
Advanced Algorithms II: Algorithm Design

David Rydeheard

Room 2.115

david@cs.man.ac.uk

See module website (from syllabus page) for documents and

supporting material.

1



Module Overview

Section 1: Classifying Computational Tasks. Jürgen Dix.

We look at computational tasks to determine:

1. Whether algorithms for the task exist at all: Computability.

2. What range of algorithms do exist, in particular whether

efficient algorithms exits in terms of space and time complexity

and classify tasks according to what algorithms exist:

Complexity classes.

Section 2: Algorithm Design and Analysis. David Rydeheard.

In this section we investigate a wide range of useful algorithms,

considering how we develop algorithms, classes of related

algorithms and what complexities of algorithms are available.

2



Organisation

The module is in TWO sections. Section (1) is taught by Jürgen

Dix; Section (2) by David Rydeheard.

The module has a unique feature: We don’t use all the lecture slots

to lecture, but compulsory practical exercise are set. You

must attempt these as they extend and re-inforce the material of

the lectures, and themselves are examinable under the examination

for the module. You will be given the additional time of the lecture

slots which are unused in order to complete these practical

exercises, and clinic sessions will be held, as follows:

• Section 1: 8 lectures, plus 1 week (two lecture slots) for

practical exercises.

• Section 2: 8 lectures, plus 1 week (two lecture slots) for

practical exercises.

• 2 clinic sessions.

3



The website

All students should consult the website for this module. It contains

(1) all the lecture notes and slides, (2) relevant code, (3) the

practical exercises for the module, (4) details of module

organisation, (5) useful links to many other relevant sites.

4



Advanced Algorithms II: Algorithm Design

Aim: To examine a range of algorithmic problems and solutions

• for their intrinsic interest and applicability,

• to illustrate the development and structure of, often quite

intricate, algorithms and attendant data structures,

• to develop arguments about correctness and complexity of

algorithms,

• to introduce ‘families’ of algorithms based upon similar

ideas/structures,

• to illustrate Advanced Algorithms I: i.e. show how various real

algorithmic tasks fit the complexity classes already studied.

5



Graph Algorithms

The algorithms we study are based upon tasks associated with

Graphs. Graph algorithms are of interest because:

• They are of wide applicability, often embedded in system

software and in many applications.

Examples:

Garbage collectors (eg Java VM), process schedulers,

timetabling and travel systems, network management systems,

associative memory, symbolic processing, automated reasoning,

hierarchical structuring, etc

• They illustrate both a wide range of algorithmic designs and

also a wide range of complexity behaviours.

6



Algorithmic Problem on Graphs

• Connectivity and components,

• Path-finding and traversals, including route finding,

graph-searching, exhaustive cycles (Eulerian and Hamiltonian),

• Optimisation problems, eg shortest paths, maximum flows,...

• Embedding problems, eg planarity - embedding in the plane,

• Matching, graph colouring and partitioning,

• Graphs, trees and DAGs, including search trees, spanning

trees, condensations etc.

7



Books

• SEDGEWICK, R. Algorithms in C (ISBN 0-201-51425-7)

Addison-Wesley 1990. A general, but good quality, book on

algorithms, with some treatment of graph algorithms and

computational geometry.

• EVEN, S. Graph Algorithms (ISBN 0-91-489421-8) Computer

Science Press 1987. A good treatment of graph algorithms.

Out of print - but available in the libraries.

• MCHUGH, J.A. Algorithmic Graph Theory. (ISBN

0-13-019092-6) Prentice-Hall International 1990. The best

treatment of graph algorithms. Out of print, I believe.

There are many other treatments of graphs and graph algorithms,

the above are perhaps the most comprehensive.

8



Lectures

• Graphs, Graph as datatypes, Graph searching techniques and

generic algorithms [2 lectures],

• Components, Strong connectivity, Articulation points: Efficient

algorithms [1 lecture]

• Route-finding and shortest path algorithms [1 lecture],

• NP complete problems on graphs, examples and reductions:

Exhaustive paths, cliques, reductions to satisfiability [2

lectures],

• Embedding problems: planarity testing and embedding [1

lecture]

• Matching, colouring and partitioning graphs, overview,

5-colouring and 4-colouring of planar graphs [1 lecture].

9



Graphs

Terminology: A graph consists of a set of nodes and and set of

edges. Edges link pairs of nodes. For directed graphs each edge has

a source node and a target node. Nodes linked by an edge are said

to be adjacent.

Alternatives: Points/lines, Vertices/arcs ...

There are a variety of different kinds of graphs:

• Undirected graphs,

• Directed graphs,

• Multi-graphs,

• Labelled graphs (either node-labelled, or edge-labelled, or

both).

[Examples]

10



Representing graphs as datatypes

Graphs may be represented as data types in programming

languages in various ways (chosen for faithfulness of the

representation, and efficiency):

• Adjacency lists,

• Adjacency matrices,

• Incidence matrices.

Graphs are often represented implicitly in software.

[Examples]

11



Traversal techniques: Trees and Graphs

On trees

Terminology: Family trees/forest trees! Root, tip, branches,

children, descendents, ancestors, siblings.

Idea: Visit every node following the structure of the tree.

There are various methods:

• Depth-first search (DFS): Visit all descendents of a node,

before visiting sibling nodes;

• Breadth-first search (BFS): Visit all children of a node, then all

grandchildren, etc;

• Priority search: Assign ‘priorities’ to nodes, visit unvisited

child of visited nodes with highest priority.

Priority search: Applications in heuristics, eg in game playing.

[Illustrations]

12



Graph traversal

A tree is a graph such that:

There is a distinguished node (the root) such that there is

a unique path from the root to any node in the graph.

To modify tree traversal for graphs we:

1. We may revisit nodes: so mark nodes as visited/unvisited and

only continue traversal from unvisited nodes.

2. There may not be one node from which all others are

reachable: so chose node, perform traversal, then start

traversal again from any unvisited nodes.

[Illustrate]

13



A generic traversal algorithm: for trees

We present a generic search algorithm searching trees from the root.

It uses operations of push, pop, top, empty and

• for a stack, it provides a Depth-First Search,

• for a queue, it provides a Breadth-First Search, and

• for a priority queue, it provides a Priority Search.

14



This is a generic search routine. It labels each node u with

search-num(u) giving the order the nodes are encountered.

set u to be the root;

set s to be empty;

set i = 0;

push(u,s);

while s not empty do

{ set i = i+1;

search-num(top(s)) = i;

set u = top(s);

pop(s);

forall v children of u

push(v,s) }

15



Recursive depth-first search algorithm for graphs

Allocates a number dfsnum(u) to each node u in a graph, giving

the order of encountering nodes in a depth-first search.

forall nodes u set dfsnum(u) = 0;

set i = 0;

visit(u) =

{ set i = i+1;

set dfsnum(u) = i;

forall nodes v adjacent to u

{ if dfsnum(v) = 0 then visit(v) };

forall nodes u

{if dfsnum(u) = 0 then visit(u)};

16



Analysis of DFS

A DFS traversal of a directed graph, defines a subgraph which is a

collection of trees (ie a forest).

An edge from u to v is a tree edge if v is unvisited when we traverse

from u to v.

A Depth-first search traversal of a directed graph partitions the

edges of the graph into four kinds: An edge from u to v is either a

• tree edge,

• back edge, if v is an ancestor of u in the traversal tree,

• forward edge, if v is a descendent of u in the traversal tree,

• cross edge otherwise.

17



Note: For edge from u to v:

• dfsnum(u) < dfsnum(v) if the edge is a tree edge or a forward

edge,

• dfsnum(u) > dfsnum(v) if the edge is a back edge or cross edge.

Could modify DFS routine to identify status of each edge.

For undirected graphs, DFS routine is essentially unchanged but

there are only tree edges and back edges.

[Illustration]

18



The complexity of DFS

For a graph with N nodes and E edges:

• For the adjacency list representation, the complexity is linear

O(N + E),

• For the adjacency matrix representation, the complexity is

quadratic O(N2).

19



Cycle detection by DFS

As an example of an algorithm using DFS to traverse directed

graphs:

Definition: A path in a graph is a sequence (possibly empty) of

edges e1, e2, . . . , en such that for 1 ≤ i < n, target(ei) =

source(ei+1).

A cycle is a non-empty path beginning and ending at the same

node. A graph is acyclic when it has no cycles.

20



Cycle detection using DFS is based on the following result:

Proposition A graph is acyclic just when in any DFS there are no

back edges.

Proof

1. If there is a back edge then there is a cycle.

2. Conversely, suppose there is a cycle and the first node of the

cycle visited in the DFS (ie minimum dfsnum) is node u. Now

the preceding node in the cycle v is reachable from u via the

cycle so is a descendent in the DFS tree. Thus the edge from v

to u is a back edge.

So a cycle in the graph implies the existence of a back edge in

any DFS, as required.

We can use this to construct a linear cycle detection algorithm:

Simply perform a depth-first search, and a cycle exists if and only if

a back edge is encountered.

21



Connected components, Strongly connected components

For directed graphs:

Definition Two nodes u and v in a graph are linked if there is an

edge from u to v OR from v to u.

Two nodes u and v are connected if there is a, possibly empty,

sequence of nodes u = u0, u1, . . . , un = v with ui linked to ui+1 for

all i, 0 ≥ i < n.

[Illustration. General idea: Transitive Closure]

Definition A connected component of a graph is a maximal set of

connected nodes, ie A set of nodes C is a connected component just

when:

1. Every pair of nodes in C is connected, and

2. There is no node outside C connected to any node in C.

[Illustration: This is a natural partitioning of the nodes of a graph.]

22



Definition Two nodes u and v of a graph are strongly connected if

there is a path (possibly empty) from u to v AND a path from v to

u.

A strongly connected component is a maximal set of nodes each pair

of which is strongly connected.

[Illustration]

23



Articulation points

For undirected graphs:

Definition An articulation point of a graph is a point whose

removal increases the number of components.

[Illustrate]

Application: Articulation points in a network are those which are

critical to communication: for an articulation point, all paths

between certain nodes have to pass through this point.

Articulation points divide a graph into blocks. Within each block

there are multiple non-intersecting paths between all pairs of nodes,

and blocks are maximal with this property.

24



Linear Depth First Search Algorithms

There are algorithms, based on DFS, for calculating components,

strongly connected components, articulation points, blocks and

similar graph structures, which are linear.

This may be considered surprising! We illustrate with articulation

points.

Reference: Tarjan, R.E. Depth first search and linear graph

algorithms. SIAM Journal of Computing, 1. pp 146–160.

25



An efficient algorithm for articulation points

Proposition

In a DFS tree of an undirected graph, a node u is NOT an

articulation point just when, for every child v of u, there is a

descendent in the DFS tree from v which is connected by a back

edge to a node higher in the tree than u.

(Root is not an articulation point just when it has one or zero

children.)

26



To calculate articulation points we compute for each node u a

number lowpoint(u).

Lowpoint(u) is the least number dfsnum(v) in a DFS traversal of a

graph such that:

node v can be can be reached by a, possibly empty, path of

tree edges followed by at most one back edge.

—–

Proposition

A node u is an articulation point just when in a DFS of the graph

there is a child node v such that lowpoint(v) ≥ dfsnum(u).

27



To print all articulation points in a graph: Modify the recursive

DFS algorithm to return lowpoint(u) starting at u. Print nodes u

for which there is a child v with lowpoint(v) ≥ dfsnum(u):

set i = 0;

visit(u) =

{ set i = i+1;

set dfsnum(u) = i;

set min = i;

forall nodes v adjacent to u

{ if dfsnum(v) = 0 then

{ m = visit(v);

if (m < min) then set min = m;

if (m >= dfsnum(u)) then print(u) }

else if (dfsnum(v) < min)

then set min = dfsnum(v) };

return min }

28



This is a linear algorithm.

Similar techniques apply to calculating strong components etc in

linear time.

29



Path-finding algorithms

There are numerous path-finding problems in graphs and a variety

of algorithms.

• To find all paths between all pairs of nodes (‘transitive

closure’), or

• To find all paths between a fixed pair of nodes, or

• To find all paths from one node to all others (the ‘single source

problem’).

When the edges are labelled with numerical values, then we can ask

for shortest paths, by which we mean a path of minimum length,

where the length of a path is the sum of its edge labels. Each

problem above yields a shortest path problem.

Optimization problems.

In fact, the second and third problems are equivalent.

30



Optimization and shortest paths

There is an ‘optimization property’ concerning shortest paths:

If p is a shortest path from node u to node v via node w,

then the portions of p from u to w and from w to v are

both shortest paths.

Proof: Evident!

Such optimization properties mean that there are direct methods of

computing shortest paths: To accumulate shortest paths we need

combine only other shortest paths (and not consider any other

paths).

31



A shortest paths algorithm

As an example, we give Floyd’s algorithm for computing shortest

paths (we simplify and calculate only shortest distance) between

ALL PAIRS of nodes.

Let d(i,j) be the label of the edge from i to j, if there is such an

edge, otherwise ∞.

We calculate successively (in-place) an array D(i,j) which at the

k-th step is the shortest distance from i to j, using only intermediate

nodes 1,. . . k. We set D(i,j) to be d(i,j) initially and then compute:

for k from 1 to N

for i from 1 to N

for j from 1 to N

set D(i,j) = min(D(i,j), D(i,k)+D(k,j))

Correctness: This is the optimization property, but requires that if

there are negative labels then no cycle is of negative length.

32



Complexity of Floyd’s algorithm: O(N 3), N the number of nodes.

———–

Other problems:

For the single source shortest-path problem (and positive numbers

as labels) the standard algorithm is Dijkstra’s algorithm, which is

O(N2), but with more efficient data structures (heaps) can be

implemented as an O(E × log(N)) algorithm which for E much less

that N2 is an improvement.

33



Complexity classes and computational tasks

Most of the graph algorithms we have met so far are

polynomial-time algorithms i.e. in the class P as defined in the first

section of this module.

Are there any computational problems on graphs which are in

other complexity classes?

To answer this we must first link the definitions of the classes in

terms of words in a language (as given in the first section of this

module) with decision problems and computations over graphs.

Let X be a decision problem for graphs i.e. a problem of the

form: For any graph g, does g satisfy property P?

Examples: (1) Is g connected? (2) Does g have k articulation

points, or less than k articulation points, etc.

34



We can always convert decision problems for graphs into the

problem of determining whether a word w is in a language L, as

follows:

Represent graphs as words either using standard computational

representations of graphs (as described earlier) or, more directly,

e.g. (a, b, c; x : a → b, y : b → c, z : c → a) represents the three-cycle

as a word.

A decision problem for the graph property P can then be expressed

as a decision problem for languages as follows:

Let L be the language of words representing the graphs that satisfy

property P . Then for graph g represented by word w, w ∈ L just

when g satisfies P .

In this way, the complexity classes described in the first section of

this module, apply equally well to problems for graphs (and indeed

for any other data structures that can be encoded as finite words).

35



NP-completness

Reminder: A computational problem X is NP-complete just when:

1. X is in NP, i.e. can be solved with a non-deterministic

polynomial-time algorithm, and

2. X is complete in this class, i.e. for all Y in NP, Y reduces to X

in polynomial-time.

The notion of reduction is that Y reduces to X in polynomial-time,

if each instance of Y can be translated in polynomial-time to an

instance of X such that the Y -instance has a solution (i.e. returns

true) if and only if its translation does.

(Sometimes polynomial-time is replaced here by smaller classes, eg

log-space, but these tend to lead to the same subset of NP.)

Recall: NP-complete problems are believed to be intrinsically hard,

that is, the only algorithms available are exponential-time

36



((P=NP?).

37



How to show a computational task is NP-complete

Two methods: (1) Directly, using the definition of

NP-completeness; or, (2) via translation using a known

NP-complete problem.

Direct method: This involves first showing that the problem is in

NP, and then that all NP problems reduce to this problem in

polynomial time.

The later task is very difficult because we have to translate every

possible NP problem into the one we are investigating. In general,

we do not use this method.

Indirect method: If we are given a computational task that is

already established as NP-complete, then to show another task is

NP-complete, we can use the following method.

38



NP-completeness via translation

Proposition

If X is a computational task that is NP-complete, then a task Y in

NP is NP-complete exactly when X is polynomial-time reducible to

Y .

Proof:

1. If Y is in NP-complete then, because X is in NP, then X is

polynomial-time reducible to Y .

2. Conversely, suppose that X is NP-complete, and X is

polynomial-time reducible to task Y in NP. To show that Y is

NP-complete, we need to show that for any Z in NP, Z reduces

in polynomial-time to Y . But as X is NP-complete, Z reduces

in polynomial-time to X, which itself reduces in

polynomial-time to Y . Composing these two reductions gives a

polynomial-time reduction of Z to Y as required.

39



So, all we need to do establish that problem Y is NP-complete is

1. Show the problem is in NP. This is usually easy: just show that

‘checking a solution’ takes polynomial-time; and then

2. Define a polynomial-time translation from a given NP-complete

problem into Y . This usually requires considerable ingenuity.

40



A known NP-complete problem

For the above scheme to work, we need a given NP-complete

problem. Do we have one? Yes:

Cook’s Theorem says:

The problem of determining whether logical expressions

can be satisfied (ie the logical variables can be replaced by

truthvalues to make the expression true) is NP-complete.

Proving this is not easy. It involves coding every NP-problem as an

instance of satisfiability, and this involves coding non-deterministic

Turing machines in terms of logical expressions, including their

tapes, their codes, and their moves, in such a way that every

NP-problem is reduced (in poly-time) to satisfiability.

41



NP-complete graph problems

Many simple and common problems on graphs are NP-complete.

We prove one such problem is NP-complete by polynomial-time

reducing satisfiability of boolean expressions to this problem. As

satisfiability is NP-complete so must be this problem.

Definition: For undirected graphs, a clique is a subgraph such

that any pair of nodes in the subgraph is connected by an edge

(otherwise called complete subgraphs).

The problem is to determine for any graph whether or not it has a

clique with k nodes.

42



Cliques and satisfiability

Proposition

The problem of determining whether or not a graph has a clique

with k nodes is NP-complete.

Proof: We show that any satisfiability problem converts to a

graph, and that existence of cliques corresponds to a substitution

which satisfies the boolean expression.

Thus let a e be a boolean expression in the form

(x1 ∨ x2 ∨ . . .) ∧ (y1 ∨ y2 ∨ . . .) ∧ (z1 ∨ . . .) . . .

where each entry is a literal, ie a variable or the negation of a

variable.

Now form a graph: Nodes are pairs (x, i) for each literal x in the

i-th clause. Nodes (x, i) and (y, j) are connected by an edge just

when x is not the negation of y and i 6= j.

43



Then an expression of k clauses is satisfiable just when this graph

has a clique of k nodes. A clique of k nodes must select a literal

from each clause, and no variable and its negation can be in the

clique. Likewise if the expression is satisfiable, then we must be

able to find a literal in each clause which we can make

simultaneously true, ie no variable and its negation is allowed.

[Example: Try (x ∨ y) ∧ (x̄ ∨ z) ∧ (x).]

———

Many other graph problems are NP-complete, as we shall see, but

it is not always obvious whether a problem is NP-complete, and

closely allied problems can differ widely in their complexity.

44



Eulerian Paths: Euler 1780s

An Eulerian circuit of an undirected graph is a cycle that passes

along each edge just once.

Proposition (for undirected graphs)

A graph has an Eulerian circuit just when it is connected and every

node has even degree.

(For directed graphs the corresponding property is: For each node

n, outdegree(n) = indegree(n).)

[Proof and (linear) algorithm]

45



Hamiltonian Paths: Hamilton 1850s

A Hamiltonian circuit of an undirected graph is a cycle that passes

through each node just once.

Related to the celebrated travelling salesperson problem: In a graph

with edges labelled with distances, to determine (if it exists) a

minimum length Hamiltonian circuit.

No simple criterion: Deciding whether a graph has a Hamiltonian

circuit is NP-complete, as is the travelling salesperson problem.

Algorithms, in general, are by exhaustive unlimited back-tracking.

46



Planarity

Planarity is about depicting graphs in 2-D space - how do we

‘draw’ graphs and can we do so without any ‘overlapping’. It has

applications (of a sort) in planar networks, eg in embedding circuits

on a chip, or whenever overlapping is difficult to accommodate, or

in depicting graphs in a simple form in 2-D (eg in graphics).

Definition: An embedding of a (directed or undirected, usually the

latter) graph in the plane is an allocation of distinct points to the

nodes and distinct continuous lines (not necessarily straight - that

is another problem) to the edges, so that no two lines intersect.

There may be more than one ‘way’ of embedding a graph in the

plane. But can all graphs be embedded in the plane?

A graph that can be embedded in the plane is called a planar graph.

47



Planarity algorithms

The graphs C5 (the complete undirected graph on 5 nodes, ie all

edges present), and C3,3 (the complete bipartite graph - with three

nodes in each set, and all edges between nodes in different sets) are

both non-planar.

[Illustrate]

In a sense these are the only non-planar graphs. This gives an

unusual criterion for recognising planar graphs, based on the

following.

Proposition (Kuratowski 1930)

A graph is planar just when it does not contain any subgraph

homeomorphic to C5 or C3,3.

48



A graph is homeomorphic to another if they differ only in the

addition and deletion of nodes of degree two (ie nodes ‘along

edges’).

[Illustrate]

Proof omitted: involved but not difficult!

This gives a means of determining whether or not a graph is planar

- exhaustively search for subgraphs homeomorphic to these two

graphs. This is not efficient, nor does it yield a planar embedding if

one exists. The proof when examined may do - but remains

inefficient.

49



There are, however, efficient planarity testing algorithms which also

yield a planar embedding if it exists.

• Demoucron’s algorithm (1964) works by successively building a

planar embedding, ‘flipping over’ parts of graphs where

necessary,

• Hopcroft and Tarjan introduced a linear-time planarity

algorithm (1974).

50



Graph Colouring (for undirected graphs)

A colouring of a graph with k colours is an allocation of the colours

to the nodes of the graph, such that each node has just one colour

and nodes linked by an edge have different colours.

The minimum number of colours required to colour a graph is its

chromatic number.

[Examples]

Applications: Graphs are usually used where ‘connectedness’ is

being recorded. Colouring is about the opposite: edges are present

when nodes need to be separated. The k colours partition the

nodes into sets of nodes that can co-exist. Examples: Scheduling

under constraints - nodes: tasks, edges - constraints on

simultaneous running.

51



Colouring algorithms

To determine whether a graph can be coloured with k (k ≥ 3)

colours is an NP-complete problem.

The only algorithms that exist in general for colourability are

exhaustive unlimited back-tracking algorithms, as below.

set n = 1;

while n =< N do

{ attempt to colour node n with

next colour not tried for n:

if there is no such colour

then if n>1

then set n = n-1 else fail

else if n=N then print colouring else set n = n+1 }

52



The 4-colouring of planar graphs...

... is a celebrated problem.

Proposition

Every planar graph can be coloured with just 4 colours.

• Discussed as a possibility in the 1850s,

• 1879: Kempe publishes a ‘proof’ of the 4-colour theorem,

• 1890: Heawood finds error in Kempe’s proof, but shows his

proof establishes the 5-colourability of planar graphs,

• Since then finding a proof of 4-colourability has been a catalyst

for much combinatorial mathematics,

• 1977: Computer-aided proof of 4-colourability: reduced the

graphs required to be coloured to a finite number (over 1000)

and then used a computer to generate colourings.

[Give: Proof and algorithm for 5-colouring.]

53


