Overall Overview

Advanced Algor'l’rhms CS3172,
02/03

Time: Monday and Friday, 10-11.

www: Do check the website regularly.

Lecture Course comes in 2 parts:
Part I (Dix) Introduction to Complexity Classes,
Part II (Rydeheard) Specific Algorithms.

Organisation:
Part I (Dix): 8 lectures, one week free (3/7 March), one week
to discuss the homework (10/14 March).
Part II (Rydeheard): 8 lectures, one week free (5/9 May), one
week to discuss the homework (12/16 May).
Exam:
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Overview

1. Turing Machines
2. Complexity Classes
3. Hierarchies, Complete Problems
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2 Complexity Classes

2.1 Time/Space Complexity
2.2 Speed up

2.3 Relations between Time/Space
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2.1 Time/Space Complexity

Definition 2.1 (NTIME (T(n)), DTIME (T(n)))
We consider as base model a multitape TM M with k two-way
infinite tapes, one of which contains the input. If for every word
of length nas input, M makes at most T(n) moves, then M is
called T(n) time bounded.

The language accepted by M is said to be of time complexity
T(n) (actually we mean max(n+1,[T(n)])).

e DTIME (T(n)) is the class of languages accepted by T(n)
time bounded deterministic DTMs.

e NTIME (T(n)) is the class of languages accepted by T(n)
time bounded nondeterministic NDTMs.
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Definition 2.2 (NSPACE (S(n)), DSPACE(S(n)))

We consider as base model an offline TM M with k one-way
infinite tapes and a special input tape. If for every word of length
nas input, M scans at most S(n) cells on the storage tapes, then
M is called S(n) space bounded.

The language accepted by M is said to be of space complex-
ity S(n) (actually we mean max(1,[S(n)])).

e DSPACE(S(n)) is the class of languages accepted by S(n)
space bounded deterministic DTMs.

e NSPACE (S(n)) is the class of languages accepted by S(n)
space bounded nondeterministic NDTMs.
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Why offline TM?
(tape bounds of less than linear growth)

To which time/space complexity class belongs

Linivror = {WCeW?: we (041)*1,

1.e. the set of words that can be mirrored on the middle letter c?
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Time: DTIME (n+1). Just copy the input to the right of c in
reverse order on another tape. Once a c is found, just
compare the remaining part (the w) with the copy of w
on the tape.

Space: DSPACE(Ign). The machine just described gives us a
bound of DSPACE(n). But we can do better. We use two
tapes as binary counters. Firstly the input is checked
for the occurrence of just one ¢ and an equal number
of symbols to the left and right of c. This needs only
constant space, resp. it can be done with a number of
states (and thus needs no space at all). Secondly we
check the right and left part symbol by symbol: to do
this we just have to keep in mind the two positions to
be checked (for equality) (and they are coded on the two
tapes).
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A few words on terminology.

computable: A function is computable, if, by definition, there is a
DTM computing it (given the input n, the DTM computes f(n)).
The function can be partial or not. We also say the function is
partial recursive (see slide 11).

accepted: A language is accepted (or recognised), if there is a
DTM accepting it (given an input w, the DTM stops in an
accepting state if and only if wis in the language).
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decided: We say a DTM decides a language, if there is a DTM that
accepts it and it always terminates. The language is then
called decidable.

decidable: We say a problem is decidable, if there is a DTM that
decides it. A problem can always be put in the form “Iswe L”
for an appropriate language L.

Recall that we also call a function recursive, if it is partial
recursive and total.

If a language is decidable, then its complement is as well.
This is not true for acceptance.
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Time: Is any language in DTIME (f(n)) decided by a DTM?
Space: Is any language in DSPACE(f(n)) decided by a DTM?
Time/Space: Same questions about NTIME (,) NSPACE.
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Homework 2 (Acceptability/Decidability)
Comment on the following statements.

1.

N o O bk~ w N

8.

The traditional algorithm for checking whether a number is
prime, is decidable.

Any finite language is accepted by a DTM.

. Any infinite language is accepted by a NDTM.

Any finite language is decided by a DTM.

There are algorithms that are undecidable.

If L is decidable, then its complement is decidable as well.
There is at least one DTM that is decidable.

There is at least one NDTM that is undecidable.
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9. The following function is decidable:

/

1, if cricket is a sport for stupid people;
f:N— N,n— | f port f Pic peop

\ 0, otherwise.
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2.2 Speed up

The aim of this section is to illustrate that only the functional rate
of growth of a function matters in a complexity class: constant
factors have to be ignored.

Theorem 2.1 (Tape compression)
For any c > 0 and space function S(n):

DSPACE(S(n)) = DSPACE(cSn))
NSPACE(S(n)) = NSPACE(cSn))

Note that one direction is trivial. The proof for the other is by
representing a fixed number r (> %) of adjacent tape cells by a new
symbol. The states of the new machine keep track which of the
many cells represented is actually scanned during simulation.
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Theorem 2.2 (Time speed up)
T(n)

For any c > 0 and time function T(n) with inf,_. —~

— 00,
n

DTIME (T (n)) = DTIME (cT(n))
NTIME (T (n)) = NTIME (cT(n))

Again one direction is trivial. The proof for the other is also by
representing a fixed number r (> %6 ) of adjacent tape cells by a
new symbol (the states of the new machine keep track which of the
many cells represented is actually scanned (when simulating the
old machine)).

When simulating the old machine, the new one only needs to make
8 moves instead of r: 4 to check the immediate neighbours and
another 4 to modify them.
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What happens if we reduce the number of tapes? Let us consider
again Lyirror from Slide 50. The linear complexity does no more

hold if there is only one tape available. However, the following
holds.

Theorem 2.3 (Reduction of tapes (1))
e If L € DTIME (T(n)), then L is accepted in time T4(n) by a
one-tape DTM.

e If L € NTIME (T(n)), then L is accepted in time T4(n) by a
one-tape NDTM.

The proof is simple. Remember that we need 6T2(n) steps to
simulate the k-tape DTM using a 1-tape DTM (see slide 34). Now
we speed it up by %6.
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The last theorem also holds for space bounded functions:

Theorem 2.4 (Reduction of tapes (2))
e If L € DSPACE(S(n)), then L is accepted in space S(n) by a
one-tape DTM.

e If £ € NSPACE(S(n)), then L is accepted in space S(n) by a
one-tape NDTM.

This proof is as simple as the last one. Note that in simulating a
k-tape TM with a 1-tape TM we need the same number of storage
cells. So we do not even need to speed up to get our result.
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I should have reached this point after the fifth lecture.
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2.3 Relations between Time/Space

Theorem 2.5 (Time versus Space)
e DTIME (f(n)) C DSPACE(f(n)).

e If f(n)>Ign, and £ € DSPACE(f(n)), then there isac>0
s.t. £ € DTIME (cf("),

e If L € NTIME (f(n)), then there isac>0s.t. £ € DTIME (cf™).
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Proof:
e Obvious.

e Suppose we have sstates and t tape symbols. By using at most
f(n) cells, the number of different IDs on an input of length nis
bounded by s(n+2)(f(n) + 1)t'" (we assume in view of
Theorem 2.4 that we are dealing with an offline DTM with just
one storage tape). Because of f(n) > Ign, there is a ¢ such that
for n> 1: ¢'™ > g(n+2)(f(n) + 1)t'™. We can construct a 3-tape
DTM: one tape is used to count up to ¢/, the other two to
simulate the old machine. When no accepting state is reached
until the maximal count, it will never accept (the old machine
actually loops): we then simply terminate in a non accepting
state. If an accepting state is reached, the new machine
accepts as well.
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e Similar to the last case, but now we have to take into account
the number k of tapes as well (and that it is a regular k-tape
NDTM). Number of IDs is bounded by ... We construct a
multitape DTM to simulate the old NDTM. Our machine first
constructs a list L of all accessible IDs (from the initial input):
This can be done in time bounded by lengch(L) (why?) and we
have length(L) < ... and therefore < c/(M . It then checks
whether any of the IDs leads to an accepting state or not ...
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In the following we want to state some more relations between
complexity classes. Unfortunately they do not hold for all time
functions T (n) or space functions §n), but for almost all that do
occur naturally. We therefore define the following space of
functions.

Definition 2.3 (Well-behaved functions)

We consider the vector space of functions from N into N
containing log,n,n%, 2" n! and closed under multiplication,
exponentiation and composition. We call such functions

well-behaved .

Theorem 2.6 (Det. versus Non-Det. Space)
Let S(n) be well-behaved. Then:

NSPACE(S(n)) C DSPACE(S(n)).
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Theorem 2.7 (Time/Space Hierarchies)
Let Si(n),S(n) and Ty(n), To(n) be well-behaved. We assume

further that S (n) < $(n) and T1(n) < To(n) for all n>ng for a
no € N,

1. If infr_«

T =0 then DSPACE(Si(n)) & DSPACE(S(n)) .

2. If infy e 29RO — 0 then DTIME (Ty(n)) & DTIME (Tz(n)) .
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The last theorem implies the following hierarchies:
DSPACE(n) & DSPACE(n g . & DSPACE(N") & ..

and
DTIME (n) & DTIME ( g .&DTIME(n") & ...

as well as
DSPACE(logn) & DSPACE(log°n) & ... & DSPACE(log'n) & ...
and

DTIME (logn) & DTIME (logn) & ... & DTIME (log'n) & ...

CS 3172. 02/03: Advanced Alcsorithms. Part I Juregen Dix



Chapter 2: Complexity Classes 66 2.3 Relations between Time/Space

What about similar results for nondet. space and time?

Theorem 2.8 (Nondeterministic Hierarchies)
Let Si(n),S(n) and f(n) be well-behaved. We assume further that
S(n)>nand f(n)>nforall neN.

1. NSPACE(S;(n)) € NSPACE(S(n)) implies
NSPACE(S;(f(n))) € NSPACE(S,(f(n))).

2. NTIME (Si(n)) € NTIME (S(n)) implies
NTIME (Si(1(n))) € NTIME (S(1(n))).

This theorem is applied as follows. Suppose

NSPACE(n*) € NSPACE(n®). We then apply the theorem for n3, n*
and n° separately and get: NSPACE(n?°) C NSPACE(n®). By
Theorem 2.6 we know that NSPACE(n°) C DSPACE(n'®) and by
Theorem 2.7 DSPACE(n*®) C DSPACE(n??), which is a contradiction.
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The last theorem implies the following hierarchies:
NSPACE(n) & NSPACE(n g . & NSPACE(n") & ..

and
NTIME (n) & NTIME ( g GNTIME(n') & ...

as well as
NSPACE(logn) & NSPACE(log®n) & ... & NSPACE(log'n) & ...
and

NTIME (logn) & NTIME (logn) & ... & NTIME (log'n) & ...
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Homework 3 (Simple Relations)

Consider the problem of testing whether a given natural number is
prime. Use unary representation. Is there a DTM solving this
problem in polynomial time? I.e. is this problem in DTIME (n") for a
r € N? Note that you do not have to actually construct a DTM, it
suffices if you can argue convincingly.

Complete the third part of the proof of Theorem 2.5.

Discuss the two notions of decidability versus acceptability of a
language wrt. NDTM's and DTM's. What happens, if we take time
bounds into consideration? If a language is acceptable in time
T(n), it is also decidable in T(n)?
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What, if any, is the relationship between the following pairs of
complexity classes?

1. DSPACE(n?) and DSPACE(f(n)) where f(n) :=n for odd n and
f(n) :=n3 for even n.

2. DTIME (134") and DTIME ((Inn)").
3. DTIME (2") and DTIME (3").
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4. NSPACE (2") and DSPACE(5).
5. DSPACE(n) and DTIME ([Ign]").
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This is what I did until the end of the sixth lecture.
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