Defining and Checking Deployment Contracts
for Software Components

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom
{kung-kiu, vukis}@cs.man.ac.uk

Abstract. Ideally in the deployment phase, components should be composable,
and their composition checked. Current component models fall short of this ideal.
Most models do not allow composition in the deployment phase. Moreover, cur-
rent models use only deployment descriptors as deployment contracts. These
descriptors are not ideal contracts. For one thing, they are only for specific con-
tainers, rather than arbitrary execution environments. In any case, they are
checked only at runtime, not deployment time. In this paper we present an ap-
proach to component deployment which not only defines better deployment con-
tracts but also checks them in the deployment phase.

1 Introduction

Component deployment is the process of getting components ready for execution in a
target system. Components are therefore in binary form at this stage. Ideally these bi-
naries should be composable, so that an arbitrary assembly can be built to implement
the target system. Furthermore, the composition of the assembly should be checked so
that any conflicts between the components, and any conflicts between them and the
intended execution environment for the system, can be detected and repaired before
runtime. This ideal is of course the aim of CBSE, that is to assemble third-party bina-
ries into executable systems. To realise this ideal, component models should provide
composition operators at deployment time, as well as a means for defining suitable
deployment contracts and checking them.

Current component models fall short of this ideal. Most models only allow compo-
sition of components in source code. Only two component models, JavaBeans [[7] and
the .NET component model [6}20], support composition of binaries. Moreover, current
models use only deployment descriptors as deployment contracts [1]]. These descriptors
are not ideal contracts. They do not express contracts for component composition. They
are contracts for specific containers, rather than arbitrary execution environments. In
any case, they are checked only at runtime, not deployment time.

Checking deployment contracts at deployment time is advantageous because they es-
tablish component composability, and thus avoid runtime conflicts. Moreover, they also
allow the assembly to be changed if necessary before runtime. Furthermore, conflicts
due to incompatibilities between components and the target execution environment of
the system into which they are deployed can be discovered before runtime.

In this paper we present an approach to component deployment which not only de-
fines better contracts but also checks them in the deployment phase. It is based on a

I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 1-16] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

2 K.-K. Lau and V. Ukis

pool of metadata we have developed, which components can draw on to specify their
runtime dependencies and behaviour.

2 Component Deployment

We begin by defining what we mean by component deployment. First, we define a ‘soft-
ware component’ along the lines of Szyperski and Heinemann and Councill [10],
viz. ‘a software entity with contractual interfaces and contextual dependencies, defined
in a component model’ [

Our definition of component deployment is set in the context of the component life-
cycle. This cycle consists of three phases: design, deployment and runtime (Fig.[D).

Runtime
Fig. 1. Software component lifecycle

In the design phase, a component is designed and implemented in source code, by
a component developer. For example, to develop an Enterprise JavaBean (EJB) [18]
component in the design phase, the source code of the bean is created in Java, possibly
using an IDE like Eclipse. A component in this phase is not intended to run in any
particular system. Rather, it is meant to be reusable for many systems.

In the deployment phase, a component is a binary, ready to be deployed into an
application by a system developer. For example, in the deployment phase, an EJB is a
binary “.class” file compiled from a Java class defined for the bean in the design phase.

For deployment, a component needs to have a deployment contract which specifies
how the component will interact with other components and with the target execution
environment. For example, in EJB, on deployment, a deployment descriptor describing
the bean has to be created and archived with the “.class” file, producing a “.jar” file,
which has to be submitted to an EJB container.

An important characteristic of the deployment phase is that the system developer
who deploys a component may not be the same person as the component developer.

In the runtime phase, a component instance is created from the binary component and
the instantiated component runs in a system. Some component models use containers
for component instantiation, e.g. EJB and CCM [19]. For example, an EJB in binary
form as a “.class” file archived in a “.jar” file in the deployment phase gets instantiated
and is managed by an EJB container in the runtime phase.

2.1 Current Component Models

Of the major current software component models, only two, viz. JavaBeans and the
.NET component model, allow composition in the deployment phase. To show this, we
first relate our definition of the phases of the component lifecycle (Fig.[I) to current
component models.

! Note that we deal with components obeying a component model and not with COTS [2]].

Defining and Checking Deployment Contracts for Software Components 3

(insa [insB |

Category 1: EJB, COM, CCM, Category 2: JavaBeans Category 3: .NET Component Model
Koala, SOFA, KobrA, ADLs,
UML2.0, PECOS, Pin, Fractal

Fig. 2. Current component models

Current component models can be classified according to the phases in which com-
ponent composition is possible. We can identify three categories [16] as shown in Fig.[2l

In the first category, composition (denoted by the small linking box) happens only at
design time. The majority of current models, viz. EJB, COM [3]], CCM,ADLs (archi-
tecture description languages) [IZ_ZIJE etc. fall into this category. For instance, in EJB, the
composition is done by direct method calls between beans at design time. An assem-
bly done at design time cannot be changed at deployment time, and gets instantiated at
runtime into executable instances (denoted by InsA, InsB.)

In the second category, composition happens only at deployment time. There is only
one model in this category, viz. JavaBeans. In JavaBeans, Java classes for beans are de-
signed independently at design time. At deployment time, binary components (*“.class”
files) are assembled by the BeanBox, which also serves as the runtime environment for
the assembly. Java beans communicate by exchanging events. The assembly is done at
deployment time by the BeanBox, by generating and compiling an event adapter class.

In the third category, composition can happen at both design and deployment time.
The sole member of this category is the .NET component model. In this model, compo-
nents can be composed as in Category 1 at design time, i.e. by direct method calls. In
addition, at deployment time, components can also be composed as in Category 2. This
is done by using a container class, shown as a rectanglular box with a bold border. The
container class hosts the binary components (“.dll” files) and can make direct method
calls into them.

Finally, current component models target either the desktop or the web environment,
except for the .NET component model, which is unified for both environments. Having
a component model that allows components to be deployed into both desktop and web
environments enhances the applicability of the component model.

2.2 Composition in the Deployment Phase

Composition in the deployment phase can potentially lead to faster system development
than design time composition, since binary components are bought from component
suppliers and composed using (ideally pre-existing) composition operators, which can
even be done without source code development. However, composition at component
deployment time poses new challenges not addressed by current component models.
These stem mainly from the fact that in the design phase, component developers design

>In C2 new components can be added to an assembly at deployment time since C2 com-
ponents can broadcast events; but new events can only be defined at design time.

4 K.-K. Lau and V. Ukis

Runtime
InsA InsB

[[|
|
|
|

) TM1H ») TM2!
'} § e an

Execution Environment Execution Environment

TM = Threading model
ED = Environmental .
dependencies Is the assembly conflict—free?

Fig. 3. Composition in deployment phase

and build components (in source code) independently. In particular, for a component,
they may (i) choose any threading model; and (ii) define dependencies on the execution
environment. This is illustrated by Fig. Bl

A component may create a thread inside it, use some thread synchronisation mech-
anisms to protect some data from concurrent access, or not use any synchronisation
mechanisms on the assumption that it will not be deployed into an environment with
concurrency.

Also each component supplier may use some mechanisms inside a component that
require some resources from the system execution environment, thus defining the com-
ponent’s environmental dependencies. For instance, if a component uses socket com-
munication, then it requires a network from the execution environment. If a component
uses a file, then it requires file system access. Note that component suppliers do not
know what execution environments their components will be deployed into.

In the deployment phase, the system developer knows the system he is going to build
and the properties of the execution environment for the system. However, he needs to
know whether any assembly he builds will be conflict-free (Fig.), i.e. whether (i) the
threading models in the components are compatible; (ii) their environmental dependen-
cies are compatible; (iii) their threading models and environmental dependencies are
compatible with the execution environment; and (iv) their emergent assembly-specific
properties are compatible with the properties of the execution environment if compo-
nents are to be composed using a composition operator. The system developer needs to
know all this before the runtime phase. If problems are discovered at runtime, the sys-
tem developer will not be able to change the system. By contrast, if incompatibilities are
found at deployment time, the assembly can still be changed by exchanging components.

By the execution environment we mean either the desktop or the web environment,
and not a container (if any) for components. These two environments are the most wide-
spread, and differ in the management of system transient state and concurrency. Since
the component developer does not know whether the components will be deployed on
a desktop or a web server, the system developer has to check whether the components
and their assembly are suitable to run in the target execution environment.

2.3 Deployment Contracts

Deployment contracts express dependencies between components, and between them
and the execution environment. As shown in [1]], in most current component mod-
els a deployment contract is simply the interface of a component. In EJB and CCM,

Defining and Checking Deployment Contracts for Software Components 5

T A 7.7 B
LD LD i
Execution Environment Execution Environment

DD = Deployment descriptor ? = Deployment contract

Fig. 4. Deployment contracts

deployment contracts are deployment and component descriptors respectively. As
shown in Fig. [a deployment (or component) descriptor contractualises the manage-
ment of a component by a container. However, the information about components inside
the descriptors is not used to check whether components are compatible. Nor is it used
to check whether a component can be deployed in an execution environment.

By contrast, our approach aims to check conflicts between components; and, in the
presence of a component container, between the container and the execution environ-
ment; in the absence of a container, between components and the execution environ-
ment. This is illustrated by Fig. [dl where the question marks denote our deployment
contracts, in the presence or absence of containers.

We can also check our deployment contracts, so our approach addresses the challenge
of deployment time composition better than existing component models that allow de-
ployment time composition, viz. the. NET component model and JavaBeans. In the NET
component model, no checking for component compatibilities is done during deploy-
ment. In JavaBeans, the BeanBox into which beans are deployed, is deployed on the
desktop environment, and it checks whether beans can be composed together by check-
ing whether events emitted by a source bean can be consumed by the target bean, by
matching event source with event sink. However, this check is not adequate with regard
to threading models and environment dependencies, as shown by the following example.

Example 1. Consider a Java bean that creates a thread inside itself to perform some
long-running task in the background and sends an event to another bean from within
that thread. The target bean may have problems. For example, if the target bean makes
use of a COM component that requires a single-threaded apartment, and the bean is
invoked from different threads, the component assembly is bound to fail.

This shows that the threading model of the source bean, namely sending an event
from an internally created thread, and the environmental dependency of the target bean,
namely the use of the COM component requiring a single-threaded apartment, are in-
compatible. The assembly will fail at runtime even though the BeanBox’s check for
component (event) compatibility is passed.

3 Defining Deployment Contracts

In this section we discuss how we define suitable deployment contracts. Our approach is
based on metadata about component environmental dependencies and threading mod-
els. To determine and create suitable metadata, we studied the two most comprehensive,
operating system-independent frameworks [9]] for component development: J2EE

6 K.-K. Lau and V. Ukis

and NET Framework [23]. In particular, we studied the core APIs of these two frame-
works in order to identify where and how a component can incur environmental de-
pendencies and influences on its threading model. The comprehensiveness and wide
application of these frameworks should imply the same for the metada we create. We
define deployment contracts using these metadatd] as attributes that the component de-
veloper is obliged to attach to components he develops.

3.1 Environmental Dependencies

A component incurs an environmental dependency whenever it makes use of a resource
offered by the operating system or the framework using which it is implemented. For
each resource found this way we created an attribute expressing the semantics of the
environmental dependency found. Each attribute has defined parameters and is there-
fore parameterisable. Moreover, each attribute has defined attribute targets from the
set {component, method, method’s parameter, method’s return value, property}. An
attribute target defines the element of a component it can be applied to.

To enable a developer to express resource usage as precisely as possible, we allow
each attribute to have (a subset of) the following parameters: 1) ‘UsageMode’: {Create,
Read, Write, Delete} to indicate the usage of the resource. Arbitrary combinations of
values in this set are allowed. However, here we assume that inside a component, cre-
ation, if specified, is always done first. Also, deletion, if specified, is always done last;
2) ‘Existence’: {Checked, Unchecked} to indicate whether the component checks for
existence of a resource or makes use of it assuming it is there; 3) ‘Location’: {Local,
Remote} to indicate whether a resource required by component is local on the machine
the component is deployed to or is remote; 4) ‘UsageNecessity’: {Mandatory, Optional }
to indicate whether a component will fail to execute or will be able to fulfil its task if
the required resource is not available.

Meaningful combinations of the values of these parameters allow an attribute to ap-
pear in different forms (120 for an attribute with all 4 parameters) which have to be
analysed differently.

In addition to these four parameters, any attribute may have other parameters specific
to a particular environmental dependency. For instance, consider an attribute on a com-
ponent’s method expressing an environmental dependency to a COM component shown
in Fig. Al (Such a component was used in Example[1l) The component has a method
“Method2” that has the attribute “UsedCOMComponent” attached. The attribute has
(1) shows the COM GUID used by the component; (2) says that three parameters:

public class B
{ [UsedCOMComponent(''DC577003-3436-470c-8161-EA9204B11EBF"', @

COMAppartmentModel.Singlethreaded, ?)
UsageNecessity.Mandatory)] A3)

}public void Method2(...) {...}

Fig. 5. A component with an environmental dependency

3 A full list and details can be found in .

Defining and Checking Deployment Contracts for Software Components 7

Table 1. Categories of resource usage and component developer’s obligations

—

Usage of an operating-system resource. For instance: Files, Directories, Input/Ouput Devices
like Printers, Event Logs, Performance Counters, Processes, Residential Services,
Communication Ports and Sockets.

2|Usage of a resource offered by a framework. For instance: Application and Session State
storages offered by J2EE and .NET for web development, Communication Channels to
communicate with remote objects.

3|Usage of a local resource. For instance: Databases, Message Queues and Directory
Services.

4|Usage of a remote resource. For instance: Web Services or Web Servers, Remote Hosts,
and resources from Category 3 installed remotely.

Usage of a framework. For instance: DirectX or OpenGL.

Usage of a component from a component model. For instance: a Java Bean using a COM
component via EZ JCOM [8] framework.

N

[®))

the used COM component requires a single-threaded environment; (3) says that the
usage of the COM component is mandatory. Furthermore, implicitly the attribute says
that the component requires access to a file system as well as Windows Registry since
COM components have to be registered there with GUID.

We have analysed the pool of attributes we have created, and as a result we can define
categories of resource usage for which the component developer is obliged to attach the
relevant attributes to their component’s elements. The categories are shown in Table [T}

Using binary components with relevant attributes from the categories in Table [T] it
is possible at deployment time to detect potential conflicts based on contentious use of
resources from Table[Il

Finally, metadata about environmental dependencies can be used to check for mutual
compatibility of components in an assembly. For instance, if a component from an
assembly requires continuous access to a file in the file system in the write mode but
another component in the assembly also writes to the same file but creates it afresh
without checking whether it has existed before, the first component may lose its data
and the component assembly may fail to execute.

3.2 Threading Models

A component can create a thread, register a callback, invoke a callback on a thread [4}[3]],
create an asynchronous method [11]], make use of thread-specific storage [21]] or access
a resource requiring thread-affine accessﬂ etc. For each of these cases, we created an
attribute of the kind described in Section[3.1lexpressing the semantics of the case.

For instance, consider an attribute expressing the creation of a thread by a compo-
nent shown in Fig. [l (Such a component was used in Example [I) The component
has a method “Method1” that has the attribute “SpawnThread” attached. The parameter
(1) indicates the number of threads spawned. If this method is composed with another
component’s method requiring thread affinity, the composition is going to fail.

* Thread-affine access to a resource means that the resource is only allowed to be accessed from
one and the same thread.

8 K.-K. Lau and V. Ukis

ublic class A

[SpawnThread(1)] @
public void Method1(...) {...}

}

Fig. 6. A component with a defined threading model

Table 2. Categories of threading issues and component developer’s obligations

Existence of an asynchronous method.

Registration or/and invocation of a callback method.

Existence of reentrant or/and thread-safe methods.

Existence of component elements requiring thread-affine access.
Existence of Singletons or static variables.

Spawning a thread.

Usage of Thread-specific storage.

Taking as a method parameter of returning a synchronisation primitive.

ol QAN | AW —

We have analysed the pool of attributes we have created, and as a result we can define
categories of threading issues for which the component developer is obliged to attach
the relevant attributes to their components. These categories are shown in Table P

Using binary components with attributes from the categories shown in Table 2] it is
possible at component deployment time to detect potential conflicts based on inappro-
priate usage of threads and synchronisation primitives by components in an assembly.
It is also possible to point out potential deadlocks in a component assembly.

In total, for both environmental dependencies and threading models, we have created
a pool of about 100 metadata attributes. Now we show an example of their use.

Example 2. Consider Example [[l again.The two incompatible Java beans are shown in
Fig. [l with metadata attributes from Sections[3.1land3.2] Using these attributes we can
detect the incompatibility of the beans at deployment timed

A B

Method1() &5 Method2()
Desktop

Is the assembly conflict—free?

Fig.7. Example [[lusing metadata attributes

In the design phase, The two beans are the ones in Figs.[Bland [l In the deployment
phase, by performing an analysis of the metadata attributes attached to the compo-
nents, we can deduce that method “A.Method1()” invokes the method “B.Method2()”

3 In .NET Framework v2.0 there are about 200 attributes, but they are only checked at runtime.
© Note that this problem may also arise in other component models.

Defining and Checking Deployment Contracts for Software Components 9

on an internally created thread. Therefore, if method “A.Method1()” is invoked sev-
eral times, each time a new thread is created that makes an invocation of the method
“B.Method2()”. Therefore, the COM component used by method “B.Method2()” is not
going to be called from one thread and its requirement for a single threaded apartment
cannot be fulfiled in such composition of components A and B. Therefore, the system
developer can be warned not to do such composition.

Besides this, using a COM component requires use of a file system, where the com-
ponent resides, and Windows Registry, where it must be registered. The system de-
veloper can also be warned if these resources are unavailable in the system execution
environment.

Moreover, in Fig. [7] the components are deployed into the desktop environment. In
this environment, there is a guarantee that the main thread of the system is always
the same for the lifetime of a system instance. Therefore, the system developer need
not be warned that the execution environment may cause problems. Note that in the
web environment there is no guarantee for the thread affinity of the main thread. If the
assembly in Fig. [7] was deployed into the web environment, it would also fail since
the COM component used by the component B would be accessed by different threads
imposed by the web environment.

3.3 Implementing Retrievable Metadata

The attributes we have created must be retrievable at deployment time, i.e. they must be
retrievable from binaries. In this section, we explain how we implement them.

Our implementation draws on .NET’s facility for defining custom attributed]. A cus-
tom attribute in .NET is a class derived from the .NET’s class System.Attribute. An
example of an attribute from the attribute pool we have defined is shown below:

[AttributeUsage (AttributeTargets.Class | AttributeTargets .Method|
AttributeTargets.Property, AllowMultiple=true)]
public class UsedWebService : System.Attribute {
public UsedWebService(string url, string userName,
string pwd, UsageNecessity usageNecessity) {...} ... }

The attribute above is called ‘UsedWebService’. It has a constructor, which takes as
parameters the url to the web service, credentials used when accessing the web service
as well as whether the web service usage is mandatory for the component.

Furthermore, above the attribute declaration ‘public class UsedWebService : Sys-
tem.Attribute’, the usage of the attribute is specified by a .NET built-in attribute ‘At-
tributeUsage’ that indicates which elements of components the attribute is allowed to
be applied to, as well as whether multiple attributes can be applied to the same ele-
ment. Here the attribute ‘UsedWebService’ can be applied to either a whole class (we
model components as classes) or a component’s method or property. Here ‘AllowMul-
tiple=true’ means that the attribute ‘UsedWebService’ can be applied multiple times to
the same component element. That is, if a component makes use of several web ser-
vices, several ‘UsedWebService’ attributes can be applied to indicate the component’s
environmental dependencies.

7 In Java, Annotations can be used to express the metadata. However, they are somewhat less
flexible than .NET Attributes.

10 K.-K. Lau and V. Ukis

To retrieve attributes from a binary component, we use .NET’s Reflection facility
from System.Reflection namespace. For instance, to retrieve attributes at component
level, the following code is executed:

Type compType = Type.GetType (componentName) ; (1)
object[] attributes = compType.GetCustomAttributes (false); (ii)

(i) loads the component type from the binary component using component name in a
special format, and (i) retrieves all the attributes attached to the component. Note that
no component instantiation has been done.

To retrieve attributes on component’s properties, the following code is executed:

Type compType = Type.GetType (componentName) ; (1)
foreach (PropertyInfo prop in compType.GetProperties()) (ii)
{object[] attributes = prop.GetCustomAttributes(false);} (iii)

(i) loads the component type from the binary component, (ii) iterates through all the
properties inside the component, and (iii) retrieves all the attributes attached to the
current property.

Attributes attached to component’s methods, method’s parameters and return values
can be retrieved in a similar but more complicated manner.

Being able to retrieve the attributes at deployment time enables us to check deploy-
ment contracts before component instantiation at run time.

4 Checking Deployment Contracts

Given an assembly of components with deployment contracts and a chosen execution
environment in the deployment phase, as illustrated by Fig.[d we can use the deploy-
ment contracts to determine whether the assembly is conflict-free. In this section we
explain how we do so§

The checking process first loads the binary components, and then for each binary
retrieves the attributes at all levels (component, property, method, and method input
and return parameters). The checking task is then divided into 2 sub-tasks: (i) Analysis
of mutual compatibility of deployment contracts of components in the assembly with
respect to usage of resources in the assembly’s execution environment; (ii) Analysis of
mutual compatibility of deployment contracts of components in the assembly with re-
spect to their threading models in consideration of state and concurrency management
of assembly’s execution environment. Both sub-tasks consist of checking the deploy-
ment contracts involved. The results of the checking range over {ERROR, WARNING,
HINT} with the obvious meaning.

For (i), we perform the following: For each attribute at any level we determine re-
source(s) required in the execution environment. If a resource is not available in the
execution environment, an ERROR is issued.

Furthermore, we follow component connections in the assembly and consider how
resources are used by the individual components by evaluating attached attributes’

8 We present only an outline here.

Defining and Checking Deployment Contracts for Software Components 11

parameters. Once an attribute representing a resource usage is found on a component,
we follow the chain of components till another component with an attribute represent-
ing the usage of the same resource is found either at method or property or compo-
nent level. Once such a component is found, we check the “UsageMode” parameters
of the attributes on the two components for compatibility and issue ERROR, WARN-
ING or HINT depending on the parameters’ values. After that, we again follow the
chain of components till the next component with an attribute representing the usage
of the same resource is found and check the values of the parameter “UsageMode”
on corresponding attributes of the component and the previous one in the chain. This
process is repeated till all attributes representing resource usage on all components are
processed.

Moreover, specific parameters of each attribute are analysed and WARNINGs and
HINTSs are issued if necessary. For instance, if attributes’ parameters indicate that com-
ponents in a component assembly use a database and not all components uniformly use
either encrypted or unencrypted database connection, a WARNING is issued.

Another example is usage of cryptography files. If a cryptography file is used, it
is hinted which cryptography algorithm has been used to create the certificate. This
information is useful to the system developer due to the fact the different cryptogra-
phy algorithms have different degrees of security and different processing times when
checked. Depending on system requirements a specific cryptography algorithm may or
may not be suitable.

A further example is represented by communication channels. If a communication
channel is used, it is hinted which communication protocol for data transfer and which
serialisation method for data serialisation is used. This information is used by the sys-
tem developer, who knows system requirements, to judge whether the component is
suitable for their system.

For (ii), we perform the following: We follow component connections in the assem-
bly to determine for each component if it is stateful or stateless, and multithreaded or
singlethreaded. This can be done by evaluating corresponding attributes on a compo-
nent. After that we determine if the assembly is stateful or stateless, and multithreaded
and singlethreaded depending on the components in the assembly. If at least one com-
ponent in the assembly is stateful, the assembly is stateful. Otherwise, it is stateless. If
at least one component in the assembly is multithreaded, the assembly is multithreaded.
Otherwise, it is singlethreaded.

Following this, we check whether state management of the assembly’s execution
environment is suitable for the assembly. Furthermore, we check whether concurrency
management of the assembly’s execution environment is suitable for the assembly. We
issue ERRORs, WARNINGS or HINTSs depending on the level of incompatibility.

Apart from that, if a component can repeatedly issue a callback to another one on an
internally created thread, and the callback method either requires thread-affine access;
or accesses component’s transient state in not read-only mode, or accesses a singleton
or a static variable, and no component element enclosing it is marked as reentrant or
thread-safe, an ERROR is issued pointing out a likely state corruption problem.

Moreover, if synchronisation primitives are exchanged between components, a
WARNING is issued pointing out a possible cause for a deadlock.

12 K.-K. Lau and V. Ukis

5 Example

To illustrate the usefulness of deployment contracts we show how they can be applied
to a design pattern described in [4,[5]]. The design pattern is for systems including one
component that loads data in the background and another one that displays the data.
Furthermore, while the data is being loaded in the background, the loading compo-
nent notifies the one displaying the data about the chunks of data already loaded. The
component displaying data can either display the chunks of data already loaded, thus
implementing so-called streaming, or just display a visualisation of it, e.g. a progress
bar, which advances each time the loading component sends a notification that a chunk
of data has been loaded.

Fig. 8] shows two such components. Component A has two methods “DisplayData”,
which displays loaded data, and “DisplayProgress”, which displays a progress bar. A’s
developer knows that the method “DisplayProgress” may be used as a callback method
by another component, which loads the data. They also know that a callback may be
invoked on different threads. Since no synchronisation of multiple threads is done inside
the component, state corruption will arise if it is used concurrently from multiple threads.
Therefore, in the design phase, the component developer is obliged to attach the attribute
“RequiredThread AffineAccess” at component level (in the design phase) to let the system
developer know that the component must not be used in multithreaded scenarios.

Is the assembly
conflict—free?

Fig. 8. Implementation of a design pattern for components with use of metadata attributes

Component B has two methods: “RegisterProgressCallback” and “LoadData”. The
method “RegisterProgressCallback” registers a callback of another component with the
component. In this situation, the component developer is obliged to attach the attribute
“CallbackRegistration” to the component’s method. The method “LoadData” loads the
data. Moreover, while the data is being loaded, the method invokes a callback to notify
the component’s user that a certain chunk of data has been loaded. In this situation,
the component developer is obliged to attach and parameterise the attribute “IssueCall-
back”. The attribute parameters show that the method will issue the callback registered
with the method “RegisterProgressCallback”. The thread executing the callback will
be an internally created one. Furthermore, the callback is mandatory. Therefore, the
component must be composed with another component in such a way that the method
“RegisterProgressCallback” is called before the method “LoadData” is called.

In the deployment phase, suppose the system developer chooses the desktop as the
execution environment. Furthermore, suppose the system developer decides to compose

Defining and Checking Deployment Contracts for Software Components 13

components A and B in the following way: since A displays the data and needs to know
about chunks of data loaded, its method “DisplayProgress” can be registered with B
to be invoked as a callback while the data is being loaded by B. Once the data has
been loaded, it can be displayed using A’s method “DisplayData”. B offers a method
“RegisterProgressCallback” with the attribute “CallbackRegistration” attached. There-
fore, this method can be used to register component A’s method “DisplayProgress” as
a callback. After that, B’s method “LoadData” can be called to initiate data loading.
While the data is being loaded, the method will invoke the registered callback, which is
illustrated by the attribute “IssueCallback” attached to the method.

The scenario required by the system developer seems to be fulfilled by assembling
components A and B in this way. To confirm this, he can check the deployment contracts
of A and B in the manner described in the previous section. We have implemented a
Deployment Contracts Analyser (DCA) for automating the checking process. For this
example, the result given by DCA is shown Fig.

DCA finds out that component A has a component-level attribute “RequiredThread-
AffineAccess” that requires all its methods to be called always from one and the same
thread. The method “DisplayProgress” will be called from a thread internally created
by the method “LoadData”. But the method “DisplayData” will be called from the main
thread. This means that methods of A will be called from different threads, which con-
tradicts its requirement for thread-affine access. Furthermore, if data is loaded several
times, the method “B.LoadData(...)” will create a new thread each time it is called
thus invoking the method “A.DisplayProgress(...)” each time on a different thread. This
means that A and B are incompatible.

Focployment Contracts Anaiyser—Projects R T=TE
Fle Tools Analyses Help ~Type
Znnm J‘ ICumpUnenls ‘ Connectors ‘ % Desktop

== B

L
;l Add Companent.. T

«l R =
| . Camponentd SeneEs
. Network
. CaomponentB = ’V @ Avallable ¢ Mot Available

EE = ‘ Input/0utput Devices
. Fart Microsoft 5= ’7 % Avallable ¢ Mot Available [
Depluyment Contracts Analysis i =10y x| Lacal Databases
Zoarn Tart: Search Analysis Results: '3 & Avalilable ' MotAvalable [
I
p) I") I » Lacal Message Iluauas
: ’_ 1+ Avallabls Mot Availsbls [
.......... -
.......... Local Directary Services
Each Comparent's Deployment Contract against Execution Envitanment's Properties Analpsis: ’7 i Awallable Mot Available [

Mo analysis of that kind required for the sxecution enviionment 'Deskiop'

Execution Enviionment's Fioperties against S pstem-specific Froperties with Implications on Deployment Contracts of
Components (% Statsful (% Multithreaded

Componert ‘Tampanenty’ requites thead affine access to allits methads. Since the assembly is mulithreaded. the " Stateless " Singlethreaded
component will be accessed from multiple threads, ERROR

.......... Ok Cancel
Mutual Connpatibility of Deployment Contracts of Compatients Ahalpsis:

Request 1: The callback method 'DisplayProgiess' requires thiead affine access but will be called on different
thigads from within the method 'LoadData’ m

,,,,,,,,,, =

Fig. 9. Deployment Contracts Analyser

14 K.-K. Lau and V. Ukis

A component from the assembly AB has to be replaced by another one. Then a de-
ployment contracts analysis has to be performed again. This process has to be repeated
until an assembly of compatible components, i.e. a conflict-free assembly, is found.
Once a conflict-free assembly is found, it can be executed at runtime.

6 Evaluation

The idea of deployment contracts based on a predefined pool of parameterisable at-
tributes can be applied to any component model supporting composition of components
at deployment time. We have implemented the idea in .NET, and since the .NET com-
ponent model supports deployment time composition (Fig. 2)), our implementation is a
direct extension of the .NET component model with about 100 new attributes, together
with a deployment-time analyser.

Our attributes are created by analysing the APIs of J2EE and .NET frameworks.
However, the idea is general and therefore other frameworks for component develop-
ment can be studied to create more attributes, thus enabling more comprehensive rea-
soning by extending deployment contracts analysis.

Our pool of metadata for component deployment is general-purpose since it is cre-
ated by analysing general-purpose frameworks. Other pools of metadata for component
deployment, see [[12] for a survey, are mostly not general-purpose. For example, MetaH
has a set of metadata for the domains of flight control and avionics; the CR-RIO Frame-
work has metadata for distribution and processing policies.

Use of metadata for component deployment in current component models such
as EJB and CCM is restricted to component deployment descriptors that are XML spec-
ifications describing how to manage components by the component container. Specifi-
cation of metadata in an easily changeable form like XML has the disadvantage that it
can be easily tampered with, which may be fatal for system execution. Therefore, our
metadata is contained in the real binary components, cannot be easily tampered with
and is retrieved automatically by the Deployment Contracts Analyser.

Moreover, metadata about components in deployment descriptors is not analysed for
component mutual compatibility. Although deployment descriptors allow specification
of some environmental dependencies and some aspects of threading, the information
specifiable there is not comprehensive and only reflects features that are manageable
by containers, which are limited. By contrast, our metadata set is comprehensive and
the component developer is obliged to show all environmental dependencies and as-
pects of threading for their component. In addition, our deployment contracts analysis
takes account of properties of the system execution environment, as well as emergent
assembly-specific properties like e.g. transient state, which other approaches do not do.

Furthermore, in current component models employing metadata for component de-
ployment, metadata is not analysed at deployment time. For instance, in EJB and CCM
the data in deployment descriptors is used by containers at runtime but not at deployment
time. The deployment descriptor has to be produced at deployment time but its contents
are used at runtime. In .NET, only metadata for graphical component arrangement is
analysed at deployment time. By contrast, in our approach all the metadata is analysed
at deployment time, which is essential when components come from different suppliers.

Defining and Checking Deployment Contracts for Software Components 15

Currently the J2EE and .NET frameworks provide compilers for their components.
However, if components are produced and compiled independently by component de-
velopers and composed later in binary form by system developers, no means for compi-
ler-like checking of composition is provided. By contrast, our Deployment Contracts
Analyser can check components for compatibility when they are in binary form and
ready to be composed by a compositon operator.

Using our attributes, developers have extensive IDE support in the form of Intel-
liSense. Moreover, .NET developers should be familiar with the concept of attributes thus
making it easy for them to employ the proposed approach using new attributes. Thanks
to various parameters on each attribute, the component developer can flexibly specify
how resources are used inside components and which threading aspects are available.

Furthermore, although EJB specification forbids component developers to manage
threads themselves, there is nothing in current EJB implementations that would prevent
the developers to do so. If enterprise beans manage threads themselves, they may in-
terfere with the EJB container and cause the running system to fail. By contrast, our
approach checks threading models of components for compatibility before runtime,
thus enabling the system developer to recognise and prevent runtime conflicts before
runtime.

7 Conclusion

In this paper,we have shown how to use metadata to define deployment contracts of com-
ponents that express component’s environmental dependencies and threading
model. Such contracts bind two parties: (a) the component developer, who develops com-
ponents, and (b) the system developer, who develops systems by composing pre-existing
components using composition operators. The former is obliged to attach the attributes
to component’s elements in specified cases. The latter is guaranteed to be shown conflicts
among the third-party components in assemblies they create at deployment time.

We have also shown how deployment contracts analysis can be performed to help
the system developer spot these conflicts. Most importantly, incompatible components
in an assembly can be replaced by other, compatible, ones to ensure conflict-freedom
of the assembly, before runtime.

Besides checking deployment contracts at deployment time, we have also imple-
mented a generic container for automated binary component composition using
special composition operators — exogenous connectors [13]. Our future work will com-
bine the generic container and the Deployment Contracts Analyser, thus allowing auto-
mated component composition only if the analyser does not discover any conflicts with
component assembly.

References

1. F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and
K. Wallnau. Volume ii: Technical concepts of component-based software engineering, 2nd
edition. Technical Report CMU/SEI-2000-TR-008, Carnegie Melon Software Engineering
Institute, 2000.

16

W

© 0N W

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

K.-K. Lau and V. Ukis

. B. Boehm and C. Abts. COTS integration: Plug and pray? IEEE Computer, 32(1):135-138,
1999.

. D. Box. Essential COM. Addison-Wesley, 1998.

. Schmidt D. C. Pattern-oriented Software Architecture. Vol. 2, Patterns for Concurrent and
Networked Objects. New York John Wiley&Sons, Ltd., 2000.

. Microsoft Corporation. Microsoft asynchronous pattern for components.

. Microsoft Corporation. Msdn .net framework class library version 2.0, 2005.

R. Englander. Developing Java Beans. O’Reilly & Associates, 1997.

. EZ JCom Framework web page. http://www.ezjcom.com.

. M. Fowler, D. Box, A. Hejlsberg, A. Knight, R. High, and J. Crupi. The great j2ee vs.

microsoft.net shootout. In OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN

conference on Object-oriented programming systems, languages, and applications, pages

143-144, New York, NY, USA, 2004. ACM Press.

G.T. Heineman and W.T. Councill, editors. Component-Based Software Engineering: Putting

the Pieces Together. Addison-Wesley, 2001.

A. W. Keen and R. A. Olsson. Exception handling during asynchronous method invocation.

In Parallel Processing: Sth International Euro-Par Conference Paderborn, Germany, volume

2400 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

K.-K. Lau and V. Ukis. Component metadata in component-based software development: A

survey. Preprint 34, School of Computer Science, The University of Manchester, Manchester,

M13 9PL, UK, October 2005.

K.-K. Lau and V. Ukis. A container for automatic system control flow generation us-

ing exogenous connectors. Preprint 31, School of Computer Science, The University of

Manchester, Manchester, M13 9PL, UK, August 2005.

K.-K. Lau and V. Ukis. Deployment contracts for software components. Preprint 36, School

of Computer Science, The University of Manchester, Manchester, M13 9PL, UK, February

2006. ISSN 1361 - 6161.

K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-

nents. In Proc. 8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS

3489, pages 90-106, 2005.

K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st Euromi-

cro Conference. IEEE Computer Society Press, 2005.

N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using object-oriented typing to

support architectural design in the c2 style. In Proc. ACM SIGSOFT’96, pages 24-32, 1996.

Sun Microsystems. Enterprise java beans specification, version 3.0, 2005.

Object Management Group (OMG). Corba components, specification, version 0.9.0, 2005.

D.S. Platt. Introducing Microsoft .NET. Microsoft Press, 3rd edition, 2003.

D. C. Schmidt, T. Harrison, and N. Pryce. Thread-specific storage - an object behavioral

pattern for accessing per-thread state efficiently. In The Pattern Languages of Programming

Conference, September 1997.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.

Prentice Hall, 1996.

Sun Microsystems. Java 2 Platform, Enterprise Edition. http://Jjava.sun.com/

j2ee/.

C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.

A. Wigley, M. Sutton, R. MacLeod, R. Burbidge, and S. Wheelwright. Microsoft .NET

Compact Framework(Core Reference). Microsoft Press, January 2003.

http://java.sun.com/j2ee/
http://java.sun.com/j2ee/

	Introduction
	Component Deployment
	Current Component Models
	Composition in the Deployment Phase
	Deployment Contracts

	Defining Deployment Contracts
	Environmental Dependencies
	Threading Models
	Implementing Retrievable Metadata

	Checking Deployment Contracts
	Example
	Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

