig.[T]
(b). Exogenous connectors thus encapsulate control, i.e. they initiate and coordinate
control.

Exogenous connectors are hierarchical in nature, with a type hierarchy [10]. At the
bottom of the hierarchy, because components are not allowed to call methods in other
components, we have an exogenous method invocation connector. This is a unary op-
erator that takes a component, invokes one of its methods, and receives the result of
the invocation. To structure the control flow in a set of components or a system, at the
next level of the type hierarchy, we have other connectors for sequencing exogenous
method calls to different components. So we have n-ary connectors for connecting in-
vocation connectors, and n-ary connectors for connecting these connectors, and so on.
As well as invocation connectors, we have defined and implemented pipe connectors,
for sequencing, and selector connectors, for branching.
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Example 1. Consider a system whose architecture can be described in the Acme [6] and
Cc2 ADLs by the architectures in Fig.[] (a) and (b) respectively. Using exogenous
connectors in our component model, the corresponding architecture is that shown in
Fig. @ (c). In the latter, the lowest level of connectors are unary invocation connectors

) { VA © VG L InvE L InvG
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Fig. 4. Corresponding architectures

that connect to single components, viz., InvA, InvB, . . .; the second-level connectors are
binary selector connectors S/ and S2 and connect pairs of invocation connectors; and
the connectors at levels 3 and 4 are of variable arities and types: P/ and P2 are pipes,
while §3 is a selector.

4 Encapsulating Data

In our component model, a system consists of a hierarchy of exogenous connectors
sitting atop a flat layer of components, as illustrated in Fig. d(c). The components en-
capsulate computation while the connectors encapsulate control (Fig.[3). Since it is the
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Fig. 5. Encapsulating data

only model we know of that has these two kinds of encapsulation, we believe our com-
ponent model is a good basis for attempting to encapsulate data as well. So the question
we want to address in this paper is how we can encapsulate data in our component
model (Fig.[3).

In our component model, components already encapsulate local data, like objects in
object-oriented languages. However, for system or global state we have not provided
any encapsulation. To clearly illustrate the challenge we face, consider what happens if
data flow follows control flow, as in current component models (Fig.[I)).

Example 2. The architecture in Fig. [(c) can be used to represent a bank system, with
A being an ATM, B and C two bank consortia, each containing two bank branches,
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E and D, and F and G respectively. At level 1, each component has its own invocation
connector. The ATM (A) can display a menu, accept a customer card, read its informa-
tion, accept customer requests such as choice of operations (deposit, withdrawal, check
balance, etc.).

At level 2, the selector connector S1 selects the customer’s bank branch (from E
and D), prior to invoking that branch’s methods requested by the customer. Similarly,
the selector connector S2 chooses between F and G, prior to invoking their methods
requested by the customer. To pass values from one bank consortium (B or C) to one of
its bank branches, we need a pipe connector; so at level 3, we have two pipe connectors
P1 and P2, for consortia B and C respectively. At level 4, the selector connector S3 se-
lects the customer’s bank consortium from consortia B and C, after receiving customer
requests and card information from the ATM (A). Thus, the bank system’s operational
cycle is initiated by passing the customer requests and card information from the ATM
(A) to the connector S3

We will show what happens if data flow follows control flow. Initially, data comes
with a customer request to the ATM. This data comprises customer details on his card
(customer identification, account number, bank consortium identification code, etc.),
the customer’s choice of transaction (say withdrawal), and the amount involved.

Data out
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Fig. 6. Control flow and data flow of the bank system

Level 3

Level 2

This data flows with control until it reaches the customer’s bank branch where it
is used for processing the requested transaction. Fig. |6] traces the data (and control)
flow for an example where the customer bank branch is D, belonging to consortium B.
At S3, the bank consortium code is used to determine the next connector, in this case
P2. All the data, except the bank consortium code, is then passed on to P2. Using the
customer account number, P2 invokes B to identify the customer bank branch, which is
D in this case. So the bank branch code together with the rest of data is passed to S1.
Here, the bank branch D is selected and the customer’s request, account number and
amount are passed to D, and the customer’s request is processed.

The main observation here is that, apart from the bank consortium identification
code, customer data traverses a long route, with the control flow, to its final destination.
This property is not unique to exogenous connectors, but also pertains to any component
model with explicit connectors where data flow follows control flow, e.g. Fig.[d(a) and
(b). It clearly raises performance and space concerns.

% A pipe selector should be used to connect A and S3, but for simplicity, we omit it here.
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As clearly illustrated by Example 2] rather than leaving global data to flow with
control, it is desirable to separate the two. To this end, it is necessary to store data in a
shared data space (a repository), and to allow access to such data via data connectors
(Fig.[3) at suitable points in the control flow. Furthermore, for data access operations to
be generic against the data space, the type of data stored in data spaces must be generic
with respect to the programming environment. A generic data type for a programming
environment is a type that subsumes all its other data types. We call this type the type
Universal to be independent from different names provided by different programming
languages.

The data space is a transient data store that every system must have to maintain its
global state. In a data space, data is created and accessed indirectly via data connectors.
A data element stored in a data space has many properties including a unique string
reference; a state indicating whether it is transient or persistent; and a set of access per-
missions specifying which exogenous connector in the system can read (r), write (w),
persist (p) and execute (x) this data element. Any data element is a collection element
that can contain executable string code such as SQL data manipulation statements. To
execute these elements, they must have the execute (x) permission.

Data connectors link data elements stored in (global) data spaces to exogenous con-
nectors as well as to other data connectors. In effect, they set, get and execute data
elements in the data space; and encapsulate data access coordination and data flow in a
system. They are hierarchical in nature. At the bottom of the hierarchy, because exoge-
nous connectors only encapsulate control they cannot access (global) data directly, we
need a data accessor connector. This is a unary data connector that can link to only one
data element in the data space; and store, return and execute that specific data element.
In order to structure flow and access coordination for a set of data elements, at the next
level of the hierarchy, we have other connectors for sequencing access and execution
of data elements. Accordingly, we have n-ary data connectors for connecting accessor
data connectors, and n-ary data connectors for connecting these connectors, and so on.

Data connectors and exogenous connectors are both connectors However, they form
two separate kinds of hierarchies that can be connected at design time at specific points,
where data values are required by exogenous connectors.

Example 3. To explain our approach for encapsulating data, we consider Example
again. In particular, we consider the case in (Fig. [6). Here the data flow can be par-
titioned into three paths: (i) customer’s request and card information passing through
InvA, S3, P2 and InvB; (ii) data passing through InvB, P2, SI and InvD; and (iii) data
passing information back to the ATM (A), where the returned data can be, for example,
a bank statement.

To prevent data from flowing along these paths in the hierarchy of exogenous con-
nectors, we store the customer’s request and card information in the system’s data space,
as three data elements (bank consortium code, bank branch code and transaction data),
and use data connectors to link these data elements to exogenous connectors in which
they are needed (Fig[Z). As a result, data flows separately from control. At the start of
the system’s operation, data is exported to the data space by InvA, then at S3 only the
first element (consortium code) is retrieved to evaluate the next pipe connector. At the
connector P2, control is passed to InvB which in turn uses the second element (branch
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Fig. 7. Data connectors for the bank system

code) to determine the customer’s bank branch. When control reaches S1, the bank
branch identity is used to direct control to InvD. InvD retrieves from the data space
the third data element (transaction data), and passes it by value to D, to process the
requested service. InvD stores a report in the data space that is ultimately accessed by
S3 and displayed to the customer. Thus, instead of data following control, we have
separated data from control.

This example shows only the basic idea of data connectors, but not their hierarchies,
i.e. data connectors that compose other data connectors. So, while this example may
give the impression that data connectors are just a means of handling global data, the
whole picture about our data connectors will only become complete when composition
operations among them are addressed.

Nevertheless, Example 3 does illustrate how in our approach data no longer flows
with control. In fact, what flows in exogenous connectors is just a unique signal iden-
tifying the required service. Data is encapsulated in data spaces; and its flow and ac-
cess coordination in data connectors. This results in not only reduced coupling between
components (and even connectors), but also enables data structuring as well as compo-
sitional operations on data.

5 Evaluation

In present approaches to software connectors, control and data are mixed up in con-
nectors [13]. Some approaches even allow for the parameterisation of computation for
connectors [12]]. Current component models are no exceptions. Either they provide no
explicit connectors (EJB, CCM, COM, etc), or have connectors that mix data and con-
trol (Koala, SOFA, ADLs, etc). Furthermore, an example of a basic set of connectors
that can be composed systematically is yet to be seen. As connectors encapsulate inter-
actions among components, data and control flowing together does not make the analy-
sis of a system any easier. It has been demonstrated that separation of data and control
makes the analysis of systems’ properties easier [95]. Compared to these approaches,
the novelty in our work lies in the total separation and hence encapsulation of control,
computation, and data. Our motivation is to make component-based development more
amenable to analysis, reasoning, and above all reuse. Our data connectors lead to loose
coupling between components, and therefore contribute to our objective.

Compared to other component models, our data connectors are unique in that they
encapsulate data completely. Compared to data processing languages, the hierarchy of
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our data connectors is also unique in that they provide a structured way of accessing and
processing data (by composition). As a result, our work should provide a useful basis
for developing data-intensive applications which can benefit from component-based
solutions.

Using our data connectors, we can distinguish between global data, i.e. data shared
by all the components in the whole system, and data that is shared by a specific subset
of components in the system. This is not just a distinction between global data and lo-
cal data as in current programming languages, e.g. object-oriented languages, but it is
a distinction between local data for individual components and shared data between a
composite component, or a sub-system, made up of sub-components. It is thus a finer
distinction, and more importantly, it allows us to encapsulate data at different levels of
granularity, i.e. at the level of individual components, at the level of composite compo-
nents, or at the level of the whole system. For database applications, we believe such
encapsulation provides a new dimension.

Our data space is similar to tuple spaces in generative communication and coordina-
tion languages [[7,[3]]. But we are different in using explicit connectors to data spaces.

6 Conclusion

In this paper we have proposed a way to encapsulate data in a component model that
already encapsulated control and computation. The resulting model is, to the best of our
knowledge, the first model with encapsulation of control computation data. However,
the work is preliminary, and serves to demonstrate the feasibility of our idea. More
practical evaluation will be needed, and in future work, we intend to do such evaluation.

Nevertheless, compared to related work, viz. component models with explicit con-
nectors, our work seems unique in that global data is really separated from control and
computation. In fact, using our connectors we can differentiate between global data, i.e.
data global to the whole system, and data shared by specific components.

We also have operations for structuring and composing data, making our approach
potentially very useful for data-intensive applications, which also benefit from
component-based solutions.
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