
A Component Model for Separation of

Control Flow from Computation in

Component-Based Systems

Kung-Kiu Lau, Vladyslav Ukis, Perla Velasco and Zheng Wang

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

Email: kung-kiu, vukis, velascop, zw@cs.man.ac.uk

Abstract

Today’s component models as well as architectural description languages (ADLs) compose components
either using direct or indirect method calls. When using direct method calls, components carry out compu-
tation, originate control to and perform communication between each other. When using indirect message
calls, components are connected using connectors encapsulating communication between them. The com-
ponents in these (ADL) systems are supposed to do computation only. However, in this paper we show
that components in ADLs not only perform communication as intended but also originate control towards
connectors resulting again in a mixture of control and computation inside components. To separate control
from computation in component-based systems we have been developing a new component model aimed at
separation of control from computation [15]. In this paper we show how it can be used to build modular
and maintainable systems and argue that our component model has its place in Model-driven architecture.

Keywords: Component Model, Indirect Message Calls, Separation of Control Concerns from
Computation.

1 Introduction

In component-based software development [25], composition is a central issue. Ar-

chitecture description languages (ADLs) [24] provide connectors as composition

operators. However, traditional ADLs do not separate computation (components)

from interaction (connectors) as cleanly as intended, thus mixing two semantically

different concerns and complicating architectural reasoning. Components not only

perform computation, but also initiate control, which is then passed by the con-

nectors to other components. To separate computation from control and to make

compositional reasoning more tractable, we believe it is necessary to improve encap-

sulation of computation (components) as well as control (connectors). Therefore we

have been developing a component model with component composition operators

called exogenous connectors for component composition. These connectors provide

Electronic Notes in Theoretical Computer Science 163 (2006) 57–69

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.07.003

http://www.elsevier.com/locate/entcs

composition mechanisms different from those in existing component models (includ-

ing ADLs) [16,17], in that they completely capture control, leaving components to

encapsulate only computation. In this paper, we present how we separate compu-

tation from control and join them together in a system as well as point out the

properties of the resulting systems.

2 Separation of Control from Computation

A component model defines components and composition operators to connect

them. In our component model components do solely computational tasks. To

compose components together in a system we have special composition operators,

exogenous connectors, whose distinguishing characteristic is that they encapsulate

control in the system. By having this, we can fully separate control from com-

putation in a component-based system. This is in contrast to traditional ADLs,

C
A

B
D

E

(a) Components and connectors (b) Control flow

Fig. 1. Traditional ADLs.

where components are supposed to represent computation, and connectors inter-

action between components [18] (Figure 1 (a)). Actually, however, components

represent computation as well as control, since control originates in components,

and is passed on by connectors to other components. This is illustrated by Fig-

ure 1 (b), where the origin of control is denoted by a dot in a component, and the

flow of control is denoted by arrows emanating from the dot and arrows following

connectors.

In this situation, components are not truly independent, i.e. they are tightly

coupled, albeit only indirectly via their ports.

In general, component connection schemes in current component models (includ-

ing ADLs) use message passing, and fall into two main categories: (i) connection

by direct message passing; and (ii) connection by indirect message passing. Di-

A

b();

C

B

a();
B.a();
C.b(); C.b();

D

c();

E

D.c();

Fig. 2. Connection by direct message passing.

rect message passing corresponds to direct method calls, as exemplified by objects

calling methods in other objects (Figure 2), using method or event delegation, or re-

mote procedure call (RPC). Software component models that adopt direct message

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6958

passing schemes as composition operators are Enterprise JavaBeans [10], CORBA

Component Model [22], COM [3], UML2.0 [21] and KobrA [2]. In these models,

there is no explicit code for connectors, since messages are ’hard-wired’ into the

components, and so connectors are not separate entities.

Indirect message passing corresponds to coordination (e.g. RPC) via connec-

tors, as exemplified by ADLs. Here, connectors are separate entities that are de-

fined explicitly. Typically they are glue code or scripts that pass messages between

components indirectly. To connect a component to another component a connector

component connector

B.a();
notify();

notify();
C.b();

K2

K1
A

a();

b();

B

C
notify();
C.b();

K1.notify();
K2.notify();

K3.notify();
c(); D.c();

notify(); K4.notify();
D K4 EK3

Fig. 3. Connection by indirect message passing.

is used that when notified by the former invokes a method in the latter (Figure 3).

Besides ADLs, other software component models that adopt indirect message pass-

ing schemes are JavaBeans [5], Koala [27], SOFA [23], PECOS [20], PIN [12] and

Fractal [4].

In connection schemes by message passing, direct or indirect, control originates

in and flows from components, as in Figure 1 (b). This is clearly the case in both

Figure 2 and Figure 3.

By contrast, in exogenous connection, control originates in and flows from con-

nectors, leaving components to encapsulate only computation. This is illustrated

by Figure 4. In Figure 4 (a), components do not call methods in other components.

Instead, all method calls are initiated and coordinated by exogenous connectors.

The latter’s distinguishing feature of control encapsulation is clearly illustrated by

Figure 4 (b), in clear contrast to Figure 1 (b).

Exogenous connectors thus encapsulate control (and data), i.e. they initiate

and coordinate control (and data). With exogenous connection, components are

truly independent and decoupled resulting in a system with separated control and

computation.

Exogenous connection [15] is not provided by any existing software component

models (including ADLs). However, exogenous connection has been defined as

exogenous coordination in coordination languages for concurrent computation [1].

Also, in object-oriented programming, the courier pattern [7] uses the idea of exoge-

nous connection whereby a courier object links a producer-consumer pair of objects

by calling the produce method in the producer object and then calling the consume

method in the consumer object with the result of the produce method. The courier

pattern doesn’t define a hierarchy, though.

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 59

a();
b();

A
A.a();
B.c();

Con1

c();

B

d();

C
E

g();

component

f();
e();
DCon2

A.b();
C.d(); C.d();

D.e();

Con3

E.g();
D.f();

Con4

connector

(a) Example

a();
b();

A

Con1

c();

B

d();

C
E

g();
f();
e();
DCon2 Con3 Con4

(b) Control flow

Fig. 4. Connection by exogenous connectors.

2.1 Hierarchy of Control

The concept of exogenous connection entails a type hierarchy of exogenous connec-

tors. Because they encapsulate all the control in a system, such connectors have

to connect to one another (as well as components) in order to build up a complete

control structure for the system. For this to be possible, there must be a type

hierarchy for these connectors. Therefore such a hierarchy must be defined for any

component model that is based on exogenous connection. In this section we describe

the connector type hierarchy for our component model.

In our component model, 1 components are units of computation linked by ex-

ogenous connectors. A component is a unit of software with (i) an interface that

specifies the services it provides (i.e. its methods) and the services it requires, and

the dependencies between the two sets of services; and (ii) code that implements the

provided services. In essence it is similar to Szyperski’s definition [25]. However,

our components do not invoke methods or services in other components. Rather,

they only perform their provided services (methods) when they are invoked from

outside, by connectors. Thus our components encapsulate computation only.

Connectors are composition operators that compose components into systems.

They are exogenous, i.e. they initiate and coordinate method calls in components,

and handle their results. Thus they determine control flow and data flow, i.e. they

encapsulate communication in general, and control in particular.

In the connector type hierarchy for our component model, components are ob-

viously a basic type. Because components are not allowed to call methods in other

components, we need an exogenous method invocation connector. This is a unary

operator that takes a component, invokes one of its methods, and receives the result

1 We do not give a full description; it is not necessary here.

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6960

of the invocation.

To structure the control and data flow in a set of components or a system, we

need other connectors for sequencing exogenous method calls to different compo-

nents. So we need n-ary connectors for connecting invocation connectors, and n-ary

connectors for connecting these connectors, and so on. In other words, we need a

hierarchy of connectors of different arities and types.

B

C

D

E

F

G

A

B

C
A

D

E

F

G

(a) Acme (b) C2

E D B A C F G

(c) Exogenous connection

Fig. 5. Corresponding architectures.

For example, consider a system whose architecture can be described in the Acme

[8] and C2 [26] ADLs by the architectures in Figure 5 (a) and (b) respectively. Us-

ing exogenous connectors in our component model, the corresponding architecture

is that shown in Figure 5 (c). In the latter, the lowest level of connectors are unary

invocation connectors that connect to single components; the second-level connec-

tors are binary and connect pairs of invocation connectors; and the connectors at

levels 3 and 4 are of variable arities and types. Note that at the top level, there is

only one connector.

In general, connectors at any level other than the first can be of variable arities;

connectors at any level higher than two can be of variable arities and types; and

we can define any number of levels of connectors. Connectors at level n for any

n > 1 can be defined in terms of connectors at levels 1 to (n − 1), according to the

following type hierarchy:

Basic types Component, Result;

Connector types L1 ≡ Invocation ≡ Component −→ Result;

L2 ≡ L1 × . . . × L1 −→ Result;

L3 ≡ L × . . . × L −→ Result

where L is either L1 or L2;
· · ·

Thus level-one and level-two connectors are not polymorphic since they can connect

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 61

only to invocation connectors, but connectors at higher levels are. They can connect

to any kind of connectors.

More formally, for an arbitrary number n of levels, the connector type hierarchy

can be defined in terms of dependent types and polymorphism as follows:

L1 ≡ Component −→ Result;

L2 ≡ L1 × . . . × L1 −→ Result;

For 2 < i ≤ n, Li ≡ L(j1) × . . . × L(jm) −→ Result, for some m

where jk ∈ {1,, (i − 1)} for 1 ≤ k ≤ m,

and L(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L1 , i = 1

L2 , i = 2
...

Ln , i = n.

2.2 Component Composition

Just as exogenous connection entails a connector type hierarchy, so the latter in

turn entails a strictly hierarchical way of constructing systems by composing com-

ponents. As illustrated by Figure 5 (c), in such a system, components form a flat

layer, and the entire control structure (of connectors) sits on top of this. Beyond

level 1, the precise choice of connectors, the number of levels of connectors, and

the connection structure, depend on the relationship between the behaviour of the

individual components and the behaviour that the whole system is supposed to

achieve. Whatever the control structure, however, it is strictly hierarchical, which

means that there is always only one connector at the top level. This is the connector

that initiates control flow in the whole system.

2.2.1 The Bank Example

Consider a bank system, whose architecture is described in Acme in Figure 6 (a).

The system has just one ATM that serves two bank consortia (BC1 and BC2),

BC1

BC2

ATM

B1

B2

B3

B4 BC1 ATM BC2 B3 B4B1B2

S1 S2

P2 P3

P1

S3

(a) Acme (b) Exogenous connection

Fig. 6. Architecture of the bank example.

each with two bank branches (B1 and B2, B3 and B4 respectively). The ATM

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6962

passes customer requests together with customer details to the customer’s bank

consortium, which in turn passes them on to the customer’s bank branch. The

bank branches provide the usual services of withdrawal, deposit, balance check, etc.

The Bank System’s architecture in Figure 6 (b) is a refinement of Figure 5 (c).

At level 1, each component has an invocation connector. At level 2, there is a

selector connector S1 that is used to select the customer’s bank branch from banks

B1 and B2, prior to invoking that branch’s methods requested by the customer.

Similarly, there is a level-2 selector connector S2 for choosing between B3 and B4,

prior to invoking their methods requested by the customer. To pass values from

one bank consortium to one of its banks we need a pipe connector; at level 3, we

have two pipe connectors P2 and P3, for BC1 and BC2 respectively. At level 4, S3

is a selector connector that selects the customer’s bank consortium from consortia

BC1 and BC2. Finally, at level 5, the top level, the pipe connector P1 initiates the

bank system’s operational cycle by passing customer requests and card information

to the ATM , invoking the ATM ’s methods, and then passing the resulting value to

connector S3.

3 Joining Control and Computation

In addition to their hierarchical nature, exogenous connectors can also be imple-

mented in a generic manner. That is, application-independent templates for these

connectors can be created, which can be reused for different applications by creating

application-specific instances. These generic exogenous connectors can be deposited

in a repository and retrieved on demand for each application. Furthermore, for any

specific application with an exogenous control or connection structure, the generic

connectors can be instantiated, on the fly, into the instances in the latter’s con-

nection structure. This means that it is possible to generate the control flow of a

system dynamically and automatically from its architecture.

To illustrate this, consider the connection structure of the Bank example in Fig-

ure 6 (b). The system contains three pipe connectors and three selector connectors

(as well as seven invocation connectors). Each of these connectors hosts different

connector types (and in different numbers). For example, the pipe P1 hosts a se-

lector S3 and an invocation connector I4 for the component ATM, whereas the

pipe P2 hosts a selector S1 and an invocation connector I3 for the component

BC1. Although the two pipes are doing completely different things, they have been

constructed from the same template. The template is generic enough to embody

different instances. So, P1 is an instance of the pipe template that hosts the selector

S3 and the invocation connector I4, and P2 is an instance that hosts the selector

S1 and the invocation connector I3.

The same applies to selector and invocation connectors (and indeed to any con-

nector). A selector connector template can take any number of any connectors, and

an invocation connector template can call any method on any component.

Thus we can automate the process of control flow construction for any system

with an exogenous connection structure by instantiating connector templates into

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 63

instances in the latter. Indeed, we have implemented a generic container [14] for

joining control and computation, which can construct, on the fly, the control flow

for any exogenous connection structure expressed as an XML description. For

system developers the process of system construction is reduced to the provision

of components (encapsulating computation only) and a description of the system’s

connection structure. From these, the generic container automatically generates the

run-time system. 2

Figure 7 illustrates this using the bank example.

with control flow

exogenous
connectors

(a) generic

each other
control to
not originating
components(c)

Generic container

Interface to the run−time system

A run−time system

by the container
generated automatically</...>

<...>

<...>

control structure
XML description of(b) <...>

I4I3I2I1

B2 B4B1 BC1 ATM BC2 B3

P

I5 I6 I7

S1 S2

P2 P3
S3

P1

I

S

Fig. 7. Automated system construction using a container.

The top-level connector is exposed by the generic container to provide a user

interface to the system. As in the classic Model View Controller pattern [6], the

system can have several user interfaces to the same business logic.

Finally, in this example, we need and use only three connector types. Other

systems may require more, and these can be defined and used in the same way as

in this example. 3

4 MDA-like system construction

The system construction introduced above is MDA-like. Figure 8 shows our var-

ious models at the various levels of abstractions. We start by constructing an

XML

<...>
 <...>
 <...>
 <...>
<...>

model
platform−independent

Rules Rules

visual model
Implementation−independent

on a platform
runtime system

BC1 ATM BC2 B3 B4

I5 I7I6I4I3

S2

B1B2

I2I1

S1

P2 P3
S3

P1

I5

B2 B1 BC1 ATM BC2 B3 B4

I7I6I4I3

P1

S3
P3P2

S2S1

I1 I2

Fig. 8. MDA-like system construction

implementation-independent visual model of a system. This is similar to ADL di-

agrams. Subsequently, we use a set of rules to transform the visual model into an

2 In [14] we show that our container is different from containers in existing component models like EJB
(Enterprise JavaBeans) and CCM (CORBA Component Model) in that the latter only execute control flow
already fixed in and between the components; they do not generate control flow automatically.
3 We have built an Automated Train Protection System (ATP) using exogenous connectors and the generic
container. In that system we could reuse the pipe, selector and invocation connector from the Bank Example.
Furthermore, we introduced a sequencer connector and an ATP-specific connector. Further applications of
our component model to different domains are being performed.

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6964

XML-based one. The XML-based model is not at the level of abstraction of the

visual model any more as it contains more details about the system. However, it

is platform-independent. Finally, we transform the platform-independent model of

the system into a running system using a set of rules. The running system contains

instances of components and connectors and is platform-dependent. The generic

container builds up the system following the XML model. Note, that by contrast

to ADLs we do not generate code from our model but use a generic container to

build up and instantiate the system on the fly.

Note that since the four-level metamodel hierarchy in MDA is relative [19], we

do not attempt here to put our models from Figure 8 into specific levels M0-M3 in

MDA.

5 Properties of Systems

Systems built using our component model are easy to manage because they are

modular and maintainable. And this, in turn, is due to separation of two concerns

in these systems: control flow and computation.

5.1 Modularity

As we have seen in the bank example, the top-level connector in a system with

exogenous connectors provides an interface to the system. Similarly, any connector

in the system provides an interface to the subsystem of which it is the top-most

connector. Thus a system with exogenous connectors is modular, and any part of

the system is an independent subsystem. Such subsystems can be tested or reused

separately.

Figure 9 shows two subsystems in the bank example. Subsystem1 represents the

P3

B3B3 B4BC2

S2

I5 I6 I7

Subsystem2

Subsystem1

Fig. 9. Subsystems.

subsystem that takes the customer information passed on by the ATM component,

and executes the action requested by the customer. To do this task, Subsystem1

uses the functionality of Subsystem2, the subsystem that actually carries out the

action.

Subsystem1 and Subsystem2 have a specific function each that can be tested and

verified independently. Moreover, the subsystems can also be reused independently

of each other. As the figure shows, each subsystem has an interface which provides

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 65

an entry and exit point for control and data. All required resources, such as data

accessed by the subsystem, are either contained within the subsystem or explicitly

identified as input or output to the subsystem via its interface. Thus each subsystem

can be reused as an independent unit.

5.2 Maintainability

As a corollary of its modularity, a system based on our component model is main-

tainable. Not only can a subsystem be tested and reused separately, as we have

seen, but also a subsystem can be easily added to or removed from a connection

structure.

Consider the scenario of adding a new subsystem to the bank example, for

example a new consortium BC3 with banks B5, B6 and B7, as shown in Figure 10.

In a traditional port-based architecture (e.g. Figure 10 (a)), because components

are tightly coupled and connectors embedded into them, this addition will require

some modifications in the code of the existing components. It is necessary not only

to define the required ports in ATM and BC3, but also to add the code in ATM to

direct the control flow in the system to BC3 whenever BC3 is the consortium that

the customer’s bank belongs to. By contrast, using exogenous connectors (Figure 10

(b)), existing components do not need to be modified. It is only necessary to redefine

the connector S3, by adding a new condition and its corresponding action, i.e. if

the customer’s bank is in BC3, then execute the subsystem with P4 as its interface.

BC2 B3 B4

S2

P3

S3
P1

BC3

BC1
B1

B6 B7

S3

BC1 ATMB1B2

S1

P2

BC3 B5

P4

ATM
B3

B4
BC2

B2

(b)(a)

I1 I2 I3 I5I4 I6 I7 I8 I9 I11I10

B7

B6

B5

Fig. 10. Adding a new bank consortium.

With the container in Figure 7 for systems in our component model, typical

maintenance tasks such as replacing, adding or removing subsystems will only in-

volve changing the XML description of the system’s connection structure.

6 Conclusion

In this paper we have briefly presented our component model and a qualitative

analysis of its potential advantages over traditional ADLs.

We believe that the overall benefit of using exogenous connectors is that they

separate control from computation in component-based systems. Exogenous con-

nectors make components truly independent and therefore more reusable in different

architectures, because they take control out of components totally, leaving the latter

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6966

to perform purely computation. Exogenous connectors make hierarchical system de-

sign possible, due to their own strictly hierarchical nature. They also make system

construction easier by enabling automated control flow generation from a system’s

architecture. Systems based on our component model are easier to manage because

they are modular and maintainable. All these advantages mean that using our com-

ponent model should result in not only reduced time to market, but also reduced

software production and maintenance costs.

We think that our component model can find its specific place in the Model-

driven architecture as systems in our component model, systems are constructed

by model transformation beginning with a visual model through the XML model

towards the runtime system. The runtime system is constructed following a ’con-

struction plan’, which is the XML description of exogenous connection of the sys-

tem, used by the generic container. The system description is platform-independent,

which is one of the key properties in MDA.

However, in this paper we have not presented a quantitative analysis. Our work

on the component model is only beginning, and we do not have any substantial

experimental data to report yet. Nevertheless, we firmly believe that our component

model holds great promise, not only because of the aforementioned advantages but

also because of its potential to provide a unique bridge between traditional ADLs

and component-based software development. The former is top-down, has a well-

developed theory, but has not proved very practical; the latter is bottom-up, has

no firm theoretical foundations as yet, but has a lot of practical support by way

of tools and middleware. Constructing an architecture by putting an exogenous

connection structure on top of pre-existing components mixes software architecture

with component-based software development in a mutually beneficial manner. Thus,

our component model has the potential to combine the best of both worlds, and

as future work, we plan to gather quantitative information on the performance of

exogenous connectors in practical component-based software development.

In terms of technical work, we also need to extend our component model to

concurrency, as well as layered architectures. Furthermore, we are working on

Deployment Contracts for software components, which are metadata [13] about

components’ runtime behavior.

The work on coordination contracts presented in [9] suggests an approach to

facilitate evolution of software systems. The idea is to coordinate classes by using

a special language for expressing coordination rules among them. Code for coor-

dination contracts along with coordinated classes is compiled together to yield the

complete code for the system. In our approach we operate on binaries. That is, the

generic container takes components as well as connectors as binaries. It then puts

them together on the fly resulting in their increased reuse potential. Code reuse

is not preferable as the generated code for the system has to be maintained just

for that system thus complicating system’s evolution. Our connectors are reusable

entities whereas coordination contracts from [9] are not intended to be reused. The

coordination contracts approach does not tackle software architecture issues.

The idea of hyperspaces introduced in [11] aims at identifying slices in the pro-

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 67

gram relating to a concern. Once the hyperslices are identified, weaving is done.

In this approach, again, after the code for the system has been woven, the system

cannot be changed without changing the code. Our approach allows system changes

to be performed by only changing the XML description of the control structure in

the system thus offering more flexibility in system maintenance. Furthermore, we

can reuse our components and connectors. By contrast, the idea of hyperslices does

not promote reuse.

In terms of dynamic composition and reconfiguration, our approach seems to

hold great potential. Using the generic container for constructing the system on the

fly gives the opportunity to govern dynamic architectural system changes as well

as reconfigurations by the container as well. In other words, the generic container

container can be extended to take an XML description of additional connectors and

components and connect them to a running system on the fly. Such changes are

however difficult to perform in a stateful system.

The number of connectors in a system constructed using exogenous connectors

might be bigger than in a system built using direct or indirect method calls. This

has its nature in the flexibility offered by our architectures. Although, it can be

argued that the generic container takes charge of the composition releaving the

system developer from manual composition, the footprint of the system gets larger

with the increased number of connectors involved.

References

[1] F. Arbab. The IWIM model for coordination of concurrent activities. In P. Ciancarini and C. Hankin,
editors, Lecture Notes in Computer Science 1061, pages 34–56. Springer-Verlag, 1996.

[2] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst,
and J. Zettel. Component-based Product Line Engineering with UML. Addison-Wesley, 2001.

[3] D. Box. Essential COM. Addison-Wesley, 1998.

[4] E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal component model. Technical Report Draft-
Version 2.0-3, The ObjectWeb Consortium, 2004.

[5] R. Englander. Developing Java Beans. O’Reilly & Associates, 1997.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissades. Design Patterns – Elements of Reusable Object-
Oriented Design. Addison-Wesley, 1994.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. The courier pattern. Dr. Dobb’s Journal, Feburary
1996.

[8] D. Garlan, R.T. Monroe, and D. Wile. Acme: Architectural description of component-based systems.
In G.T. Leavens and M. Sitaraman, editors, Foundations of Component-Based Systems, pages 47–68.
Cambridge University Press, 2000.

[9] Joao Gouveia, Georgios Koutsoukos, Michel Wermelinger, Lus Andrade, and Jose Luiz Fiadeiro.
Developing and evolving java applications using coordination contracts. In OOPSLA ’02: Companion
of the 17th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 28–29, New York, NY, USA, 2002. ACM Press.

[10] R.M. Haefel. Enterprise JavaBeans. O’Reilly & Associates, 3rd edition, 2001.

[11] William Harrison, Harold Ossher, Stanley Sutton, and Peri Tarr. Concern modeling in the concern
manipulation environment. In MACS ’05: Proceedings of the 2005 workshop on Modeling and analysis
of concerns in software, pages 1–5, New York, NY, USA, 2005. ACM Press.

[12] J. Ivers, N. Sinha, and K.C Wallnau. A Basis for Composition Language CL. Technical Report
CMU/SEI-2002-TN-026, CMU SEI, 2002.

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–6968

[13] K.-K. Lau and V. Ukis. Component metadata in component-based software development: A survey.
Preprint CSPP-34, School of Computer Science, The University of Manchester, October 2005.

[14] K.-K. Lau and V. Ukis. A container for automatic system control flow generation using exogenous
connectors. Preprint CSPP-31, School of Computer Science, The University of Manchester, August
2005.

[15] K.-K. Lau, P. Velasco Elizondo, and Z. Wang. Exogenous connectors for software components. In Proc.
8th Int. SIGSOFT Symp. on Component-based Software Engineering, LNCS 3489, pages 90–106, 2005.

[16] K.-K. Lau and Z. Wang. A survey of software component models. Pre-print CSPP-30, School of
Computer Science, The University of Manchester, April 2005.

[17] K.-K. Lau and Z. Wang. A taxonomy of software component models. In Proc. 31st Euromicro
Conference. IEEE Computer Society Press, 2005.

[18] N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors. In Proc.
22nd International Conference on Software Engineering, pages 178–187. ACM Press, 2000.

[19] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled. Addison-Wesley, March
2004.

[20] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller, C. Zeidler, T. Genssler, and
R. van den Born. A component model for field devices. In Proc. 1st Int. IFIP/ACM Working
Conference on Component Deployment, pages 200–209. ACM Press, 2002.

[21] OMG. UML 2.0 Superstructure Specification. http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 .

[22] OMG. CORBA Component Model, V3.0, 2002.
http://www.omg.org/technology/documents/formal/components.htm .

[23] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component trading and dynamic
updating. In Proc. ICCDS98, pages 43–52. IEEE Press, 1998.

[24] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[25] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, second edition, 2002.

[26] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins, K. A. Nies, P. Oreizy,
and D. L. Dubrow. A component- and message-based architectural style for GUI software. Software
Engineering, 22(6):390–406, 1996.

[27] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala component model for
consumer electronics software. IEEE Computer, pages 78–85, March 2000.

K.-K. Lau et al. / Electronic Notes in Theoretical Computer Science 163 (2006) 57–69 69

http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/technology/documents/formal/components.htm

	Introduction
	Separation of Control from Computation
	Hierarchy of Control
	Component Composition

	Joining Control and Computation
	MDA-like system construction
	Properties of Systems
	Modularity
	Maintainability

	Conclusion
	References

