Chapter 5
Component-Based Development

Kung-Kiu Lau, Marc Pantel, DeJiu Chen, Magnus Persson, Martin Torngren,
and Cuong Tran

In this chapter, we focus on the use of component-based development (CDB) in
CESAR. First, we introduce what we mean by components and how they fit into the
product lifecycle. Then, we report on the two major technological innovations of the
project: the X-MAN and HRC frameworks.

5.1 What Is Component-Based Development?

The aim of component-based development is to (i) build components and deposit
them in a repository; and (ii) use or reuse these pre-existing components to
build many different systems by assembling the components using pre-defined
composition mechanisms. This is illustrated by Fig.5.1.

For a given problem domain, components are identified and developed, using
domain knowledge. Similarly, the composition mechanisms for the components are
defined and fixed for the domain.

For hardware systems, component-based development is of course standard
practice, and components are standard parts that can be assembled in pre-specified
ways. For instance, chips can be assembled by wiring their pins together.

For software systems, the most widely accepted generic component is depicted in
Fig. 5.2: it is a software unit with provided services (lollipops) and required services
(sockets). These components are composed by connecting provided services with
matching required ones, as shown in Fig. 5.3.
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Different types of components are defined as different instances of the generic
component, together with corresponding composition mechanisms. Such definitions
are given by component models.

5.2 Component Models

A component model [77,105] defines: (i) what components are; and (i) composition
mechanisms for composing the defined components.

For software systems, there are three categories of component models [105] with
(1) objects; (i1) architectural units; and (iii) encapsulated components as compo-
nents, respectively. Table 5.1 shows these categories and examples of component
models therein. The three kinds of components are illustrated in Fig. 5.4.

An object is similar to a generic component except that an object does not have
or show any required services (hence sockets in dotted lines). An architectural unit
is just the same as a generic component, except that an architectural unit uses ports
instead of services. An encapsulated component has only provided services, but no
required services; it therefore performs all its computation within itself, i.e., it does
not call another (encapsulated) component.
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Table 5.1 Categories of component models

Category  Components Sample component models

(i) Objects EJB

(i1) Architectural units CMM, EAST-ADL, AADL

(1ii) Encapsulated components ~ X-MAN
a b c

in1 out1
Provided i
mothod in2 out2
Object Architectural Encapsulated
Unit Component

Fig. 5.4 Types of components

Table 5.2 Composition mechanisms

Category  Components Composition mechanism
(i) Objects Method delegation

(i) Architectural units Port connection

(iii) Encapsulated components  Coordination

The composition mechanisms for these three kinds of components are shown in
Table 5.2.

Objects “compose” by method delegation, i.e., direct method calls (or direct
message passing). Architectural units compose by connecting their ports (or indi-
rect message passing). Encapsulated components compose by coordination, i.e.,
exogenous connectors that coordinate control flow between components. These
composition mechanisms are illustrated in Fig. 5.5.

For software systems, a number of development processes, or life cycles, for CBD
have been proposed, e.g. [27,29,37,100, 142], to name a few. (A recent survey can
be found in [98].) Naturally these processes all reflect the desiderata of CBD [23],
and converge on the general view depicted in Fig. 5.6.

The generic CBD process in Fig.5.6 comprises two separate processes: one
for component development, and one for component-based system development.
Component development is also known as “development for reuse”, since it is
concerned with developing components that can be stored in a repository and
(re)used to build different systems. Component-based system development is also
known as “development with reuse”, since it is concerned with developing systems
by reusing pre-built components (the result of the component development process).

Each process beginning follows the same life cycle of “requirements
analysis, design, implementation, testing and maintenance”. For component
development, implementation is a single activity, whereas for system development,
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Fig. 5.6 Standard CBD processes

implementation is a sequence of activities based on pre-built components, namely
component selection, adaptation and assembly.

Figure 5.6 does not differentiate between the context for the component life
cycle and that of the system life cycle. In fact, the component life cycle is followed
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by the component developer for the whole domain, whilst the system life cycle is
followed by the system developer for each system to be constructed. This distinction
is illustrated in Fig.5.7.

Figure 5.7 differs from the standard CBD process (Fig. 5.6), in that its component
life cycle is a more complete one, namely the idealised one [105]. The idealised
component life cycle is called so because it meets all the desiderata of CBD that
have been identified in the literature [23]. It consists of two phases: component
design and component deployment, and is set in the context of a problem domain.
In the design phase, components are (identified and) designed and constructed
according to the domain requirements or knowledge [106], and deposited into a
repository. Repository components are domain-specific but not system-specific. In
the deployment phase, components are retrieved from the repository and instantiated
into executable component instances which are then deployed into a specific system
under construction.

The system life cycle also differs slightly from that in Fig.5.6 in that system
design is now replaced by a completely bottom-up process of component selection
(from the repository) and adaptation, followed by (component deployment in
the component life cycle followed by) system assembly, which is simply the
composition of the deployed components. The bottom-up nature of this process is
indicated by an iterative loop in Fig. 5.10. It is worth noting that within this loop, the
component life cycle links up with the system life cycle, since deployed components
(from the component life cycle) are iteratively assembled into the system under
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construction (in the system life cycle). This link is denoted by the dotted arrows
between the two life cycles in Fig.5.7, via the step of component selection and
adaptation, and the step of component deployment.

52.1 TheW-Modd

The CBD process in Fig. 5.6 does not explicitly address Verification and Validation
(V&V). For general (modular) system development, the standard model for V&V
is the V-Model [159]. The V-Model is an adaptation of the traditional waterfall
model for modular system development. It defines a process consisting of phases for
requirements, system specification, system or architectural design, module design,
implementation and testing. Implementation consists of coding for the individual
modules, and coding for integrating the modules into the entire system using the
architectural design for the system. Testing follows coding [159] (Fig.5.8). Thus,
the coding phase divides the whole process into development, the left arm of the V,
and testing, the right arm of the V.

The key property of the V-Model that is pertinent here is that it is a top-down
approach to system design and development, as Fig.5.8 shows. First, a top-level
design is made of the architecture of the entire system; this identifies and specifies
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subsystems or modules, and their inter-relationships. Then the individual modules
are designed according to their specifications in the top-level design. In general,
this top-down approach may be applied successively, each time decomposing
subsystems or modules in the current level of design into further sub-systems or
modules. This decomposition is repeated as many times as is necessary, until a
final design is arrived at in which the design of the system as well as all the
individual modules is deemed complete, i.e., no further decomposition is necessary
or desirable.

Compared to the standard CBD process in Fig.5.6 and the idealised CBD
life cycle in Fig. 5.7, both of which contain two life cycles,' one for component
development and one for system development, the V-Model contains only one life
cycle, for system development.

Furthermore, the standard CBD process in Fig.5.6 and the idealised CBD life
cycle in Fig.5.7 also show CBD as an essentially bottom-up approach to system
design, in the sense that components have to be developed first (in the component
life cycle), and any particular system is constructed from these components (in
the system life cycle). In contrast, the V-Model (Fig. 5.8) is essentially a top-down
approach to system design: the system is designed first (thus identifying the required
components), and then components are developed.

A straightforward adaptation of the V-Model for CBD would be to retain the
top-down approach to system design but use a component as a module, as shown in
Fig.5.9.

For example, the V-Model adopted by the avionics industry as a CBD process
(e.g., Airbus processes [64,67]) is such an adaptation.

However, such a straightforward adaptation of the V-Model is at variance with the
standard CBD process in Fig. 5.6, precisely because it does not include a component
life cycle and consequently does not incorporate the bottom-up nature of CBD.

An adaptation of the V-Model for CBD that does incorporate the bottom-up
nature of CBD is that of [36]. It does so by containing separate life cycles for
component development and system development, like in Fig. 5.6. However, this
adaptation really applies the V-Model only to its system life cycle; there is no
evidence of the V-Model in its component life cycle (which is the same as the one
in Fig. 5.6).

In our view, to adapt the V-Model properly for CBD, we need not only to
incorporate both the component life cycle and the system life cycle, but also to apply
the V-Model to both of these cycles. In addition we need to specify a component
model that defines the components (and their composition) properly. (A definition
and survey of component models can be found in [105].)

"We will use ‘life cycle’ interchangeably with ‘development process’ or simply ‘process’.
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Fig. 5.9 Adapting the V-Model for CBD

We have defined such an adaptation, using a component model that we have
defined ourselves. Now we describe our adaptation, which we call the W-Model,’
for reasons that will become apparent later.

In CESAR, we use the X-MAN component model [107, 108, 169],” and we have
defined a CBD process based on X-MAN. This process is the one shown in Fig. 5.7.

Applying the V-Model to both the component and system life cycles yields a
CBD process with V&V as shown in Fig. 5.10.

Compared to the straightforward adaptation of the V-Model in Fig. 5.9, compo-
nent V&V (which corresponds to component testing in Fig. 5.9) now occurs in the
component life cycle, whilst compositional V&V (which corresponds to integration
testing in Fig. 5.9) and system V&V (which corresponds to system testing in Fig. 5.9)
occur in the system life cycle.

The X-MAN CBD process with V&V in Fig.5.10 can be re-cast straightfor-
wardly as a process with two conjoined V-Models, one for the component life cycle
and one for the system lifecycle. These two V-Models are conjoined via the step
of component selection, adaptation, and deployment. This “double V* process is

>The name W-Model has also been used in software testing [146] and product line engineer-
ing [112] in the context of traditional (i.e., non-CBD) software engineering.

3This name was not used in these papers, but has been created within the CESAR project.
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shown in Fig. 5.11. We therefore called it the W-Model [109].* We have highlighted
the V&V activities in the W-Model by boxes with black borders.

“In English, “W” is pronounced “double u™; there is no letter pronounced “double v".
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5.3 Implementing CBD with X-MAN

In the CESAR project, CBD is implemented in the form of a tool for X-MAN.
This tool implements the X-MAN component model as well as the W-Model. The
X-MAN tool is implemented in a model-driven manner. It has been implemented
using the GME toolkit [69]. In GME, meta-models that contain definitions of
elements, structures and syntax first have to be defined using a class diagram
notation similar to UML class diagrams. Models can then be created by instantiating
the pre-defined meta-models. To provide behaviours for models, GME allows us
to develop interpreters that can interact with models, i.e., execute or manipulate
models.

To implement the W-Model, we had to implement: (i) the X-MAN component
model, for defining and constructing components and their composition mecha-
nisms; (ii) the component life cycle in the W-Model; (iii) the system life cycle
in the W-Model; (iv) the link between the component and system life cycles;
(v) component V&V; (vi) compositional V&V; and (vii) system V&V. For lack of
space, we cannot describe all these fully; so we only highlight the key elements of
the implementation, and briefly describe them.

5.3.1 TheX-MAN Component Model

The X-MAN component model has been described in several papers, e.g.,[107,108,
169]. Here we give a brief summary.

In X-MAN there are two kinds of components: atomic and composite (Fig. 5.12).
An atomic component contains a computation unit and an invocation connector.
The computation unit provides methods or functions which can be invoked via the
invocation connector. An atomic component is encapsulated in the sense that all
its computation occurs within its computation unit, i.e., an atomic component does
not invoke the methods of other components. Thus an atomic component has only
provided services (denoted by lollipops) but no required services.
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Fig. 5.13 X-MAN composition connectors

A composite component (Fig.5.12c¢) is built from atomic components by com-
position connectors (Fig.5.12b). A composition connector coordinates control (as
well as data flow) between components, i.e., it coordinates the invocation of services
between components. A composite component is also encapsulated, and it also
has only provided services; this is a direct consequence of the encapsulation of
an atomic component. In general, composite components are self-similar; this is
important as it means that we have compositionality. In particular, this enables us to
do compositional V&V.

The X-MAN connectors include the Turing-complete set of control structures:
sequencing, branching and looping. Sequencing and branching are composition
connectors for multiple components, whereas looping is an adaptor for a single
component. For sequencing, we have the sequencer and pipe composition con-
nectors; for branching, we have the selector composition connector (Fig.5.13). A
sequencer only passes control to the next component, whereas a pipe passes control
and results from the first component to the next component, as shown in the bank
system example in Fig. 5.13.

In the X-MAN Tool, the X-MAN component model is implemented as part of
the component life cycle and the system life cycle (see below).

5.3.2 The Component Life Cycle

As mentioned in Sect.5.2.1, the component life cycle in the W-Model is the
idealised one, consisting of the component design phase and the component
deployment phase. To implement the component life cycle in GME, we first
need to define meta-models for these phases. However, as we also pointed out in
Sect.5.2.1, the component life cycle links up with the system life cycle during
component deployment and system assembly. Therefore, it is more convenient to
put the component deployment phase in the meta-model for the system life cycle.
Consequently, the meta-model of the component life cycle consists of just the meta-
model for component design phase.

To implement the component life cycle in GME, we define the meta-model
for the component design phase and implement an interpreter for it. We also
implemented a component repository including interpreters to support component
deposit and retrieval.
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5.3.2.1 The Meta-model

The meta-model for the component life cycle is presented in Fig.5.14. It defines
component design according to the X-MAN component model.

The top-level element is a Design, which contains the definition of a (atomic or
composite) component according to X-MAN (Figs. 5.12 and 5.13). The property
ExecutableCode of a computation unit provides computation implementation. Each
method in a computation unit can be augmented with a contract that is defined by
pre- and post-conditions. This contract is used for component V&V.

Each atomic or composite component must have one interface that consists of
one or more services and data elements. A service contains references to methods
provided by the component’s computation unit. A data element denotes a datum that
is required or provided by the component. As components in the design phase are
templates, data elements are characterised with type, min, max and default values;
actual values are provided when instantiating these templates during component
deployment. Finally, a component can have an invariant, which is defined in its
interface.

5.3.2.2 Component Designer

We have constructed a Component Designer that supports component design, V&V,
and storage. Figure 5.15 shows a component, namely Locker, under construction in
the Designer, with a design palette on the left, tree view of the design on the right,
and the main design view in the middle. The main view shows that Locker is an
atomic component built from connecting an invocation connector Locker_INV to a
computation unit Locker_.CU. The component exposes its interface containing the
provided service getLocking.

When completed, a component can be stored into the component repository. This
activity is triggered by selecting the DEP button on the toolbar (see close-up in
Fig 5.15).

5.3.2.3 The Repository

For the component repository, we used the Firebird database [62] and for database
access we used the SQLAPI driver [147].

5.3.3 The System Life Cycle

The system life cycle contains the iterative loop of component selection and
adaptation, component deployment and system assembly. To implement this life
cycle in GME, we defined a meta-model for component deployment and system
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Fig. 5.15 Component Designer

assembly together, and provide an interpreter for it. This interpreter also provides
for component adaptation. Component selection makes use of the retrieval function
implemented for the repository in the component life cycle.

Systems constructed in the system life cycle are executable. To provide for
system execution, we developed a system simulator in the form of another GME
interpreter.

5.3.3.1 The Meta-model

The meta-model of the system life cycle is depicted in Fig.5.16. It defines
system assembly from (deployed) component instances according to the X-MAN
component model.

The top element is a System, as opposed to (Component) Design in the
component life cycle. Like a component, a system has one system interface that
contains some services and data elements. A system reference denotes a reference
to another system. Sub-systems, like component instances, can be composed using
composition connectors. Therefore, systems can be constructed incrementally from
(sub-)systems. Finally, like components in the component life cycle, component
instances can have invariants and methods can have contracts. These are used for
compositional V&V.
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Fig. 5.17 System Assembler

5.3.3.2 System Assembler

We have constructed a System Assembler for composing selected deployed com-
ponent instances. Components are selected from the repository and instantiated,
and the instances are then deployed. Component instance composition, i.e., system
assembly, to create the system follows after that. Similar to the Component
Designer, the System Assembler offers a design palette, a tree view and a main
view for system design. It is illustrated in Fig. 5.17 in which the developed system
is built from component instances Doorl and Door2, using connector SEQ1.

5.3.3.3 The Simulator

The simulator asks a developer to select a provided service and supply the required
inputs. It then traverses the system architecture and provides behaviour to our
connectors (Pipe, Sequencer, Selector). Furthermore, when reaching a component
instance, the simulator has to retrieve the component design (from the component
life cycle) and traverses its structure with deployment data until reaching a
computation unit to execute its computational source code to perform the desired
computation. The simulator passes through the system and finally returns to the
top-level connector with some outputs. Moreover, our simulator can take test cases
that specify inputs and expected outputs, that are defined as simple assertions, e.g.
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Fig. 5.18 Simulation results

outputl equals 1. The simulator then evaluates these assertions with system outputs
and additionally provides simulation traces to support system execution analysis.

To implement the simulator, we assumed that computation unit implementation
is given in the C programming language. We then used CCC to implement our
connector behaviour and the interpreter itself. Moreover, to execute computation
unit C code, we adopted the Ch library [158] to interpret without the need of
compilation.

Figure 5.18 shows the screen after the simulation completes successfully. The
screen depicts the two test cases description and the result. As we can see, the first
test failed and the second test passed. When a test case is selected, the screen shows
its specified input and output assertions. In addition, simulation traces are displayed
to support further analysis.

5.34 Validation & Veri«cation

All V&YV activities rely on the CBMC model checker [33], and are carried out by
a separate tool that is interfaced to the X-MAN tool. For activating this tool, the
X-MAN Tool provides the VER button on the toolbars of the Component Designer
and System Assembler (see close-up in Fig.5.15). The X-MAN Tool exports the
component design or system assembly into an exchangeable format, e.g., XML, and
passes the design to the model checker.
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As shown in Figs.5.10 and 5.11, there are three V&V activities: component,
compositional, and system V&V. Component V&V is for components when they
are designed and built in the component life cycle, using the Component Designer.
To carry out component V&V, the developer presses the VER button on the toolbar
(Fig.5.15). This V&V is carried out by the verification tool, and is with respect to
the contracts of the component. After component V&V, components are deposited
in the repository. Repository components can thereafter be certified (Fig.5.11).

Compositional V&V is carried out during system assembly in the system life
cycle: for any iteration of the system assembly process, V&V of the current system
can be carried out with respect to the contracts of the system. These contracts are
composed from the contracts of the (sub)components. Compositional V&V thus
reflects the bottom-up nature of CBD: component V&V occurs first, followed by
V&V of composites built from the components. It also reflects an important property
of composition in the X-MAN component model, namely compositionality, which
means that properties of a composite can be derived (via composition) from those
of its sub-components. This provides a means of re-using the V&V of the sub-
components.

When the system is finally completed, it may require further V&V to check
for additional system properties that may not be compositional, such as emergent
properties. The model checker can check such properties.

For compositional and system V&YV, the developer presses the VER button on the
toolbar of the System Assembler (Fig.5.17).

5.3.5 An Industrial Example: The Door Management System

Now we present an industrial example from the aerospace domain that we have
implemented using the X-MAN Tool. The example is a simple version of the Door
Management System (DMS) on a civil aircraft’; it manages only 2 passenger doors
(the most complicated system can consist of up to 14 doors including passenger,
cargo and emergency doors).

Structurally, each door is equipped with a number of sensors that produce status
readings: “closed”, “lock-latched”, door handle position, and “slide armed”. In
addition, there are inputs coming from other systems on the aircraft. The inputs
are “on ground”, “in flight”, differential pressure, emergency and air speed signal
readings.

Functionally, the system monitors the door status, manages the evacuation slide,
and controls the flight lock actuator for each door. The door status is calculated
from “closed”, “locked”, and “latched” signals read from two “closed” and three
“lock-latch” sensors on every door. Also, a warning is activated when the inner door
handle is moved and the evacuation slide is in the “armed” position. The evacuation

This is one of the pilot applications in the CESAR project.
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Fig. 5.19 The aircraft doors management system as implemented in X-MAN

slide management furthermore generates a warning if the aircraft is “on ground”
and the cabin is still pressurised, but the slide is disarmed. Finally, the flight lock
control only permits the door to be unlocked if the aircraft is “on ground”.

From our analysis of the DMS system, we identified four components: Sensor,
CLLVoter, SlidePresWarnController, and Locker. These components are common
and can be used many times in possible variants of DMS, e.g. a DMS variant
consisting of four passenger doors. Hence, in the component life cycle, we designed
the four components and deposited them in the component repository. The Sensor
component offers the gerReading service to get sensor reading; CLLVoter provides
vote service that calculates door status; SlidePresWamController offers getWarning
service that manages the evacuation slide; and Locker has gerLocking service to
control the flight lock.

In the system life cycle, we implemented the DMS by using pre-defined
components. The complete system is depicted in Fig.5.19. In the architecture,
rounded rectangles are composition connectors and normal rectangles are com-
ponent instances. The rectangle on top is the system interface that specifies the
provided service of DMS. Our implementation of DMS uses four pre-defined
components from the component repository. The Sensor is instantiated 14 times
with different port values to implement different sensors, i.e., ones that read
“closed”, “lock-latched”, handle position, and “slide armed” values. The other
three components, which are CLLVoter, SlidePresWarnController, and Locker, are
instantiated once to make CLLVoter, SPController and Locker respectively.
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Fig. 5.20 The fuel management components in an aircraft

The architecture consists of two clusters. Each cluster represents one door. We
executed the DMS using our simulator. We built a test case file with two test cases in
which inputs and expected outputs are specified. These simulation parameters can
be seen in the middle table in Fig. 5.18. The simulation outputs returned by the top-
level connector DMS_Seq are presented in the last table in Fig. 5.18. The outputs are
0, 1,0, 0, 1, 0 which means the doors are not closed, lock-latched, evacuation slide
warning is activated and the flight lock cannot be engaged. These values match the
expected output specified in the test case, hence the test passed.

5.4 Case Study: The Ground Fuel Transfer Function

In [74] we presented a case study on a representative avionics application — the
Ground Fuel Transfer function of a large transport aircraft. Ground fuel transfer is a
specific function of the fuel management system of an aircraft. Figure 5.20 shows a
schematic overview of the components involved in fuel management on modern
systems, involving multiple tanks, and numerous pumps and valves connecting
these. There are several functions to manage, including safety critical ones. These
functions include refuel/defuel, wing bending relief, and communications to and
from several other systems. Ground fuel transfer implements the specific behaviours
of the fuel management system when the aircraft is physically on the ground, as
opposed to behaviours while the aircraft is in flight.

54.1 The Component Structure

Recall that the behaviour of an X-MAN component is defined by means of a
set of operations. The ground fuel transfer system consists of six selective top-
level operations which are mutually exclusive (Fig. 5.21): Automatic Refuel (AR),
Manual Refuel (MR), Defuel (DF), Ground Transfer (GT), Shut-Off Test (SOT) and
OFF. Each of them is further composed of a set of sub-operations. The sub-modules
are shown for the Manual Refuel operation only.
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Fig. 5.21 A functional composition overview of a ground fuel management system

As given in the largest box of Fig.5.21, the MR operation is composed of
four sub-operations: Eval_Cond, Idle, In-Process, and Abort. The last three sub-
operations are also selectable on a mutually exclusive basis. Eval_-Cond shall be
called first to decide which of the rest three sub-operations is chosen to be executed
next at the runtime. Furthermore, the In-Process consists of another four sub-
components in sequence. They determine the respective operations of the central
tank (CT), the left-wing tank (LWT), the right-wing tank (RWT'), and the surge tank
(SP) under the manual refuel operation mode. All tanks provide both fuel output
via pumps and fuel inlet via valves, each being independently switchable by an
external controller. This controller monitors the fuel flow between tanks, calculates
the required tank-to-tank fuel transfers and sends the appropriate control signals to
the pumps and valves of all tanks.

The internal compositional structure of the MR component is typical for the
ground fuel management system. The other operations have a similar compositional
architecture; for brevity, Fig.5.21 contains the details of MR only. Moreover,
the component-based implementation of MR exercises most features available in
the X-MAN framework, making it a suitable exemplar to illustrate the proposed
component-based design and verification approach.

In order to clearly describe the properties under verification, we first clarify the
differences between two terms used in the system requirement specifications of our
case study. (1) State: describes the (durable) condition after the system performs
one or a sequence of operations following the entry condition. For instance, the
Inlet Valve state of each tank shall be either “SHUT" or “OPEN". (2) Status: It
describes the extant condition of some physical component. In this case study, the
status of each component is evaluated every cycle and given the value NORMAL or
FAILED.

For verification purposes, most properties that we currently check are safery
properties, which state that “something bad must never happen”, such as:
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Fig. 5.22 A component-based manual refuel system

1. When the system input overflow_condition is True, MR must be in the Abort
operation mode no matter what other inputs are.

2. When the Inlet Valve state of a tank is SHUT, but the status of this Valve is
FAILED, the fuel mass of this tank must never exceed a certain constant value C.

3. When the status of MR is NORMAL, the execution of MR must never be engaged
for longer than 55's.

These example properties above are at the different abstraction levels. (i) and
(ii7) refer to the entire system-level properties of MR, while (ii) relates to the specific
atomic operation of a tank which can be used directly to formulate the contract of
an atomic component.

We implement a component-based version of the ground fuel management
system by applying the X-MAN component framework, and verify the given
properties of the system by using the compositional verification approach adapted
to this framework. The details of the component implementation and compositional
verification on the MR operation of this system are presented in the following
paragraphs.

54.2 X-MAN Modedling of Manual Refuel

In X-MAN component modelling, systems are built by composing component
instances which are instantiated from component designs in the repository. We will
make use of five atomic component designs to model the component-based MR
system in X-MAN (as shown in Fig.5.22). These design components are Tank,
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Controller, Evaluator, and PrAbort, and Prldling. PrAbort models the computation
when an operation mode of the ground fuel transfer system aborts. Similarly,
Prldling encapsulates the computation when an operation becomes idle. The final
two components are relatively simple in our case study, basically returning the
output of the component with some constant values, so, we omit their description
here, and concentrate on the remaining three components.

* Tank: This component maintains some stored state variables which represent a
mass of fuel in a particular tank. Fuel output and inlet are modelled by the setting
of arguments corresponding to each of 3 ports. A positive mass represents fuel
input to the tank, negative signifies outputs. The tank component contains an
internally selected maximum-mass figure. Input of a fuel mass which causes
this figure to be exceeded results in an overflow mass being outputted. The
component also outputs the current mass, states and status of pumps and valves
of each tank.

* Controller: calculates the fuel flow between four instances of the Tank compo-
nent, modelling the functionality of the pumps, valves and pipes linking them.
The outputs of each tank along with the command signals for each pump and
valve are fed to this component.

* Evaluator: accepts the system inputs and evaluates the right operation mode
based on the inputs. The evaluation logic is represented as the first-order logic
formula in this case. It outputs the evaluation result.

X-MAN model system shown in Fig. 5.22 makes use of eight atomic component
instances, and five composite components, involving three different kinds of
composition connectors — Pipe, Selector and Sequencer. Firstly, we compose four
instances of the design component Tank: LTank, CTank, RTank, STank, which
model LWT, CWT, RWT and SP respectively, into a composite component named
TanksReader using the Sequencer connector Seq_reader. In the same way, these
four component instances are composed together into another composite component
named as TanksWriter using the connector Seq_writer. Thus, every tank instance
is accessed twice for each iteration of the model. Next, TanksReader, an instance
of Controller named as CTRL, and TanksWriter are further composed together
into a single larger composite component /n_Process_Pipe by a Pipe connector
Pipel , which models the In_Process operation. Then, In_Process_Pipe is composed
with the component A, which is the instantiation of the design PrAbort, and the
component /, which is the intantiation of Prldle, by the Selector connector Sel0 to
construct the more complex composite component MR _Process. Finally, by means
of another Pipe connector Pipe0), MR _Process is composed with the component EV,
which is an instantiation of the design component Evaluator.

The model behaves as follows at run-time: when a call (with inputs) reaches
the top-level connector Pipe0, the connector first calls the atomic component EV
with its required inputs and passes the outputs to the Sel0 connector. Based on
the values passed, Sel0 evaluates the selection condition in order to choose among
the composite components /n_Process_Pipe, A or 1. If In_Process_Pipe is chosen,
TanksReader is first called and its monitoring outputs are passed to CTRL, then
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finally the computed command ouputs of CTRL are fed into TanksWriter. When
either TanksReader or TanksWriter is executed, the LTank, CTank, RTank, STank
are accessed in sequence, but the usage of the outputs from these Tank instances
is different. For instance, TanksReader manipulates the outputs which represent the
current mass, the state and status of the tank, while TanksWriter uses those outputs
that correspond to the handlers of the pump and valve of each tank. If A is chosen,
the model starts running as the Abort operation mode in MR. Otherwise, / is chosen
to simulate the /dle behaviour of MR.

54.3 Component-Based Veris«cation of Manual Refuel

Consider the atomic component LTank of the MR modelling system. It contains six
contracts: three of these specify the integer ranges of the outputs parameters, the
other two describe the conditions under which fuel may be added without overflow
occurring, and the final contract relates to the minimum and maximum execution
time of the component. We use one contract cMassRange for the component LTank
as an example:

Contract(cMassRange) {
Inputs: iAddedMass : int
Ouputs: oMass : int, oMaxMass : int
Pre-condition: true
Post-condition: oMass > 0 A
oMass < oMaxMass

}

Two integer outputs are used in this contract. oMass reflects the current fuel
mass of the tank, and oMaxMass represents the internally selected maximum mass
figure. The Pre-condition of this contract is frue which means no assumption of
the component inputs is made. The corresponding Post-condition requires that
oMass must always be a positive value and oMass must never exceed the value
of oMaxMass after the execution of the LTank component. As a further example,
the contract for specifying the extra-functional timing property of this component
uses the special parameters preTime and postTime, which are globally accessible
throughout the component, to describe the timing constraint as follows.

Contract(cZTankTiming) {
Inputs:
Ouputs:
Pre-condition: rrue
Post-condition: postTime < preTime + 5 A
postTime > preTime + 1
}

According to this contract, the execution time (in seconds) of this contract must
always fall within the range [1; 5¢ under any combinations of inputs. In addition
to the basic Range-Contract of output variables and timing-Contract as introduced
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above, some component contracts formulate the complex data constraints between
model inputs and outputs that are derived from the system requirement. For instance,
the contract for the Controller component instance CRTL is as follows:

Contract(cFuelConservationController) {

Inputs: iMass[@+: int,

Ouputs: oAddedMass[@+: int

Pre-condition: iMass[0*> OA iMass[1+> OA
iMass[2¢> OA iMass[B*> 0

Post-condition: oAddedMass[@* +
oAddedMass[1* +
oAddedMass[2* +
oAddedMass[B*= 0

}

In this contract for CTRL, the input parameter iMass is an Integer array which
is passed from the composite component Seqg_reader. Each element corresponds to
the output parameter oMass of LTank, CTank,RTank,STank respectively. The output
parameter oAddedMass is also an Integer array which is passed to the composite
component Seq-writer. And each element corresponds to the input parameter
iAddedMass of four Tank component instances. This Post-condition of this contract
requires that the fuel mass must be conserved in the CTRL.

5.4.3.1 Vertical Verification Phase

We apply the software Model Checker CBMC to formally verify that the implemen-
tation of every atomic component in MR (a total of eight components) satisfies its
corresponding contracts. For instance, we check that the C implementation of the
component CTRL satisfies the post-condition specified in the contract cFuelConser-
vationController given above, under the assumption that the input parameters adhere
to the Pre-condition constraint. Our verification tool first automatically instruments
the following assumption statement at the beginning of the implementation code.

assume.cFuelConservation:Pre [] condition/|
and, the following assertion at the end of the code.
assert.cFuelConservation:Post [] condition/|

Then, CBMC is applied to verify the instrumented code.

Due to the exhaustive search within the unwinding depth and precise modeling
of data variables, CBMC can detect non-trivial corner case bugs, which eluded
discovery during testing by means of a conventional test-suite derived from the
requirements. As an example, consider the following code fragment from the CTRL
implementation where the variables have been renamed.
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const int sink_nwm = 2; =% * % *

int val_a = a=sink_num; *
int val_a_remainder = a%b;

if.v_open/{
val_¢ = val_a;

}
else{
val_c = 0,

}

if.val_c > 0/{
val ¢ = val_c + val_a_remainder;

}

The variable @ models a total amount of flow that is distributed between a given
number of sinks. The amount is given as an integer quantity, and there can therefore
be a remainder (val_a_remainder), which is to be apportioned to the valve flow
val_c. Consider the special execution trace when

a=1; voopen = I,
Then,

val_a = 0, val_a_remainder = 1; val_c = 0;

i.e., the remainder is non-zero but is not apportioned to the valve flow val_C. The
buggy value of val_C propagates to the outputs and causes the violation of the
Post-condition of cFuelConservation. The variables a and v_open are both internal
variables. It is difficult for a conventional testing technique to find the primary
inputs stimuli that could observe this corner case scenario where a is set to 1 and
v_open is set to be True at the same time. Consequently, the error was missed by the
conventional test suite, while CBMC quickly identifies an erroneous execution trace
as above. Analyses revealed that the bug occurred because the code was adopted
from a similar algorithm using floating-point arithmetic, and did not handle integer
division truncation properly.

5.4.3.2 Horizontal Verification Phase

After the contracts of all components have been verified, we can start horizontal
verification, which checks the properties of the modeling system based on the
verified contracts of the components and their composite relationships. For instance,
given a system C composed of two verified components A and B connected by a
Selector, we combine the post-conditions in the contracts of A and B as follows:

f D .selC[] cond ™ postp/ _ .: selC[] cond ™ postg/
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where posty and postg denote the post-conditions of components A and B,
respectively. se/C-cond is the condition that the sub-component is chosen in the
case of using Selector connector. In this example, if se/C-cond is true, component
A is selected for execution; otherwise, component B is selected. For the composite
systems using other connectors, the X-MAN-Verifier can also automatically derive
the formula f from the proved contracts of sub-components, according to the com-
position behaviours of the corresponding connectors with respect to the properties
under verification.

Then, the X-MAN-Verifier checks whether f implies postc. If so, we have
proven that the component C satisfies its contract; otherwise the contract may or
may not hold. The X-MAN-Verifier can produce a trace that demonstrates how the
component C fails to respect its contract. For a given timing property

postTime < preTime C 55

for MR, the X-MAN-Verifier returns hold. On the other hand, the timing property
postTime < preTime C 50

may be violated and the tool provides a counterexample. We can conclude that the

MR system is guaranteed to finish execution within 55 time steps, but may exceed
50 time steps. The counterexample extracted is as follows:

Inputs :
in0=0;:::;in3=0;
preTime = (;

CallingEC

Inputs :
prelime = 0

Qutputs :
value = 1;
postTime = 5;

CallingLA

Qutputs @
out0=1;:::; outd = 1;
postTime = 53;

This trace shows the system inputs and outputs, preTime and postTime of MR,
and the components on the execution trace with their inputs, outputs, preTime and
postTime.
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5.5 CMM and the Doors Management System

551 CMM

The concepts of the CMM are related to the Heterogeneous Rich Components
(HRC) which were developed in the SPEEDS project [21, 38,52, 96]. In CESAR,
the contract-based specification methodology and data model for component based
development has been adopted and refined to support the CESAR development
process. Contracts refer not to the internal states or the internal behaviour of a
component but to the observable interactions via its interfaces. The interfaces of
a component are specified by a set of (observable) variables. Those variables, called
flows, can be characterized as input, output or bidirectional from the components
point of view. In addition also a data type can be assigned for each flow. Contracts
argue about traces of this interface variables.

In the first place a component is a black box with a sound specified interface
and without any dynamic aspects like behaviour or interaction protocol (no traces).
Since the interaction is the observable part of the behaviour of the component it is
specified in the same manner as the (non-) functional behaviour of the component
itself. Behaviour is specified by mechanisms which decide if a certain trace (“run”)
is part of the behaviour or not. A run is a possibly infinite trace of variables assigned
to the variables. Finite state machines are one possible mechanism to determine if
such a trace is part of the behaviour or not. This generic approach allows to specify
the behaviour of a very wide range of components. Such components could be
software or hardware elements because the specification takes only the observable
variables (software variables or hardware pins) at the interface of the component into
account. The concept of a contract for the assumed behaviour of the environment
of the component and the promised behaviour of the component allows to verify if
a implementation fulfils the specification. Note that this implies that the execution
framework of the component is in most cases essential to provide the promised
behaviour. For example, a software function does not automatically calculatesaC b
but does this only if it is called (e.g. “c D f .a; b/I”).

A component is a black box with a generic and formal specification of behaviour
based on traces of observable variables. Control events, like triggers, are modelled
explicitly and also part of the contracts of a component. The assumption-promise
pairs allow to verify the implementation of the component independent from a
certain environment. Furthermore, this enables reuse of component implemen-
tations. The formal nature of the specification of the components allows a so
called Virtual Integration Test (VIT) without the need to implement any of the
involved components, see [40]. To support the creation of this formal specification
a pattern-based specification language has been developed in SPEEDS as well as in
CESAR. This language supports the user to formalize requirements, see requirement
formalization in Sect. 3.3.

Composition of CMM components is the parallel execution of the subcompo-
nents. What does that mean? First of all this is not true because the parallel operator
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is not the only composition operator defined in the semantic definition but it is the
most important one. Second, not the components are executed but the sets of allowed
traces are merged to result in the composed set. Since the formal specification is
driven by the idea to have state machines which define these sets of traces the
parallel composition of this state machines results in one state machine which
defines the set of traces of the composition. Due to this approach, the connections
between the subcomponents define which variables match between two or more
component interfaces. This is necessary because the alphabets of the traces have
only local scope. Note that this implies identity of connected variables. If data or
event exchange has a certain behaviour this has to be represented by a additional
component, e.g. a bus or queue.

To summarize, the specification is contract-based and supports reuse of a wide
range of (hardware and software) components. The formalization of requirements
enables early assessments of requirements as presented in Sect. 3.4.

The result is the definition of the CMM as common views to data through
a heterogeneous tool and language environment, the RTP (see Sect.6). Based
on this common view to different development entities (software components,
requirements, test cases, ...), a process library was developed to enable the users
to instantiate a company specific development process for safety-critical embedded
systems. A generic development process pattern containing four generic develop-
ment phases was identified to be applicable in several domains and companies.

The following subsection relates the application of the CMM methodology and
data model to the Doors Management System.® This example covers two of these
phases to illustrate the CESAR methodology.

5.5.2 Application to the DMS

The Doors Management System example is used to show how this process could
be instantiated. This system is highly safety-critical because significant aircraft
accidents and incidents occurred due to uncontrolled decompression. In some of
them doors not fully closed, latched and locked opened in flight, leading to an
explosive decompression. The instantiated example development process contains
four analysis and design phases, where all referenced development entities are
described in term of the CMM.
The top level requirements of the DMS are listed below.

1. The DMS shall be able to provide to pilots the status of Aircraft Door Slides.
(Functional-Perspective)

5QOdile Laurent and Francois Pouzolz; Airbus France; Airbus generic pilot application Aircraft
doors management system; CESAR Use Case; May 2009
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2. The DMS shall inhibit pressurization of Aircraft Doors when Doors are not fully
closed and locked. (Operational Perspective)

3. The DMS shall enable pressurization of Aircraft Doors when Doors are fully
closed and locked. (Operational Perspective)

4. When in Flight, the DMS shall inhibit intentional or unintentional opening of
aircraft doors. (Operational Perspective)

5. When on ground, the DMS shall allow opening of Aircraft Doors. (Operational
Perspective)

The whole set of top level requirements addresses certain concerns of the
DMS system. We focus on a subset only to simplify the example. The top level
requirements are transformed to CMM SystemRequirements by specifying

* What are the assumptions to the environment?

* What is the promised behaviour which the component can guarantee?
* To which Perspective is the requirement associated?

* To which Aspect is the requirement associated?

*  Which component(s) shall satisfy the requirement?

In this early phase, having only a very abstract representation of the DMS, all
requirements are promises since the environment is not clearly defined. Also,
the DMS itself is the components which shall satisfy all the requirements. The
definition of the system boundaries, the refinement of the SystemRequirements
and the decomposition of the system follow during the development process. The
association of the requirements to Perspectives and Aspects is indicated in brackets
after the textual representation of the requirements.

5.5.2.1 Operational Analysis

In this first phase of the development process the top level requirements are
represented as SystemRequirements and are connected via Satisfy links to one
OperationalActor the DMS representation in the operational Perspective.

The Operational Capability Specification is performed with the goal of deriving
operational scenarios and functional requirements that cover the original require-
ments. Since in this step the DMS is sketched in its boundaries, realistically many
functional and non-functional SystemRequirements will have to be reconsidered in
later steps.

First, the OperationalActors are assessed from the SystemRequirements. In
addition to the DMS the other OperationalActors Passenger, Pilot, Cabin Doors,
Crew and Landing Gear System are identified.

As a second step, operational capabilities were derived from the SystemRequire-
ments by a system engineer such as “Enable Pressurization when Doors locked” or
“Keep door locked when in flight” (see Fig. 5.23). For completeness and traceability
these SystemRequirements are related explicitly to the operational capabilities by
Satisfy links.
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The use-case-driven scenario description is refined by several scenarios which

has to be supported. One of this scenarios is presented in Fig. 5.24.

Based on the identified activities, operational processes are specified which
orchestrate these activities. For the operational process, the interaction between
the operational activities is defined. The description of such uses cases allows
sketching the DMS in its system boundaries. That means that the interaction
with other actors such as passengers, pilot, crew and cabin door is identified.
New SystemRequirements are derived form the decomposition of the operational
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specification into several activities. These new SystemRequirements (usually) refer
to the functional Perspective.

In this design step also a preliminary hazard analysis is performed to identify the
safety-relevant operational activities. You may find further information about this in
Sect.2.5.

5.5.2.2 Functional/Non-functional A nalysis

Input of this design step is the result of the operational analysis. In particular this
consists of operational scenarios, user requirements which could not yet be refined,
hazards as well as their classifications and functional SystemRequirement identified
during the operational analysis.

The goal of the functional/non-functional need specification is to identify and
specify functions and where appropriate refine them by defining sub-functions.
The DMS is decomposed into the functions “Manage Cabin Pressurization” and
“Manage Doors Locking”. For traceability all the defined functions have a relation
(e.g. CMM Derive link) to the design entities defined in preceding phases.

One intermediate step in before mapping the functions to physical elements is
to map them to logical elements. This logical components represent a prelimi-
nary architecture of the whole system before determining certain implementation
solutions. One the one side the components are not characterized as hardware
or software units but have interface discretions and allow to refine the expected
behaviour in a abstract manner.

We illustrate this taking the “Manage Doors Locking” function as example. This
function shall be represented by a logical component named “FlightLockController”
which controls the flight lock on each door of the DMS. The purpose of this
component is to signal to the flight lock actuators if the lock shall be enabled or
disabled. Two of the top level requirements apply to this component and therefore
the behaviour of the component shall be to enable the lock during take-off and
landing/approaching and to unlock it during cruse and if on ground. This status
is provided by the Landing Gears System, the Engine Status and the Air Speed
Sensors. In addition three safety-related requirements enforce to disable the lock:

1. If the signals “landing gear status” (lgs), “engine running status” (ers) and “air
speed status” (ass) are not available or

2. If the “emergency evacuation” signal (ees) is send or

3. If the differential pressure is less than 2.5 mbar.

The differential pressure is measured by two independent sensors and shall enable
emergency evacuation on ground and doors can be opened without risk (low
differential pressure) even if the other systems fail. Also some timing constraints are
added to these components. The overall requirement for the “FlightLockController”
is on the right side of Fig.5.25.

The “FlightLockController” is decomposed into the “FlightLockLogic™ acquir-
ing the flight status and emitting the “flight lock status” (fls) which could be
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,& ) b}
2 Assumption: the messages Igs, ers and ass
arrive every 10ms. The messages dps0 and
dps1 arrive every 5ms. The ees message is
repeated every 10ms in case of emergency.
Promise: flight lock enable msg is emitted if
Igs, ers and ass indicate take-off or descend/

and is if Igs, ers and ass
indicate on-ground or cruising, or if ess is
send or if pds measures less than 2.5mbar. A
flight lock msg is provided every 10ms. The
maximal delay between ess and flight lock
disable is 20ms and the maximal delay
between dps0 and dps1 less than 2.5mbar
and flight lock disable is 10ms. Maximal delay
for missing of Igs, ers and ass is 30ms.

ad )
A ion: the Igs, R the dps0 A ption: input msg has a period of less
ers and ass arrive every 10ms. and dps1 arrive every 5ms. than 10ms.The period of the priority msg is
Promise: flight lock msg is Promise: flight lock disable msg less than 10ms.
emitted every 10ms. If msgs is emitted if both values are less Promise: every 10ms the output msg equals
are missing the flight lock than 2.5mbar. the last received input msg if no priority msg
disable msg is emitted. arrived in this period

Fig. 5.25 Logical view to the “FlightLockController” and its requirement

“enabled” or “disabled”, the “Override” component which sends the fls signal with
content “disabled” if the differential pressure is low and two switches which pass
through the message available at the “normal” port if no message is available on the
priority port in a certain time frame. The priority message is passed if available and
the other message is ignored. Note that no message queues are assumed and there-
fore only one message per port is recognized. For implementation, these messages
and ports could be realized by variables with certain values as well as pins with high
or low current. This abstract view of the “FlightLockController” decomposition
is presented and also the requirements of the parts of the components are shown.
All the requirements are formulated as SystemRequirement (with Assumption and
Promise) to differentiate between what the components are responsible for and what
they assume/need from the environment. The interfaces of the components describe
what kind of exchange is possible, e.g., if boolean values (boolean variable, high/low
current) or numerical values (integer, 8-bit coded data).

Note that this is specification and not implementation. The components men-
tioned can not be compiled into code or hardware but only refer to a implementation.
Therefore not the components itself but the referenced implementation has to fulfil
the requirements of the component. The SystemRequirements of these components
argue about traces for the interface elements. If an implementation produces the
same output trace as specified it fulfills the SystemRequirement. This could only
be achieved if the input trace is also conform to the assumed one, since the
implementation reacts to the inputs.

Note that in Sect.3.4 a more detailed description of how a natural language
requirement can be formalized into a formal (text-)pattern-based SystemRequire-
ment. Such SystemRequirements describe sets of traces for Assumption and
Promise pairs in a formal but human readable way.

In this example, we assume that such a formalization has been made and for each
component the traces are defined e.g. using finite state machines (FSM). For each



212 K.-K. Lau et al.

SystemRequirement one set of traces has been defined for the Assumption and one
other for the Promise. These traces argue about the values of the interface variables
and do not take internal states into account. For the three different types of (sub-)
components of the “FlightLockController”, we assume one SystemRequirement per
component and one SystemRequirement for the “FlightLockController” itself. In
this example none of the sub-components is connected to all of the interfaces of the
“FlightLockController” component and the “switch” is reused.

The question we want to address is: Does this composition of the four sub-
components (three different types) fulfill the SystemRequirement of the “Flight-
LockController”? The answer is of course yes, but why?

The traces of the “FlightLockController” can be represented using FSMs. The
same could be done for the three different types of sub-components. The problem is
how to determine that the different FSMs are equivalent to the “FlightLockCon-
troller” ones. Each FSM has its own alphabet since this relates to the interface
of the component only. Connections between instances of this component types
create a mapping relation between the different alphabets. In addition for each
instance of the same type, an individual FSM is used. Build up on this the parallel
composition of the FSMs can be created and this composed FSM defines the set of
traces of the composition. At this point the FSM of the “FlightLockController” and
of the composition can be compared if the composition contains at least the same
traces as the “FlightLockController” FSM. We call this relation “entailment” and
via the CMM the SystemRequirements and components are linked with each other
to enable traceability of this relation. Note that because of merging the traces the
connections between the components can not have certain properties.

The purpose of the entailment relation is not only to check if the composition is
valid but to reduce the integration testing effort. If entailment is given, the individual
sub-components have to be checked and not the composition itself. This also reduces
the effort for verification of reusable elements since their implementation must only
be checked once for each type and not for each instance in a certain composition
as well. In addition this allows e.g. an OEM to contract several suppliers and to
ensure that the integration is valid without exhaustive testing against each of the
implementations.

This relation does not only support this design step but is applicable in all design
steps of the CESAR design process. In Sect. 3.4, as mentioned before, guidelines as
well as tools support this kind of (de-)composition also on requirements wrt. only a
very draft architecture. The overall goal of this methodology is not only to reduce
verification effort but also to enable traceability from top level requirements down
to the implementations of individual components as well as the overall composed
system. One last important aspect is the analysis of the impact of a change of
requirements in all design steps (refer to Sect. 3.4 for details).



