Jirgen Dix Multi-Agenten Systeme (VU), SS 00

Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1-4) basiert auf
Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,
Decision Making, Kommunikation/Interaktion, Kontrakt
Netze, Coalition Formation).

Teil 2 (Kapitel 5-9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, KrausQzcan and Ross), MI[T

Press, May 2000.
Hier wird ein spezifischer Ansatz vorgestellt, der formale
Methoden aus dem logischen Programmieren benutzt,
aber nicht auf PROLOG aufsetzt (Code Call
Mechanismus, Aktionen, Agenten Zyklus, Status Menge,
Semantiken, Erweiterungen um Beliefs,
Implementierbarkeit).

Overview 1

Jirgen Dix Multi-Agenten Systeme (VU), SS 00

Ubersicht

1. EinfUhrung, Terminologie

2. 4 Grundlegende Architekturen

3. Distributed Decision Making

4. Contract Nets, Coalition Formation
5. IMPACT Architecture

6. Legacy Data and Code Calls

/. Actions and Agent Programs

8. Regular Agents

9. Meta Agent Programs

Overview 2

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9. Meta Agent Programs

Overview

9.1 ExtendingCFIT

9.2 Belief Language and
Data Structures

9.3 Meta Agent Programs and
Status Sets

9.4 Feasible Status Sets

9.5 Reducingmap’s to Ordinary
Agent Programs

Overview 400

Timetable:

e Chapter 9 needs 1 lecture, but lots of things need to be done quickly.

9 Meta Agent Programs

400-1

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.1 ExtendingCFIT: CFIT*

Terrain
Planning
Agent

Coordination Agent

Tracking Agent

-:': e £
R aan e b e LR
(- T R

Helicopter Agent

Helicopter Agent

Figure 9.1: Agents in o€FIT* Example

9.1 ExtendingCFIT: 401

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A set of enemy vehicle agentsThese agents (mostly tanks) move across free
terrain, and their movements are determined by a program that the other agents
listed below do not have access to (though they may have beliefs about this
program).

A terrain route planning agent terrain, (see Table 5.2). Here we extend the
terrain agent so that it also provides a flight path computation service for
helicopters, through which it plans a flight, given an origin, a destination, and a
set of constraints specifying the height at which the helicopters wish to fly.

A tracking agent, which takes as input, RTED (Digital Terrain Elevation Data)
map, anid assigned to an enemy agent, and a time point. It produces as output,
the location of the enemy agent at the given point in time (if known) as well as its
best guess of what kind of enemy the agent is.

9.1 ExtendingCFIT: 402

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A coordination agent, that keeps track of current friendly assets. This agent
receives input and ships requests to the other agents with a view to determining

exactly what target(s) the enemy columns may be attempting to strike, as well as
determining how to nullify the oncoming convoy.

A set of helicopter agents,that may receive instructions from the coordination agent
about when and where to attack the enemy vehicles. When such instructions are
received, the helicopter agents contact the terrain route planning agent, and
request a flight path. Such a flight path uses terrain elevation information (to
ensure that the helicopter does not fly into the side of a mountain).

9.1 ExtendingCFIT: 403

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e Beliefs about the type of enemy vehi&tach enemy vehicle has an associated
type—for example, one vehicle may be a T-80 tank, the other may be a T-72
tank. However, theoordination agent may not precisely know the type of a
given enemy vehicle, because of inaccurate and/or uncertain identification made

by the sensing agent.

At any point in time, it holds some beliefs about the identity of enemy
vehicle.

e Beliefs about intentions of enemy vehid@ecoordination agent must try to
guess what the enemy’s target is.

9.1 ExtendingCFIT: 404

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e Changing beliefs with timéAs the enemy agent continues along its route, the
coordination agent may be forced to revise its beliefs, as it becomes apparent
that the actual route being taken by the enemy vehicle is inconsistent with the
expected route. Furthermore, as time proceeds, sensing data provided by the
tracking agent may cause thwordination agent to revise its beliefs about
the enemy vehicle type.

e Beliefs about the enemy agent’s reasonifigecoordination agent may also
hold some beliefs about the enemy agents’ reasoning capabilities (see the
Belief-Semantics Tabla Definition 9.4 on page 421). For instance, with a
relatively unsophisticated and disorganized enemy whose command and control
facilities have been destroyed, it may believe that the enemy does not know what
moves friendly forces are making.

9.1 ExtendingCFIT: 405

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2 Belief Language and Data Structures

e When an agent reasons about another agénit must have some beliefs about

b’s underlying action basevhat actions carb take?, b’s action programifow
will b reason? etc.

e Let us denote this by the belief atom

Ba(b,X)

which represents one of the beliefs of agerbout what holds in the state of
agentb.

e In that case, agent must also haveackground information: beliefs about

agentb’s software packags®: the code call conditioly has to be contained in
We will collect all the beliefs that an ageathas about another agemtn
a setl ¢(b) (see Definition 9.10 on page 448).

SP.

9.2 Belief Language and Data Structures 406

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.1 (Belief Atom/Literal, BAti(a,b), BLit1(a,A))
Let a,b be agents in A. Then we define the set BAt1(a,b) of a-belief atoms about b

of level 1 as follows:

1. If X is a compatible code call condition of a with respect to b, then B4 (b,X) is a
belief atom

2. ForOp € {O,W,P,F,Do}: if a(f) is a compatible action atom of agent a with
respect to'b, then B, (b,0pa(t)) is a belief atom

If B4 (b, X) is a belief atom, then Bq (b,X) and —Bq (b, X) are called belief literals of
level 1, the corresponding set is denoted by ‘BLit 1(a,b). Let

BAt1(a,A) =gef | | BAt1(@,b) and Bliti(a,A) =qer | | BLit1(a,b)
beA beA

be the set of all a-beliet atoms (resp. belief literals) relative to A. This reflects the
idea that agent a can have beliefs about many agents in A..

9.2 Belief Language and Data Structures 407

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.1 (Belief Atoms INCFIT*)
o Bp i1 (tankl,in(posi,tankl :getPog)))
This belief atom says that the agent, helil believes that agent tank]1’s current
state indicates that tank]1’s current position is pos1.

e Bp1i1(tankl, Fattackpos1,pos2))
This belief atom says that the agent, helil believes that agent tank]1’s current
state indicates that it is forbidden for tankl to attack from pos1 to pos2.

e B iiz(tankl, Odrive(posi,pos?2,35))
This belief atom says that the agent, heli3 believes that agent tank]1’s current
state makes it obligatory for tank]l to drive from location pos1 to pos2 at 35

miles per hour.

9.2 Belief Language and Data Structures 408

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The languageBLit 1 (a,A) does not allow agent to have beliefs of the formAgent
b believes that agent's state contains code call conditig’ i.e., agenta cannot
express beliefs it has about the beliefs of another agent.

We introduce the following notation: for a given s€bf formulae we denote by
Clig -1 (X) the set of all conjunctions consisting of elementXadr their negations:

X1 A—=X2 A ... A Xy, Wherex; € X. We emphasize that this does not correspond to the
usual closure oK under & and-: in particular, it does not allow us to formulate
disjunctions, ifX consists of atoms.

9.2 Belief Language and Data Structures 409

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.2 (Nested Belief€BLit ;(a,b), Belief languageBL*)
In the following let a,b € A. We want to define ‘BL{*, the belief language of aget
of level I. This is done recursively as follows.

| < 1. In accordance with Definition 9.1 on page 407 (where we already defined
BAt1(a,b)) we denote by BAto(a,b) as well as by BLit o(a,b)

{@| @isacompatible code call condition or action atom}

the flat set of code call conditions or action atoms—no belief atoms are allowed.

Furthermore, we define

BLy(a,b) =get BAto(a,b)
$L1(a,b) —def C|{&,ﬁ} ($At1(a,b)),

i.e., the set of formulae BAtg(a,b), resp. the of all conjunctions of belief literals
from BAt1(a,b).

9.2 Belief Language and Data Structures 410

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

BLG =def Upea BLy(a,b)
BLT =def CI{&,ﬁ}(UbEA BL,(a,b))
are called the belief languages of agentof level O, resp. of level 1
| > 1. To define nested belief literals we set fori > 1
BAti@,b) =det {Ba(b,B)|B < BAti_1(b,A)},
BLiti(a,b) =det {(—)Ba(b,B)|B < BAti_1(b,A)}.
This finishes the recursive definition of ‘BLit j(a,b).

The definition of the belief language of agemnt of level i is:

BL! =def Clig 1 (| BLi(a,b)) (9.4)
beA

ﬂLi (Cl, b) =def Cl {&,—} (ﬁAti (a,b))

9.2 Belief Language and Data Structures 411

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Finally we define the maximal belief language an agent a can have:
BLE =det Clig, -y (| BLY). (9.5)
1=0
Formulae in this language are also called general belief formulae

We will later also use the following definitions:
1. BAtj(@,A) =gef Upca BALi(@,b) is called the set of belief atoms of depth i.
2. BLiti(a,A) =gef Upea BLiti(a,b) is called the set of belief literals of depth .
3. We define

BAt (@, A) —gef U BAti(@,A), BlLit(a,A)=gef U BLiti(a,A).
i=0 i=0

9.2 Belief Language and Data Structures 412

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Why is it so complicated?
A nested belief atom of the form
gtl(baﬂc (d7X))
does not make sense (becahbsg c).
Thus every agent keeps track of onlyasnbeliefs, not those of other agents!!

e The closure undef& ,—} in Equation (9.4 on page 411) allows us to use
conjunctions with respect to different age@s(b,Xx) A Bq(c,X’).

e The closure in Equation (9.5 on page 411) allows us to also use different nested
levels of beliefs, likeB, (b,X) A Ba(c,B:(d,X)).

9.2 Belief Language and Data Structures 413

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.2 (Belief Formulae forCFIT*)
The following are belief formulae from BLYe BLienkl and Brseord,

o B i1 (tankl,in(posi,tankl ;getPosition))).
This formula is in BLY" . It says that agent helil believes that agent tank1’s
current state indicates that tank1’s current position is pos1.

o Bianki(helil, By1i1 (tankl,in(posi, tankl :getPosition)))).
This formula is in BLE*™*! . It says that agent tank] believes that agent helil
believes that agent tank]1 ’s current position is pos1.

Bcoord (tank] ; B anki (hehl ; Brelil (tankZ, in(pOSQ, tank2: getPOSItIOI'O))))
This formula is in BLS°"?. It says that agent coord believes that agent tank]
believes that helil believes that agent tank2’s current position is pos2.

9.2 Belief Language and Data Structures 414

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

However, the following formula does not belong to any of the above belief languages:
Biank1 (helil, Biank1 (tankl,in(posi, tank: getPosition)))).

The reason for this is becausehalil’s state there can be no beliefs belonging to
tankl.

9.2 Belief Language and Data Structures 415

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.1 Basic Belief Table

Definition 9.3 (Basic Belief Table BBT)
Every agent a has an associated basic belief tabl@BT? which is a set of pairs

(h, @)
whereh € A and € BL",i € N,
For example, if the entryb, By, (a,X)) is in the tableBBT?, then this intuitively

means that agemt believes that agertt has the code call conditiopamong its own
beliefs about agent. Hereg c BLY.

9.2 Belief Language and Data Structures 416

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.3 (Basic Belief Table foICFIT* Agents)
We define suitable basic belief tables for agent tankl1 (Table 9.1) and helil
(Table 9.2).

Agent | Formula

helil | in(pos1,helil :getPosition))

heli2 | Bneiz2(tankl,in(posi,tankl :getPositiorn)))

tank2 | Biank2(helil, Bye1i1 (tankl,in(pos3, tankl :getPosition))))

Table 9.1: A Basic Belief Table for agent tankl.

9.2 Belief Language and Data Structures 417

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Agent | Formula

heli2 | in(pos2,heli2:getPosition))

tankl | in(pos1,tankl :getPosition))

tankl | Bianki (helil,in(posi,helil : getPositiorn)))

tank2 | Biank2(tankl, Bianiki (helil,in(pos4, helil : getPosition))))

Table 9.2: A Basic Belief Table for agent helil.

These tables indicate that tank] and helil work closely together and know their
positions. Both believe that the other knows about both positions. tankl also
believes that tank2 believes that in heli2’s state, tank] is in position pos3 (which
1s actually wrong).

helil thinks that tank2 believes that tank]1 believes that helil is in position pos4,
which is also wrong.

9.2 Belief Language and Data Structures 418

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

What kind of operations should we support on belief tables? We distinguish between
two different types:

1. For a given agerit, other tham, we may want to select all entries in the table
havingh as first argument.

2. For a given belief formul#, we may be interested in all those entries, whose
second argument “implies” (w.r.t. some underlying definition of entailment) the

given formulag.

9.2 Belief Language and Data Structures 419

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.2 Belief Semantics Table

Agenta may associate different background theories with different agents: it may
assume that agehtreasons according to semantiBSeng and assumes that agent
h' adopts a stronger semantiBSen{,. We will store the information in a separate
relational data structure:

9.2 Belief Language and Data Structures 420

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.4 (Belief Semantics Table BSemT of Agent a)
Every agent a has an associated belief semantics tablBSemT* which is a set of
pairs

(h, BSeng)

where h € A, BSenj is a belief semantics over BLM and i € N is fixed. In addition
we require at most one entry per agent h. Hence, BSeni determines an entailment

relation

¢ |:Q%Senﬁ U

between belief formulae @, P € @L}‘. We also assume the existence of the following
function (which constitutes an extended code call, see Definition 9.11 on page 449)

over BSemT®:
BSemT® : selectageni=,h),

which selects all entries corresponding to a specific agenth € A.

9.2 Belief Language and Data Structures 421

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.4 (Belief Semantics Tables foCFIT* Agents)
We briefly describe what suitable Belief Semantics Table for helil and tankl may

look like. We have to define entailment relations Q%Se.nﬁﬁgﬂ, BSemoTk!,
BSem®T5!, and BSenmiell! | BSentelll, BSemi¢lt). For simplicity we restrict

a a
these entailment relations to belief formulae of level at most 1, i.e., 93[,11‘.

1. Q%Senﬁ‘:}f& : The smallest entailment relation satisfying the schema

Bianki (tankl.1,X) — X.

This says that helil believes that all beliefs of tank1 about tankl1.1 are
actually true: tankl1 knows all about tankl.1.

2. Q%Senﬁ‘:rlﬁlz: The smallest entailment relation satisfying the schema
gtankZ (tankz'] 7X) — X-

This says that helil believes that all beliefs of tank2 about tank2.1 are
actually true: tank2 knows all about tank2.1.

9.2 Belief Language and Data Structures 422

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. BSe ‘;‘fﬁ] : The smallest entailment relation satistying the schema
ghelﬂ (tank] ,X) — X.

This says that tank] believes that it helil believes in X for tank]l, then this is
true (helil knows all about tankl. An instance of X is
in(pos1,tankl :getPositior)).

4. @Senﬁ‘g‘y : The smallest entailment relation satistying the schema

Breli2 (tankZ, X) A\ QheliZ (t(lleZ] ,X) — X.

This says that tank] believes that if heli2 believes that X is true both for tank2
and tank2.1 then this is actually true.

9.2 Belief Language and Data Structures 423

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The notion of a semantics used in the belief semantics table is very general: it
can be an arbitrary relation @BL x BL!.

As an example, consider the following two simple axioms that can be built into a
semantics:

(1) gh.z (h'7 X) = $h2 (h',a X)
(2) ﬂhz (h‘v X) - X

The first axiom refers to different ageritsh’ while the second combines different
levelsof belief atoms: see Equations 9.4 on page 411 and 9.5 on page 411 and the
discussion after Definition 9.2 on page 410. In many applications, however, such
axioms will not occurh = h' is fixed and the axioms operate on the same |leuél
belief formulae.

9.2 Belief Language and Data Structures 424

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Suppose an agentbelieves that another agémt reasons according to the feasible
semanticshy reasons according to the rational semantics etc. It would be nice if this
could be encoded as follows BSemT*

(h1,Semyteas)

(ho,Semrqt)

<h37 Sem reas>

Remark 1 shows that this is indeed possible.

The idea is to use the semanti=m of the action progran®® (b) (thata believesb
to have) for the evaluation of the belief formulae.

9.2 Belief Language and Data Structures 425

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Remark 1 (Sem for Agent Programs inducesBSenil) LetSem be thereasonable
rationalor feasiblesemantics for agent programs (i.e., not containing beliefs).
Suppose agernmt believes that agerit reasons according t8em. LetP(h) be the
agent program oh andO(h), AC(h) and IC(h) the state, action constraints and
integrity constraints oh. Then there is a basic belief tablBSemT* and a belief

semanticg8Seng induced bysem such that
e a believes irh’s state, and

e a believes in all actions taken By with respect tasem and? (h).

9.2 Belief Language and Data Structures 426

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

More generally: let ie N and suppose agentbelieves that agerit; believes that
agenth, believes that.. believes that agerit;_; acts according t@&P“ (o) (where
O =gef [, N2, ..., hj_1]) and stateO(o)2. Then there is a basic belief tabBESemT*

and a belief semantic8Seng induced bySem on a suitably restricted subset of
BLY x BLY such that

e a believes irh;_4’s state, and

e a believes in all actions taken th_; with respect tGsem and P (o).

aSee Definition 9.10 on page 448 and Definition 9.8 on page 439 for a detailed introduction of these
concepts.

9.2 Belief Language and Data Structures 427

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.3 Belief Tables

We are now ready to give the full definition of a belief table.

Definition 9.5 (Belief Table BT*)

Every agent a has an associated belief tableBT®, which consists of triples
(h, ®.X5)

whereh € A, € BL! and x4 € BCond* (h) is a belief condition ofa.

The role of such a belief condition is to extend the expressiveness of the basic belief
table by restricting the applicability to particular states, namely those satisfying the
belief condition. Intuitively, (b,@,X3) means that

Agent a believes that @ is true in agent b’s state, if the condition Xz holds.

BT® and BSemT®, taken together, simulateagent b’s state as believed by agent a.

9.2 Belief Language and Data Structures 428

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

We also assume the existence of the following two functions over BT :
BT® : proj-selecfagent=,h)

which selects all entries of BT® of the form (h, @,true) (i.e., corresponding to a
specific agent h € A and having the third entry empty) and projects them, and

BT : B-proj-selectr,h, @)

for allt € R =gef {=>, <, <>} and for all belief formulae @ € BLY. This function
selects all entries of BT of the form (h,), true) that contain a belief formula
which is in relation r to @ with respect to the semantics BSeng as specified in the
belief semantics table BSemT® and projects them on the first two arguments.

For example, if we choose =& R_ as the relation r then

(W= @) € BSend or, equivalently,

=gpseng (U= @) says

@ is entailed by) relative to semantics BSeng .

9.2 Belief Language and Data Structures 429

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A belief conditiony g that occurs in an entrib, @, X 3) must be evaluated in
what agenti believes is agerti’s state.

This is important because the code call conditions must be compatible and therefore
not only depend on agentbut also on agert.

Agent | Formula Condition
helil | in(posi,helil:getPositior)) true

heli2 | Bneii2(tankl,in(posi,tankl :getPositior))) Bcondrenk!
tank2 | Biank2 (helil,Bpeii1(tankl,in(pos3, tankl :getPositiol)))) Q%COﬂdz“mk‘

Table 9.3: A Belief Table for agentink].

9.2 Belief Language and Data Structures 430

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.5 (Belief Table forCFIT* Agents Revisited)

We now consider Table 9.3 on the page before and extend our basic belief tables for
agent tankl1 (Table 9.1 on page 417) and helil (Table 9.2 on page 417). Let
Beondr @™+ pe the code call condition in(pos1,tank] :getPosition)) and define
Beondsamk! py

in((helil, belief atom), BT : proj-selectagent=,helil)),
where

belief atom =gef Bre1i1 (tankl,in(pos3, tankl :getPosition))).

The first row in the table says that tank]1 unconditionally believes that in helil’s
state the position for helil is pos1.

The second row in the belief table above, says that tankl1 believes that if tank1’s
position is pos1, heli2 believes that in tank] ’s state the position of tankl is pos1.

9.2 Belief Language and Data Structures 431

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The third row in the belief table says that if tank]1 believes helil believes that

tank]1’s position is pos3, then tank2 believes helil believes tank]1’s position is
pos3.

The table for helil is as shown in Table 9.4, where Q%COdeem stands for
in(pos2, heli2: getPosition))
and Bconds®™1 is defined by
in((tankl, belief atom), BT : proj-selectagent=,tankl)),

where

belief atom =gef Brank1 (helil,in(pos4, helil :getPosition))).

9.2 Belief Language and Data Structures 432

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Agent | Formula Condition
heli2 | in(pos2,heli2:getPosition)) true
tankl | in(pos1,tankl :getPosition)) true
tankl | Biank1(helil,in(pos1,helil :getPosition))) Beondrett]
tank2 | Biank2(tankl, Biqnk1 (helil,in(pos4, helil :getPosition))) | Bcondye!t!

Table 9.4: A Belief Table for agent helil.

9.2 Belief Language and Data Structures 433

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.3 Meta Agent Programs and Status Sets

Definition 9.6 (Meta Agent Program (map) ‘BP)
A meta agent rulgmar for short), for agent a is an expression I of the form

where Op o (f) is an action status atom, and each of L1, ..., Ly, is either a code call

literal, an action literal or a belief literal from ‘BLit »(a@,A).

A meta agent progranimap for short), for agent a is a finite set ‘BP of meta agent

rules for a.

9.3 Meta Agent Programs and Status Sets 434

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.6 (map’s For CFIT*-Agents)
Let helil ’s meta agent program be as follows:

P attackP1,P2) <« Bpneii1(tankl,in(P2,tankl:getPog))) ,
P fly(P1,P3,A,3),
P attackP3,P2).

where attackP1,P2) is an action which means attack position P2 from position P1.
helil ’s program says helil can attack position P2 from P1 if helil believes tank]
is in position P2, helil can fly from P1 to another position P3 at altitude A and speed
S, and helil can attack position P2 from P3.

Let tank]1’s meta agent program be as follows:

O attackP1,P2) <« O driveRout¢[P0,P1,P2 P3],S),
Biank1 (tank2,in(P2,tank2:getPog))) .

Iftank1 must drive through a point where it believes tank?2 is, it must attack tank2.

9.3 Meta Agent Programs and Status Sets 435

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

From now on we assume that the software packege: (7 5o, F sa) Of each agent
a contains as distinguished data types

1. the belief tabldBT®, and
2. the belief semantics tabBSemT®,

as well as the corresponding functions

BT : B-proj-selectr,h, @) andBSemT* : selecftagent=,h).

9.3 Meta Agent Programs and Status Sets 436

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

What is a status set?

Definition 9.7 (Belief Status SetBS)
A belief status set ‘BS of agent a, also written BS(a), is a set consisting of two kinds

of elements:
e ground action status atoms over §“ and
e belief atoms from BAt.(a,A) of level greater or equal to 1.
The reason that we do not allow belief atoms of level O is to avoid having code call

conditions in our set. In agent programs without beliefs (which we want to extend)
they are not allowed (see Definition 7.15 on page 286).

9.3 Meta Agent Programs and Status Sets 437

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

We note that such a status set must be determined in accordance with
1. themap ‘B of agenta,
2. the current stat® of a,
3. the underlying set of actiom() and integrity constraintsd() of a.

¢ In contrast to agent programs without beliefs we now haveope with all
agents about whicha holds certain beliefs

e Even if themap BP does not contain nested beliefs (which are allowed), we
cannot restrict ourselves to belief atoms of level 1. This is because the belief
tableBT® may contain nested beliefs and, by the belief semantics table
BSemT®, such nested beliefs may imply (trigger) other beliefs.

9.3 Meta Agent Programs and Status Sets 438

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Any belief status seBSof agenta induces, in a natural way, for any agéne A, two
sorts of sets: thetateand the variougction status setthat agenti believes other
agents to hold or those that believes other agentsto hold about other agents
To easily formalize the latter conditions, we introduce the notion of a sequence:

Definition 9.8 (Sequence, [p] of Agents)
A sequence O of agents from A is defined inductively as follows:

1. The empty sequence || is a sequence.
2. Ifa € A and |p] is a sequence, then |a|, |—a], [a,p], |P,a] are sequences.

We use both 0 and [p] to refer to an arbitrary sequence.

9.3 Meta Agent Programs and Status Sets 439

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e The overall intuition of the formul&, (b, By, (¢, B (d,X))) is that if we keep
agenta in mind, then agent believes in a code call condition of type, c,d],
l.e., a ccc thab believes that believes that it holds id’s state.

e We also say sometimeg’s state” and refer to the code call conditions that are
true in whata believes thab believes... where|a,b,...] =0.

9.3 Meta Agent Programs and Status Sets 440

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.9 (Induced Status Sef13°1°"(8S) and StateM$a BS))
Let a,b be agents and ‘BP a map of a. Every belief status set ‘BS of an agent a
induces the following two sets describing a’s beliefs about b’s actions and b’s state

nactonBs) =4t { Opa(f) | Ba(b,0pa(f)) € BS where Op € {O,W,P,F,Do}}
NI BS) =ger { X | Ba(b,X) € BS and X is a code call condition}
Now assume that agent a believes in ‘BS. Then N3 BS) formalizes the state of

agent b as believed by agent a. Similarly, 31 BS) represents the action status set

of agent b as believed by agent a.

For any sequence O, ‘BS induces the following two sets:

MactionBS) describing a’s belief about actions corresponding to G

NS Bs) describing a’s belief about the state corresponding to O,

depending on the depth of the belief atoms occuring in ‘BP.

9.3 Meta Agent Programs and Status Sets 441

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The formal definition of12°%°%(8S) andM3™q BS) is by induction on the structure
of ¢. As it should be clear, we avoid this technical definition. Instead we shortly
illustrate the case far = [b,c|. Then

NYE(BS) =daet { Opa(f) | Ba(b,By(c,0pa(l))) € BS}

MBS —er { X | Ba(b,By(e.X) € BS})

9.3 Meta Agent Programs and Status Sets 442

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e [t is important to note that for any sequenceyf agents,

I'If}"“o”(@S) is a set of action status atoms.

M€ BS) is a set of code call conditions that dot involve beliefs.

e For the empty sequende we identifyl'lﬁC“O”(QBS) (resp.l‘lﬁtate(QSS)) with a’s
own action status set (resp's own state) as defined by the subsefB& not
involving belief atoms.

9.3 Meta Agent Programs and Status Sets 443

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.7 (Belief Status Sets foCFIT*-Agents)
We consider the map of helil given in Example 9.6 on page 435

BS(helil) =gt { Ply(pointA,pointB,10000,200),Ofly(pointA,pointB,10000,200),
Bheri1 (heli2, Pfly(PointA,PointB, 10000,200)),
Bheri1 (heli2,in(pos, heli2: getPog))),
Bheri1 (heli2, By er1i2 (tankl,in(pos, tankl :getPog))))
Breri1 (heli2, By eri2 (tankl], Pdrive(pointX, pointY,40)))}

This belief status set is for helil and it says:

1. It is possible to fly from pointA to pointB at an altitude of 10000 feet and a speed
of 200 knots.

2. It 1s obligatory to fly from pointA to pointB at an altitude of 10000 feet and a
speed of 200 knots.

9.3 Meta Agent Programs and Status Sets 444

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. helil believes that in heli2’s state it is possible to fly from pointA to pointB at
10000 feet and 200 knots.

4. helil believes that in heli2’s state the position of heli2 is pos.
5. helil believes heli2 believes that tank]1 ’s position is pos.

6. helil believes heli2 believes that in tank] ’s state it is possible to drive from
pointX to pointY at 40 miles per hour.

We then have:

naction (BS(helil)) = {Pfly(pointA,pointB, 10000,200)}
I'Iffg{?z (BS(helil)) = {in(pos, heli2:getPog)) }

nﬁfg?{'z tankl] (BS(helil)) = {Pdrive(pointX,pointY,40)}
M2 tank1) (BS(helil)) = {in(pos, tank1:getPog)) }

9.3 Meta Agent Programs and Status Sets 445

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

These sets formalize the following:

o M2cton (BS(helil)) describes helil ’s beliefs about heli2’s actions and it says

that it is possible to fly from pointA to pointB at 10000 feet and 200 knots.

o NP2 (BS(helil)) describes helil’s beliefs about heli2’s state and it says that

its position 18 pos.

) I'Iﬁfg{’{‘z tank1) (BS(helil)) describes helil’s beliefs about heli2’s beliefs about

tank]1 ’s actions, and it says that it is possible to drive from pointX to pointY at

40 miles per hour.

. I'I[S}tl‘a‘etfiz tank1)(BS(helil)) describes helil’s beliefs about heli2’s beliefs about

tank]l ’s state, and it says that its position is pos.

9.3 Meta Agent Programs and Status Sets 446

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Obviously fora to make a guess about agérd behaviour, agent not only
needs a belief table and a belief semantics table abalso needs to guess
aboutb’s action base, action program as well as the action and integrity| con-
straints used b.

This is very much like having a guess abbig software package which we
motivated and illustrated just before Definition 9.1 on page 407 (see the notion of
compatiblecode call condition).

For notational convenience and better readability we merge all these ingredi-
ents into a sefft ¢(b).

9.3 Meta Agent Programs and Status Sets 447

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.10 " ¢(b), Info(a))

For agents a,b € A, we denote by I' *(b) the following list of all beliefs that agent a
holds about another agent b: the software package $®(b), the action base2B“ (b),
the action progran® ®(b), the integrity constraintdC“(b) and the action
constraints2C®(b). I (b) may also contain these objects for sequences 0 = [b, |
instead of b: we use therefore also the notation I ¢ ([b,c]). [“(0) represents a’s
beliets about b’s beliefs about c.

In addition, given an agent a, we will often use the notation Info(a) to denote the
software package §, the action base A‘B, the action program P, the integrity
constraints IC and action constraints AC used by agent a. Thus we define
Info(@) =gef I'U(a).

9.3 Meta Agent Programs and Status Sets 448

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The set” ¢(b) is very important and therefore we introduce the corresponding
software code calls, thereby extending our original paclkage

Definition 9.11 (Extended Code Callss®*t)

Given an agent a, we will from now on distinguish between basicand extendectode
calls (resp. conditions). The basic code calls refer to the package S, while the latter
refer to the extended software package which also contains

1. the following function of the belief table:
(a) a:belief_table(), which returns the full belief table of agent a, as a set of
triples <h'7 (p7XQ3>a
2. the following functions of the belief semantics table:

(b) a:belief_semtable(), which returns the full belief semantics table, as a set of
pairs (h, BSenil),

(c) a:belsemanticé,,), which returns true when ¢ |:$Senﬁ) and false
otherwise.

9.3 Meta Agent Programs and Status Sets 449

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. the following functions, which implement for every sequence O the beliefs of
agent a about O as described in [*(0):

(d) a:softwarepackag€o), which returns the set $*(0),

(e) a:actionbase€o), which returns the set AB* (0),

(f) a:actionprogram(©), which returns the set P (0),

(g) a:integrity_constraint$o), which returns the set IC*(0)
(h) a:actionconstraint$o), which returns the set AC “ (0),

9.3 Meta Agent Programs and Status Sets 450

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

4. the following functions which simulate the state of another agent b or a sequence
o,

(i) a:belcccact(o), which returns all the code call conditions and action status
atoms that a believes are true in O’s state. We write these objects in the form
"in(,)” (resp. "Opa” for action status atoms) in order to distinguish them from
those that have to be checked in a’s state.

(j) a:notbelcccact(c), which returns all the code call conditions and action status
atoms that a does not believe to be true in G’s state.

We also write S for this extended software package and distinguish it from the
original § from which we started.

9.3 Meta Agent Programs and Status Sets 451

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.4 Feasible Belief Status Sets

e Consider now an agematwith associated structurdsfo(a).

e SupposeBSis an arbitrary status set. We would like to first identify the
conditions that determine whether it “makes sense” for agdathold the set of
beliefs prescribed b$BS.

e Intuitively, BSis feasible if and only if it satisfies two types of conditions

— conditions on the agemnt, and

— conditions on the beliefs of ageatabout other agents or sequences.

9.4 Feasible Status Sets 452

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Conditions on agenta (as in the classical cage

1. Deontic and action consistency:BS must not contain an inconsistencies

2. Deontic and action closure: This condition says thaBS must
be closed under the deontic operations

3. Closure under rules of BP: Furthermore, if we have a rule BP having a
ground instance whose body’s code-call conditions are all true in the current
agent state, and whose action status atoms and belief literals are 8&e In
then the head of that (ground) rule must beBi&

4. State consistency:.Suppose we concurrently execute all actions in the set
Todo. Then the new state that results must be consistenth the integrity
constraints associated with agent

9.4 Feasible Status Sets 453

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Conditions on beliefs of agentn about other agentsb (new conditions:

5. Local coherence: This condition requires that for any agéntevery induced
status seﬂ%CtiO”(Q%S) is feasible (in the original sense) with respect to the induced
statel3@9 BS) and action prograr®“ (b). Furthermore a similar condition must
hold for any sequena® instead of jusb.

6. Compatibility with BT ¢. We have to ensure that (1) all belief atoms of the basic
belief table are contained rASand that (2) whenever a belief condition is true,
then the corresponding belief formula is truefs.

7. Compatibility with BSemT®: If (b, BSeng) is an entry inBBSemT*, we have to
ensure thab’s induced state is closed under the semarifi§eng .

9.4 Feasible Status Sets 454

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.5 Reducingmap’s to Ordinary Agent Programs

This can be done by

1. transforming meta agent programs into agent programs

(this is a source-to-source transformation: the belief atoms in a meta
program are replaced by suitable code calls to the new datastructur

agent

eS),

2. taking advantage of extended code caf& as introduced in Definition 9.11 on

page 449

9.5 Reducingmap’s to Ordinary Agent Programs

455

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e Suppose the belief table does not contain any belief conditions (i.e., it coincides
with its basic belief table).

e Then ify is any code call condition of ageatthe extended code call atom
in({c,x,true), a:belief_tablg())
corresponds to the belief atom

Ba (€, X).

e But beliefs can also be triggered by entries in the belief table and/or in the belief
semantics table!

9.5 Reducingmap’s to Ordinary Agent Programs 456

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

e What happens if the formubais not a code call, but again a belief formula, say
ﬂ(: (daxl)’)

e Here is where the inductive definition @tans comes in. We map

Ba(c,Bc(d,X))

to

in("x"", a:belLcccact([c,d))).

9.5 Reducingmap’s to Ordinary Agent Programs 457

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Our main theorem in this section states that there is indeed a uniform transformation
Trans from arbitrary meta agent programs (which can also contain nested beliefs) to
agent programs such that the semantics are preserved:

Sem(BP) = Sem(Zrans(BP)) (9.7)

whereSem is either thefeasible rational or reasonableelief status set semantics.

Trans

BP S P
Compatible with o0
Belief Semantics TSemneW Closure TSemO'OI (9-8)
Belief Table u
Trans
BS S

9.5 Reducingmap’s to Ordinary Agent Programs 458

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Summary

This chapter was about an extension of agent progranhe bgfs
Agents have beliefs about other agents. How can we extend agent programs
to incorporate such beliefs?

1. Belief Language
(@) Ba(b,X): a believes that irb’s state the ccy holds.

(b) Nestings are also allowe®BLS.
2. Two new datastructure&elief-, Belief Semantics-Table

3. Meta Agent programs:. allow beliefs in bodies of rules.

9.6 Summary 459

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

4. Semantics
(a) Belief Status set9BS: Status sets + Beliefs.
(b) BSs induce:Nactio(BS) andr$aq BS)
(c) Feasibility of BS
I. Compatibility with Belief-, Belief Semantics-Table,
ii. Maction BS) must be feasible wr1$g BS)

5. Meta agent programs can be transformed to ordinary agent programs (using
extended code calls) sSem (BP)=Sem (Trans(BP)).

9.6 Summary 460

References

Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-
edge. In J. Minker (Ed.Foundations of Deductive Databases and Logic Pro-
gramming pp. 89—148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sourcésternational Journal of
Intelligent Cooperative Information Systen(2f 127—158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating AgentsEEE Intelli-
gent Systems 144—72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Bdbgeedings
of ACM SIGMOD Conference on Management of Ddiacson, Arizona, pp.
195-206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
ReasoninglEEE Computer 2¢9), 33-39.

460-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources.Rmoceedings of the 10th Meeting of the
Information Processing Society of Japafokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (1999, September). Temporal agent pro-
grams. Technical Report CS-TR-4055, Dept. of CS, University of Maryland,
College Park, MD 20752. currently under submission for a Journal.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logi¢2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Progrdoasnal
of Logic Programming 48).

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:
SemanticsArtificial Intelligence 1081-2), 179-255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
l1I: Polynomially Implementable Agent&rtificial Intelligence 1171), 107—-
167.

460-2

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, Il: Algo-
rithms and ComplexityArtificial Intelligence 1081-2), 257-307.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Ag@aisimunications
of the ACM 377), 49-53.

Rogers Jr., H. (1967).heory of Recursive Functions and Effective Computability
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. KrausC)Ecan, and R. Ross
(2000).Heterogenous Active AgentdIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information.Proceedings of
ACM SIGMOD Conference on Management of Datéashington, DC, pp.
434-437.

Wilder, F. (1993) A Guide to the TCP/IP Protocol SuitArtech House.

460-3

