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1 What?

Our component-based approach to verified software is a result of cross-fertilisation be-
tween verified software and component-based software development. In contrast to ap-
proaches based on compositional verification techniques, our approach is designed to
solve the scale problem in verified software.

Compositional verification tends to be top-down, i.e. it partitions a system into sub-
systems, and proves the whole system by proving the subsystems (Fig. 1). The subsys-
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Fig. 1. Compositional verification.

tems, often called components, are system-specific, and are therefore not intended for
reuse. It follows that their proofs cannot be reused in other systems.

By contrast, our approach to verified software is bottom-up, starting with pre-existing
pre-verified components, and composing them into verified composites. (Fig. 2). Com-
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Fig. 2. Component-based approach to verified software.

ponents are system-independent, and are intended for reuse in many systems. Their
proofs are therefore also reusable in different systems.

2 Why?

In compositional verification, the only form of ‘scaling up’ is decomposition into smaller,
more manageable subsystems. The task of decomposition itself (and composing the
subproofs) is directly proportional to the size of the whole system.
�
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By contrast, in our component-based approach, scaling up is achieved because each
step of composition is independent of the size of the whole system. The total number
of composition steps required depends on the size of the whole system as well as the
granularity of the components.

3 How?

The pre-requisite for a component-based approach to verified software is that compo-
nents and their specification, composition and verification are not only well-defined,
but also defined in such a way that verified software can be built in a component-based
manner. That is, we need a component model such that it supports this approach.

3.1 A Component Model

A component model defines what components are, and how they can be composed. We
have defined a component model [7] in which we can also reason about components and
their composition. The defining characteristics of our components are encapsulation
and compositionality, which lead to self-similarity. The defining characteristic of our
composition operators is that they are exogenous connectors [8] that provide interfaces
to the composites they produce.

Self-similarity is what makes our component-based approach possible. It means that
our composite components have hierarchical specifications, hierarchical proof obliga-
tions, or verification conditions (VCs), and as a result, proof reuse, via sub-VCs, is
possible.

3.2 A Case Study: The Missile Guidance System

We have implemented our component model in Spark [2], and using this implemen-
tation, we have experimented on an industrial strength case study, a Missile Guidance
system [4], which we obtained from Praxis High Integrity Systems. The Missile Guid-
ance system is the main control unit for an endo-atmospheric interceptor missile. It
consists of a main control unit and input/output. An I/O handler reads data from differ-
ent sensors and passes them via a bus to corresponding processing units. These units
then pass their results to a navigation unit which produces the output for the system.

The implementation in [4] contains 246 packages including tools and a test harness.
In total, it has 30,102 lines of Spark Ada code including comments and annotations.

Using our component model, we have implemented a component-based version of
the Missile Guidance system. Its architecture is shown in Fig. 3. We reused code from
[4] as computation units, and composed them using exogenous connectors. Seq1, Seq1’,
Seq2 and Seq4 are composite components whose interfaces are sequence connectors.
Sel2 is a composite component whose interface is is a selector connector. Seq3 is a
sequence connector, Sel1 a Selector, Pipe1 and Pipe2 are pipe connectors and Loop is
an iterator.

We have proved the system completely, using the Spark proof tools: Examiner, Sim-
plifier and Checker; and its proof obligation summary is shown in Fig. 4. The summary
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Fig. 3. A component-based missile guidance system.
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Fig. 4. Proof Obligation Summary of the missile guidance system.

is generated automatically by the Spark Proof Obligation Summariser (POGS). It is a
summary for the VCs: their total number, types, and numbers discharged by each proof
tool.

In the proofs of composite components, we succeeded in reusing proofs of sub-
components, by virtue of the hierarchical nature of the VCs. We define proof reuse rate
for a (composite or atomic) component simply as the ratio of the number of new VCs for
the (composition or invocation) connector to the number of VCs in the sub-components
(or computation unit). Of course the actual proof effort for each VC is variable, but we
believe the ratio of VC numbers does give a first approximation to proof reuse rate.

As an illustration of the proof reuse rates for the component-based missile guidance
system, we will show the proof reuse rates for part of the system, viz. the composite
component Seq4 in Fig. 3. The subcomponents of Seq4 are shown in Fig. 5, where
‘Ibm’ is the invocation of ‘bm’ (Barometer), ‘Ias’ is the invocation of ‘as’ (Airspeed),
etc.

The proof reuse rate for each sub-component of Seq4 is shown in Fig. 6. We can
see that the bulk of proof efforts goes into proving the computation units of atomic
components, but these proofs are only done once and can be reused afterwards. Our
component-based approach is able to reuse these proofs effectively, thus reducing the
cost of proof efforts of the whole system.
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Fig. 5. Part of the missile guidance system.
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Fig. 6. Proof reuse rates for part of the missile guidance system.

More importantly, this experiment confirms that our component-based approach can
scale up, because of proof reuse.

4 What Next?

Although the missile guidance system is an industrial strength case study, our exper-
iment is only a first step in developing and applying our component-based approach
to verified software. Much more remains to be done, and here we outline some future
work.

4.1 Formalisation and Proof of Properties of Component Model

A preliminary formalisation of the semantics of our component model has been done,
using first-order logic [7]. To prove properties of our component model, we plan to
formalise the model in a theory with a proof tool. To investigate this, we plan to use
PVS [9].

4.2 Implementation in Other Languages and Tools

Implementation of our component model in other languages with proof tools, e.g. Spec#
[3], JML [6], etc. will be interesting. A comparison with B [1] and its tools will also be
illuminating. The objective will be to evaluate whether and how well these models and
tools support our model for component-based verified software.
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4.3 Larger Examples

Although the Missile Guidance System is already quite large, it is nowhere near the 1
million lines that is the target of the Grand Challenge in Verified Software [5]. There-
fore, we hope to attempt increasingly larger examples, in order to produce convincing
evidence that our model is fit for purpose, as far as the scale problem is concerned.
By so doing we can also contribute to the repository of verified code that the grand
challenge also seeks to establish.
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