
A Component-based Approach to Verified Software:
What, Why, How and What Next?

Kung-Kiu Lau
���

, Zheng Wang
�

, Anduo Wang
�

and Ming Gu
�

�

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom
kung-kiu,zw@cs.man.ac.uk

�

School of Software, Tsinghua University, Beijing, China
wad04@mails.tsinghua.edu.cn, guming@mail.tsinghua.edu.cn

1 What?

Our component-based approach to verified software is a result of cross-fertilisation be-
tween verified software and component-based software development. In contrast to ap-
proaches based on compositional verification techniques, our approach is designed to
solve the scale problem in verified software.

Compositional verification tends to be top-down, i.e. it partitions a system into sub-
systems, and proves the whole system by proving the subsystems (Fig. 1). The subsys-

. . .

System spec

Subspec Subspec . . .

System proof

Proof of
subsys

Proof of
subsys

Fig. 1. Compositional verification.

tems, often called components, are system-specific, and are therefore not intended for
reuse. It follows that their proofs cannot be reused in other systems.

By contrast, our approach to verified software is bottom-up, starting with pre-existing
pre-verified components, and composing them into verified composites. (Fig. 2). Com-

Component . . .Component
proofproof

. . .

Composite component

VerifiedVerified
component component

Composite component proof

Fig. 2. Component-based approach to verified software.

ponents are system-independent, and are intended for reuse in many systems. Their
proofs are therefore also reusable in different systems.

2 Why?

In compositional verification, the only form of ‘scaling up’ is decomposition into smaller,
more manageable subsystems. The task of decomposition itself (and composing the
subproofs) is directly proportional to the size of the whole system.
�

Kung-Kiu Lau gratefully acknowledges financial support from VSR-net (EPSRC project
EP/D506735/1).

By contrast, in our component-based approach, scaling up is achieved because each
step of composition is independent of the size of the whole system. The total number
of composition steps required depends on the size of the whole system as well as the
granularity of the components.

3 How?

The pre-requisite for a component-based approach to verified software is that compo-
nents and their specification, composition and verification are not only well-defined,
but also defined in such a way that verified software can be built in a component-based
manner. That is, we need a component model such that it supports this approach.

3.1 A Component Model

A component model defines what components are, and how they can be composed. We
have defined a component model [7] in which we can also reason about components and
their composition. The defining characteristics of our components are encapsulation
and compositionality, which lead to self-similarity. The defining characteristic of our
composition operators is that they are exogenous connectors [8] that provide interfaces
to the composites they produce.

Self-similarity is what makes our component-based approach possible. It means that
our composite components have hierarchical specifications, hierarchical proof obliga-
tions, or verification conditions (VCs), and as a result, proof reuse, via sub-VCs, is
possible.

3.2 A Case Study: The Missile Guidance System

We have implemented our component model in Spark [2], and using this implemen-
tation, we have experimented on an industrial strength case study, a Missile Guidance
system [4], which we obtained from Praxis High Integrity Systems. The Missile Guid-
ance system is the main control unit for an endo-atmospheric interceptor missile. It
consists of a main control unit and input/output. An I/O handler reads data from differ-
ent sensors and passes them via a bus to corresponding processing units. These units
then pass their results to a navigation unit which produces the output for the system.

The implementation in [4] contains 246 packages including tools and a test harness.
In total, it has 30,102 lines of Spark Ada code including comments and annotations.

Using our component model, we have implemented a component-based version of
the Missile Guidance system. Its architecture is shown in Fig. 3. We reused code from
[4] as computation units, and composed them using exogenous connectors. Seq1, Seq1’,
Seq2 and Seq4 are composite components whose interfaces are sequence connectors.
Sel2 is a composite component whose interface is is a selector connector. Seq3 is a
sequence connector, Sel1 a Selector, Pipe1 and Pipe2 are pipe connectors and Loop is
an iterator.

We have proved the system completely, using the Spark proof tools: Examiner, Sim-
plifier and Checker; and its proof obligation summary is shown in Fig. 4. The summary

2

Sel1

Seq3

Pipe1

Seq4

Loop

Seq1’Seq1 Seq2 Sel2

Pipe2

Fig. 3. A component-based missile guidance system.

Undiscgd

Total VCs by type:

0 0
0 0

Total Examiner Simp Checker Review False
−−−−−−−−−−−−Proved By−−−−−−−−−−−−−−−−−

00

Assert or Post:
Precondition Check
Check Statement
Runtime check: 0 0
Refinement VCs: 00
Inheritance VCs: 0 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−End of Semantic Analysis Summary−−−−−−−−−−−−−−−−−−−−−

−−

Totals: 0 0
% Totals: 0% 0%

969
5
0

701

37%

1494
350

0
0
0

350
0

0
0

0
0

2818 1051

1286

0
0

109
0
0

193 181

1479 290
52% 10%

Fig. 4. Proof Obligation Summary of the missile guidance system.

is generated automatically by the Spark Proof Obligation Summariser (POGS). It is a
summary for the VCs: their total number, types, and numbers discharged by each proof
tool.

In the proofs of composite components, we succeeded in reusing proofs of sub-
components, by virtue of the hierarchical nature of the VCs. We define proof reuse rate
for a (composite or atomic) component simply as the ratio of the number of new VCs for
the (composition or invocation) connector to the number of VCs in the sub-components
(or computation unit). Of course the actual proof effort for each VC is variable, but we
believe the ratio of VC numbers does give a first approximation to proof reuse rate.

As an illustration of the proof reuse rates for the component-based missile guidance
system, we will show the proof reuse rates for part of the system, viz. the composite
component Seq4 in Fig. 3. The subcomponents of Seq4 are shown in Fig. 5, where
‘Ibm’ is the invocation of ‘bm’ (Barometer), ‘Ias’ is the invocation of ‘as’ (Airspeed),
etc.

The proof reuse rate for each sub-component of Seq4 is shown in Fig. 6. We can
see that the bulk of proof efforts goes into proving the computation units of atomic
components, but these proofs are only done once and can be reused afterwards. Our
component-based approach is able to reuse these proofs effectively, thus reducing the
cost of proof efforts of the whole system.

3

Ias Icp Iins Ife Ifz Ira Iir Ise Imt

bm as cp ins fe fz ra ir se mt

Idt Iwh

dt wh cl en

Ibm Icl Ien

Seq4

Fig. 5. Part of the missile guidance system.

Package
No. of VCs

bm
11

Ibm
17

as Ias
11 19

cp
19 31

Icp ins Iins
15 23 13 20

Ifefe fz Ifz
13 20

Irara
28

Package
No. of VCs 28

ir Iir
34

82%

se Ise
21

mt Imt
19 25

dt Idt
12 18

wh
12

Iwh
18

cl en Ien
30 38

35

28 12
Icl
21

Package

No. of VCs

Reuse rate

Reuse rate

Reuse rate

352

Seq4

58% 61% 65% 65% 65% 80%

75% 76% 67% 67% 57% 79%

65%

98%

Fig. 6. Proof reuse rates for part of the missile guidance system.

More importantly, this experiment confirms that our component-based approach can
scale up, because of proof reuse.

4 What Next?

Although the missile guidance system is an industrial strength case study, our exper-
iment is only a first step in developing and applying our component-based approach
to verified software. Much more remains to be done, and here we outline some future
work.

4.1 Formalisation and Proof of Properties of Component Model

A preliminary formalisation of the semantics of our component model has been done,
using first-order logic [7]. To prove properties of our component model, we plan to
formalise the model in a theory with a proof tool. To investigate this, we plan to use
PVS [9].

4.2 Implementation in Other Languages and Tools

Implementation of our component model in other languages with proof tools, e.g. Spec#
[3], JML [6], etc. will be interesting. A comparison with B [1] and its tools will also be
illuminating. The objective will be to evaluate whether and how well these models and
tools support our model for component-based verified software.

4

4.3 Larger Examples

Although the Missile Guidance System is already quite large, it is nowhere near the 1
million lines that is the target of the Grand Challenge in Verified Software [5]. There-
fore, we hope to attempt increasingly larger examples, in order to produce convincing
evidence that our model is fit for purpose, as far as the scale problem is concerned.
By so doing we can also contribute to the repository of verified code that the grand
challenge also seeks to establish.

References

1. J.R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, 2003.

3. M. Barnett, K.M. Leino, and W. Schulte. The Spec# programming system: An overview. In
Proc. Int. Workshop on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, LNCS 3362, pages 49–69. Springer, 2004.

4. A. Hilton. High Integrity Hardware-Software Codesign. PhD thesis, The Open University,
April 2004.

5. T. Hoare and J. Misra. Verified software: theories, tools, experiments - vision of a grand
challenge project. In Proceedings of IFIP working conference on Verified Software: theories,
tools, experiments, 2005.

6. The Java Modeling Language (JML) Home Page. http://www.cs.iastate.edu/
˜leavens/JML.html.

7. K.-K. Lau, M. Ornaghi, and Z. Wang. A software component model and its preliminary
formalisation. In F.S. de Boer et al., editor, Proc. 4th International Symposium on Formal
Methods for Components and Objects, LNCS 4111, pages 1–21. Springer-Verlag, 2006.

8. K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software compo-
nents. In G.T. Heineman et al., editor, Proc. 8th Int. Symp. on Component-based Software
Engineering, LNCS 3489, pages 90–106. Springer, 2005.

9. http://pvs.csl.sri.com/documentation.shtml/.

5

