
Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1–4) basiert auf

Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,

Decision Making, Kommunikation/Interaktion, Kontrakt

Netze, Coalition Formation).

Teil 2 (Kapitel 5–9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, Kraus,̈Ozcan and Ross), MIT

Press, May 2000.

Hier wird ein spezifischer Ansatz vorgestellt, der formale

Methoden aus dem logischen Programmieren benutzt,

aber nicht auf PROLOG aufsetzt (Code Call

Mechanismus, Aktionen, Agenten Zyklus, Status Menge,

Semantiken, Erweiterungen um Beliefs,

Implementierbarkeit).

Overview 1

Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Übersicht

1. Einführung, Terminologie
2. 4 Grundlegende Architekturen
3. Distributed Decision Making
4. Contract Nets, Coalition Formation
5. IMPACT Architecture
6. Legacy Data and Code Calls
7. Actions and Agent Programs
8. Regular Agents
9. Meta Agent Programs

Overview 2

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9. Meta Agent Programs

Overview

9.1 ExtendingCFIT

9.2 Belief Language and
Data Structures

9.3 Meta Agent Programs and
Status Sets

9.4 Feasible Status Sets

9.5 Reducingmap ’s to Ordinary
Agent Programs

Overview 400

Timetable:

• Chapter 9 needs 1 lecture, but lots of things need to be done quickly.

9 Meta Agent Programs

400-1

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.1 ExtendingCFIT: CFIT*

Figure 9.1: Agents in ofCFIT* Example

9.1 ExtendingCFIT: 401

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A set of enemy vehicle agents:These agents (mostly tanks) move across free

terrain, and their movements are determined by a program that the other agents

listed below do not have access to (though they may have beliefs about this

program).

A terrain route planning agent terrainterrainterrain, (see Table 5.2). Here we extend the

terrainterrainterrain agent so that it also provides a flight path computation service for

helicopters, through which it plans a flight, given an origin, a destination, and a

set of constraints specifying the height at which the helicopters wish to fly.

A tracking agent, which takes as input, aDTED (Digital Terrain Elevation Data)

map, anid assigned to an enemy agent, and a time point. It produces as output,

the location of the enemy agent at the given point in time (if known) as well as its

best guess of what kind of enemy the agent is.

9.1 ExtendingCFIT: 402

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A coordination agent, that keeps track of current friendly assets. This agent

receives input and ships requests to the other agents with a view to determining

exactly what target(s) the enemy columns may be attempting to strike, as well as

determining how to nullify the oncoming convoy.

A set of helicopter agents,that may receive instructions from the coordination agent

about when and where to attack the enemy vehicles. When such instructions are

received, the helicopter agents contact the terrain route planning agent, and

request a flight path. Such a flight path uses terrain elevation information (to

ensure that the helicopter does not fly into the side of a mountain).

9.1 ExtendingCFIT: 403

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• Beliefs about the type of enemy vehicle.Each enemy vehicle has an associated

type—for example, one vehicle may be a T-80 tank, the other may be a T-72

tank. However, thecoordinationcoordinationcoordination agent may not precisely know the type of a

given enemy vehicle, because of inaccurate and/or uncertain identification made

by the sensing agent.

At any point in time, it holds some beliefs about the identity of enemy

vehicle.

• Beliefs about intentions of enemy vehicle.Thecoordinationcoordinationcoordination agent must try to

guess what the enemy’s target is.

9.1 ExtendingCFIT: 404

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• Changing beliefs with time.As the enemy agent continues along its route, the

coordinationcoordinationcoordination agent may be forced to revise its beliefs, as it becomes apparent

that the actual route being taken by the enemy vehicle is inconsistent with the

expected route. Furthermore, as time proceeds, sensing data provided by the

trackingtrackingtracking agent may cause thecoordinationcoordinationcoordination agent to revise its beliefs about

the enemy vehicle type.

• Beliefs about the enemy agent’s reasoning.Thecoordinationcoordinationcoordination agent may also

hold some beliefs about the enemy agents’ reasoning capabilities (see the

Belief-Semantics Tablein Definition 9.4 on page 421). For instance, with a

relatively unsophisticated and disorganized enemy whose command and control

facilities have been destroyed, it may believe that the enemy does not know what

moves friendly forces are making.

9.1 ExtendingCFIT: 405

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2 Belief Language and Data Structures

• When an agentaaa reasons about another agentbbb, it must have some beliefs about

bbb’s underlying action base (what actions canbbb take?), bbb’s action program (how

will bbb reason?) etc.

• Let us denote this by the belief atom

BBBaaaaaaaaa(bbbbbbbbb,χ)

which represents one of the beliefs of agentaaa about what holds in the state of

agentbbb.

• In that case, agentaaa must also havebackground information : beliefs about

agentbbb’s software packageSSSbbb: the code call conditionχ has to be contained in

SSSbbb.
We will collect all the beliefs that an agentaaa has about another agentbbb in

a setΓaaa(bbb) (see Definition 9.10 on page 448).

9.2 Belief Language and Data Structures 406

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.1 (Belief Atom/Literal, BBBAt1(aaaaaaaaa,bbbbbbbbb), BBBLit 1(aaaaaaaaa,AAAAAAAAA))
Let aaa,bbb be agents inAAA. Then we define the set BBBAt1(aaaaaaaaa,bbbbbbbbb) of aaa-belief atoms about bbb
of level 1 as follows:

1. If χ is a compatible code call condition of aaa with respect to bbb, then BBBaaaaaaaaa(bbbbbbbbb,χ) is a
belief atom.

2. For Op ∈ {O,W,P,F,Do}: if α(~t) is a compatible action atom of agent aaa with
respect to bbb, then BBBaaaaaaaaa(bbbbbbbbb,Opα(~t)) is a belief atom.

If BBBaaaaaaaaa(bbbbbbbbb,χ) is a belief atom, then BBBaaaaaaaaa(bbbbbbbbb,χ) and ¬BBBaaaaaaaaa(bbbbbbbbb,χ) are called belief literals of

level 1, the corresponding set is denoted by BBBLit 1(aaaaaaaaa,bbbbbbbbb). Let

BBBAt1(aaaaaaaaa,AAAAAAAAA) =def

⋃
b∈AAA

BBBAt1(aaaaaaaaa,bbbbbbbbb) and BBBLit 1(aaaaaaaaa,AAAAAAAAA) =def

⋃
b∈AAA

BBBLit 1(aaaaaaaaa,bbbbbbbbb)

be the set of all aaa-belief atoms (resp. belief literals) relative toAAA. This reflects the
idea that agent aaa can have beliefs about many agents inAAA.

9.2 Belief Language and Data Structures 407

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.1 (Belief Atoms InCFIT*)
• BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1,tank1tank1tank1 :getPosgetPosgetPos((()))))))))))))

This belief atom says that the agent, heli1heli1heli1 believes that agent tank1tank1tank1’s current
state indicates that tank1tank1tank1’s current position is pos1.

• BBBheli1heli1heli1(tank1tank1tank1,Fattackattackattack(pos1,pos2))
This belief atom says that the agent, heli1heli1heli1 believes that agent tank1tank1tank1’s current
state indicates that it is forbidden for tank1tank1tank1 to attack from pos1 to pos2.

• BBBheli3heli3heli3(tank1tank1tank1,Odrivedrivedrive(pos1,pos2,35))
This belief atom says that the agent, heli3heli3heli3 believes that agent tank1tank1tank1’s current
state makes it obligatory for tank1tank1tank1 to drive from location pos1 to pos2 at 35
miles per hour.

9.2 Belief Language and Data Structures 408

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The languageBBBLit 1(aaaaaaaaa,AAAAAAAAA) does not allow agentaaa to have beliefs of the form “Agent

bbb believes that agentccc’s state contains code call conditionχ,” i.e., agentaaa cannot

express beliefs it has about the beliefs of another agent.

We introduce the following notation: for a given setX of formulae we denote by

Cl{& ,¬}(X) the set of all conjunctions consisting of elements ofX or their negations:

x1∧¬x2∧ . . .∧xn, wherexi ∈ X. We emphasize that this does not correspond to the

usual closure ofX under & and¬: in particular, it does not allow us to formulate

disjunctions, ifX consists of atoms.

9.2 Belief Language and Data Structures 409

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.2 (Nested BeliefsBBBLit i(aaaaaaaaa,bbbbbbbbb), Belief languageBLBLBLaaaaaaaaai)
In the following let aaa,bbb ∈AAA. We want to define BLBLBLaaaaaaaaai , the belief language of agentaaa

of level i. This is done recursively as follows.

i ≤ 1: In accordance with Definition 9.1 on page 407 (where we already defined
BBBAt1(aaaaaaaaa,bbbbbbbbb)) we denote by BBBAt0(aaaaaaaaa,bbbbbbbbb) as well as by BBBLit 0(aaaaaaaaa,bbbbbbbbb)

{φ | φ is a compatible code call condition or action atom}

the flat set of code call conditions or action atoms—no belief atoms are allowed.
Furthermore, we define

BLBLBL0(aaa,bbb) =def BBBAt0(aaaaaaaaa,bbbbbbbbb)

BLBLBL1(aaa,bbb) =def Cl{& ,¬}(BBBAt1(aaaaaaaaa,bbbbbbbbb)),

i.e., the set of formulae BBBAt0(aaaaaaaaa,bbbbbbbbb), resp. the of all conjunctions of belief literals
from BBBAt1(aaaaaaaaa,bbbbbbbbb).

9.2 Belief Language and Data Structures 410

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

BLBLBLaaaaaaaaa0 =def
⋃
bbb∈AAABLBLBL0(aaa,bbb)

BLBLBLaaaaaaaaa1 =def Cl{& ,¬}(
⋃
bbb∈AAABLBLBL1(aaa,bbb))

are called the belief languages of agentaaa of level 0, resp. of level 1.

i > 1: To define nested belief literals we set for i > 1

BBBAt i(aaaaaaaaa,bbbbbbbbb) =def {BBBaaaaaaaaa(bbbbbbbbb,β)|β ∈BBBAt i−1(bbbbbbbbb,AAAAAAAAA)},
BBBLit i(aaaaaaaaa,bbbbbbbbb) =def {(¬)BBBaaaaaaaaa(bbbbbbbbb,β)|β ∈BBBAt i−1(bbbbbbbbb,AAAAAAAAA)}.

This finishes the recursive definition of BBBLit i(aaaaaaaaa,bbbbbbbbb).

The definition of the belief language of agentaaa of level i is:

BLBLBLaaaaaaaaai =def Cl{& ,¬}(
⋃
bbb∈AAA

BLBLBL i(aaa,bbb)) (9.4)

BLBLBL i(aaa,bbb) =def Cl{& ,¬}(BBBAt i(aaaaaaaaa,bbbbbbbbb)).

9.2 Belief Language and Data Structures 411

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Finally we define the maximal belief language an agent aaa can have:

BLBLBLaaaaaaaaa∞ =def Cl{& ,¬}(
∞⋃

i=0

BLBLBLaaaaaaaaai). (9.5)

Formulae in this language are also called general belief formulae.

We will later also use the following definitions:

1. BBBAt i(aaaaaaaaa,AAAAAAAAA) =def
⋃
bbb∈AAABBBAt i(aaaaaaaaa,bbbbbbbbb) is called the set of belief atoms of depth i.

2. BBBLit i(aaaaaaaaa,AAAAAAAAA) =def
⋃
bbb∈AAABBBLit i(aaaaaaaaa,bbbbbbbbb) is called the set of belief literals of depth i.

3. We define

BBBAt∞(aaaaaaaaa,AAAAAAAAA) =def

∞⋃
i=0

BBBAt i(aaaaaaaaa,AAAAAAAAA), BBBLit ∞(aaaaaaaaa,AAAAAAAAA) =def

∞⋃
i=0

BBBLit i(aaaaaaaaa,AAAAAAAAA).

9.2 Belief Language and Data Structures 412

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Why is it so complicated?

A nested belief atom of the form

BBBaaaaaaaaa(bbbbbbbbb,BBBccccccccc(ddddddddd,χ))

does not make sense (becausebbb 6= ccc).

Thus every agent keeps track of only itsownbeliefs, not those of other agents!!

• The closure under{& ,¬} in Equation (9.4 on page 411) allows us to use

conjunctions with respect to different agentsBBBaaa(bbb,χ)∧BBBaaa(ccc,χ′).

• The closure in Equation (9.5 on page 411) allows us to also use different nested

levels of beliefs, likeBBBaaa(bbb,χ)∧BBBaaa(ccc,BBBccc(ddd,χ′)).

9.2 Belief Language and Data Structures 413

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.2 (Belief Formulae forCFIT*)
The following are belief formulae from BLBLBLheli1heli1heli1

1 , BLBLBLtank1tank1tank1
2 and BLBLBLcoordcoordcoord

3 .

• BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))).
This formula is in BLBLBLheli1heli1heli1

1 . It says that agent heli1heli1heli1 believes that agent tank1tank1tank1’s
current state indicates that tank1tank1tank1’s current position is pos1.

• BBBtank1tank1tank1(heli1heli1heli1,BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))))).
This formula is in BLBLBLtank1tank1tank1

2 . It says that agent tank1tank1tank1 believes that agent heli1heli1heli1

believes that agent tank1tank1tank1’s current position is pos1.

•
BBBcoordcoordcoord(tank1tank1tank1,BBBtank1tank1tank1(heli1heli1heli1,BBBheli1heli1heli1(tank2tank2tank2, in(((((((((pos2,tank2tank2tank2 :getPositiongetPositiongetPosition((())))))))))))))).
This formula is in BLBLBLcoordcoordcoord

3 . It says that agent coordcoordcoord believes that agent tank1tank1tank1

believes that heli1heli1heli1 believes that agent tank2tank2tank2’s current position is pos2.

9.2 Belief Language and Data Structures 414

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

However, the following formula does not belong to any of the above belief languages:

BBBtank1tank1tank1(heli1heli1heli1,BBBtank1tank1tank1(tank1tank1tank1, in(((((((((pos1,tanktanktank :getPositiongetPositiongetPosition((()))))))))))))).

The reason for this is because inheli1heli1heli1’s state there can be no beliefs belonging to

tank1tank1tank1.

9.2 Belief Language and Data Structures 415

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.1 Basic Belief Table

Definition 9.3 (Basic Belief Table BBTa)
Every agent aaa has an associated basic belief tableBBTa which is a set of pairs

〈hhh,φ〉

where hhh ∈AAA and φ ∈BLBLBLhhhhhhhhhi , i ∈ N.

For example, if the entry〈bbb,BBBbbbbbbbbb(aaaaaaaaa,χ)〉 is in the tableBBTa, then this intuitively

means that agentaaa believes that agentbbb has the code call conditionχ among its own

beliefs about agentaaa. Hereφ ∈BLBLBLbbbbbbbbb1 .

9.2 Belief Language and Data Structures 416

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.3 (Basic Belief Table forCFIT* Agents)
We define suitable basic belief tables for agent tank1tank1tank1 (Table 9.1) and heli1heli1heli1

(Table 9.2).

Agent Formula

heli1heli1heli1 in(((((((((pos1,heli1heli1heli1 :getPositiongetPositiongetPosition((())))))))))))

heli2heli2heli2 BBBheli2heli2heli2(tank1tank1tank1, in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))))

tank2tank2tank2 BBBtank2tank2tank2(heli1heli1heli1,BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos3,tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))))

Table 9.1: A Basic Belief Table for agent tank1tank1tank1.

9.2 Belief Language and Data Structures 417

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Agent Formula

heli2heli2heli2 in(((((((((pos2,heli2heli2heli2 :getPositiongetPositiongetPosition((())))))))))))

tank1tank1tank1 in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))

tank1tank1tank1 BBBtank1tank1tank1(heli1heli1heli1, in(((((((((pos1,heli1heli1heli1 :getPositiongetPositiongetPosition((()))))))))))))

tank2tank2tank2 BBBtank2tank2tank2(tank1tank1tank1,BBBtank1tank1tank1(heli1heli1heli1, in(((((((((pos4,heli1heli1heli1 :getPositiongetPositiongetPosition((())))))))))))))

Table 9.2: A Basic Belief Table for agent heli1heli1heli1.

These tables indicate that tank1tank1tank1 and heli1heli1heli1 work closely together and know their
positions. Both believe that the other knows about both positions. tank1tank1tank1 also
believes that tank2tank2tank2 believes that in heli2heli2heli2’s state, tank1tank1tank1 is in position pos3 (which
is actually wrong).

heli1heli1heli1 thinks that tank2tank2tank2 believes that tank1tank1tank1 believes that heli1heli1heli1 is in position pos4,
which is also wrong.

9.2 Belief Language and Data Structures 418

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

What kind of operations should we support on belief tables? We distinguish between

two different types:

1. For a given agenthhh, other thanaaa, we may want to select all entries in the table

havinghhh as first argument.

2. For a given belief formulaφ, we may be interested in all those entries, whose

second argument “implies” (w.r.t. some underlying definition of entailment) the

given formulaφ.

9.2 Belief Language and Data Structures 419

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.2 Belief Semantics Table

Agentaaa may associate different background theories with different agents: it may

assume that agenthhh reasons according to semanticsBSemaaaaaaaaahhhhhhhhh and assumes that agent

hhh′ adopts a stronger semanticsBSemaaaaaaaaahhh′hhh′hhh′ . We will store the information in a separate

relational data structure:

9.2 Belief Language and Data Structures 420

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.4 (Belief Semantics Table BSemTaaaaaaaaa of Agentaaa)
Every agent aaa has an associated belief semantics tableBSemTaaaaaaaaa which is a set of
pairs

〈hhh,BSemaaaaaaaaahhhhhhhhh〉

where hhh ∈AAA, BSemaaaaaaaaahhhhhhhhh is a belief semantics over BLBLBLhhhhhhhhhi and i ∈ N is fixed. In addition
we require at most one entry per agent hhh. Hence, BSemaaaaaaaaahhhhhhhhh determines an entailment
relation

φ |=BSemaaaaaaaaahhhhhhhhh
ψ

between belief formulae φ,ψ ∈BLBLBLhhhhhhhhhi . We also assume the existence of the following
function (which constitutes an extended code call, see Definition 9.11 on page 449)
over BSemTaaaaaaaaa:

BSemTaaaaaaaaaaaaaaaaaaaaaaaaaaa : select(agent,=,hhh),

which selects all entries corresponding to a specific agent hhh ∈AAA.

9.2 Belief Language and Data Structures 421

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.4 (Belief Semantics Tables forCFIT* Agents)
We briefly describe what suitable Belief Semantics Table for heli1heli1heli1 and tank1tank1tank1 may

look like. We have to define entailment relations BSemtank1tank1tank1
tank2tank2tank2, BSemtank1tank1tank1

heli1heli1heli1 ,
BSemtank1tank1tank1

heli2heli2heli2 , and BSemheli1heli1heli1
tank1tank1tank1, BSemheli1heli1heli1

tank2tank2tank2, BSemheli1heli1heli1
heli2heli2heli2. For simplicity we restrict

these entailment relations to belief formulae of level at most 1, i.e., BLBLBLhhhhhhhhh1 .

1. BSemheli1heli1heli1
tank1tank1tank1: The smallest entailment relation satisfying the schema

BBBtank1tank1tank1(tank1.1tank1.1tank1.1,χ)→ χ.

This says that heli1heli1heli1 believes that all beliefs of tank1tank1tank1 about tank1.1tank1.1tank1.1 are
actually true: tank1tank1tank1 knows all about tank1.1tank1.1tank1.1.

2. BSemheli1heli1heli1
tank2tank2tank2: The smallest entailment relation satisfying the schema

BBBtank2tank2tank2(tank2.1tank2.1tank2.1,χ)→ χ.

This says that heli1heli1heli1 believes that all beliefs of tank2tank2tank2 about tank2.1tank2.1tank2.1 are
actually true: tank2tank2tank2 knows all about tank2.1tank2.1tank2.1.

9.2 Belief Language and Data Structures 422

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. BSemtank1tank1tank1
heli1heli1heli1 : The smallest entailment relation satisfying the schema

BBBheli1heli1heli1(tank1tank1tank1,χ)→ χ.

This says that tank1tank1tank1 believes that if heli1heli1heli1 believes in χ for tank1tank1tank1, then this is
true (heli1heli1heli1 knows all about tank1tank1tank1. An instance of χ is
in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))).

4. BSemtank1tank1tank1
heli2heli2heli2 : The smallest entailment relation satisfying the schema

BBBheli2heli2heli2(tank2tank2tank2,χ)∧BBBheli2heli2heli2(tank2.1tank2.1tank2.1,χ)→ χ.

This says that tank1tank1tank1 believes that if heli2heli2heli2 believes that χ is true both for tank2tank2tank2

and tank2.1tank2.1tank2.1 then this is actually true.

9.2 Belief Language and Data Structures 423

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The notion of a semantics used in the belief semantics table is very general: it

can be an arbitrary relation onBLBLBLhhhhhhhhhi ×BLBLBLhhhhhhhhhi .

As an example, consider the following two simple axioms that can be built into a

semantics:

(1) BBBhhh2hhh2hhh2(hhhhhhhhh,χ) ⇒ BBBhhh2hhh2hhh2(hhh′hhh′hhh′,χ)

(2) BBBhhh2hhh2hhh2(hhhhhhhhh,χ) ⇒ χ

The first axiom refers to different agentshhh,hhh′ while the second combines different

levelsof belief atoms: see Equations 9.4 on page 411 and 9.5 on page 411 and the

discussion after Definition 9.2 on page 410. In many applications, however, such

axioms will not occur:hhh=hhh′ is fixed and the axioms operate on the same leveli of

belief formulae.

9.2 Belief Language and Data Structures 424

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Suppose an agentaaa believes that another agenthhh1 reasons according to the feasible

semantics,hhh2 reasons according to the rational semantics etc. It would be nice if this

could be encoded as follows inBSemTaaaaaaaaa

〈hhh1,SemSemSemfeas〉
〈hhh2,SemSemSemrat〉
〈hhh3,SemSemSemreas〉

Remark 1 shows that this is indeed possible.

The idea is to use the semanticsSemSemSem of the action programPPPaaa(bbb) (thataaa believesbbb

to have) for the evaluation of the belief formulae.

9.2 Belief Language and Data Structures 425

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Remark 1 (SemSemSem for Agent Programs inducesBSemaaaaaaaaahhhhhhhhh) LetSemSemSem be thereasonable,

rationalor feasiblesemantics for agent programs (i.e., not containing beliefs).

Suppose agentaaa believes that agenthhh reasons according toSemSemSem. LetPPP (hhh) be the

agent program ofhhh andOOO(hhh), ACACAC (hhh) andICICIC (hhh) the state, action constraints and

integrity constraints ofhhh. Then there is a basic belief tableBSemTaaaaaaaaa and a belief

semanticsBSemaaaaaaaaahhhhhhhhh induced bySemSemSem such that

• aaa believes inhhh’s state, and

• aaa believes in all actions taken byhhh with respect toSemSemSem andPPP (hhh).

9.2 Belief Language and Data Structures 426

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

More generally: let i∈ N and suppose agentaaa believes that agenthhh1 believes that

agenthhh2 believes that. . . believes that agenthhhi−1 acts according toPPPaaa(σσσ) (where

σσσ =def [hhh1,hhh2, . . . ,hhhi−1]) and stateOOO(σσσ)a. Then there is a basic belief tableBSemTaaaaaaaaa

and a belief semanticsBSemaaaaaaaaaσσσσσσσσσ induced bySemSemSem on a suitably restricted subset of

BLBLBLhhh1 ×BLBLBLhhh1 such that

• aaa believes inhhhi−1’s state, and

• aaa believes in all actions taken byhhhi−1 with respect toSemSemSem andPPP (σσσ).

aSee Definition 9.10 on page 448 and Definition 9.8 on page 439 for a detailed introduction of these

concepts.

9.2 Belief Language and Data Structures 427

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.2.3 Belief Tables

We are now ready to give the full definition of a belief table.

Definition 9.5 (Belief Table BTaaaaaaaaaaaaaaaaaaaaaaaaaaa)
Every agent aaa has an associated belief tableBTaaaaaaaaa, which consists of triples

〈hhh,φ,χB〉

where hhh ∈AAA, φ ∈BLBLBLhhhhhhhhhi and χB ∈ BCondaaaaaaaaa(hhhhhhhhh) is a belief condition ofaaa.

The role of such a belief condition is to extend the expressiveness of the basic belief
table by restricting the applicability to particular states, namely those satisfying the
belief condition. Intuitively, 〈bbb,φ,χB〉 means that

Agent aaa believes that φ is true in agent bbb’s state, if the condition χB holds.

BTaaaaaaaaa and BSemTaaaaaaaaa, taken together, simulateagent bbb’s state as believed by agent aaa.

9.2 Belief Language and Data Structures 428

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

We also assume the existence of the following two functions over BTaaaaaaaaa:

BTaaaaaaaaa : proj-select(agent,=,hhhhhhhhh)

which selects all entries of BTaaaaaaaaaaaaaaaaaaaaaaaaaaa of the form 〈hhh,φ, true〉 (i.e., corresponding to a
specific agent hhh ∈AAA and having the third entry empty) and projects them, and

BTaaaaaaaaaaaaaaaaaaaaaaaaaaa : B-proj-select(r,hhh,φ)

for all r ∈ R =def {⇒,⇐,⇔} and for all belief formulae φ ∈BLBLBLhhhhhhhhh∞. This function
selects all entries of BTaaaaaaaaa of the form 〈hhh,ψ, true〉 that contain a belief formula ψ
which is in relation r to φ with respect to the semantics BSemaaaaaaaaahhhhhhhhh as specified in the
belief semantics table BSemTaaaaaaaaa and projects them on the first two arguments.

For example, if we choose⇒∈ R as the relation r then

(ψ⇒ φ) ∈ BSemaaaaaaaaahhhhhhhhh or, equivalently, |=BSemaaaaaaaaahhhhhhhhh
(ψ⇒ φ) says

φ is entailed by ψ relative to semantics BSemaaaaaaaaahhhhhhhhh.

9.2 Belief Language and Data Structures 429

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

A belief conditionχB that occurs in an entry〈bbb,φ,χB〉 must be evaluated in

what agentaaa believes is agentbbb’s state.

This is important because the code call conditions must be compatible and therefore

not only depend on agentaaa but also on agentbbb.

Agent Formula Condition

heli1heli1heli1 in(((((((((pos1,heli1heli1heli1 :getPositiongetPositiongetPosition((()))))))))))) true

heli2heli2heli2 BBBheli2heli2heli2(tank1tank1tank1, in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))) Bcondtank1tank1tank1
1

tank2tank2tank2 BBBtank2tank2tank2(heli1heli1heli1,BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos3,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))))) Bcondtank1tank1tank1
2

Table 9.3: A Belief Table for agenttank1tank1tank1.

9.2 Belief Language and Data Structures 430

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.5 (Belief Table forCFIT* Agents Revisited)
We now consider Table 9.3 on the page before and extend our basic belief tables for
agent tank1tank1tank1 (Table 9.1 on page 417) and heli1heli1heli1 (Table 9.2 on page 417). Let
Bcondtank1tank1tank1

1 be the code call condition in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))) and define
Bcondtank1tank1tank1

2 by

in(((((((((〈heli1heli1heli1,belief atom〉,BTaaaaaaaaa : proj-select(agent,=,heli1heli1heli1)))))))))),

where

belief atom =def BBBheli1heli1heli1(tank1tank1tank1, in(((((((((pos3,tank1tank1tank1 :getPositiongetPositiongetPosition((())))))))))))).

The first row in the table says that tank1tank1tank1 unconditionally believes that in heli1heli1heli1’s
state the position for heli1heli1heli1 is pos1.

The second row in the belief table above, says that tank1tank1tank1 believes that if tank1tank1tank1’s
position is pos1, heli2heli2heli2 believes that in tank1tank1tank1’s state the position of tank1tank1tank1 is pos1.

9.2 Belief Language and Data Structures 431

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The third row in the belief table says that if tank1tank1tank1 believes heli1heli1heli1 believes that
tank1tank1tank1’s position is pos3, then tank2tank2tank2 believes heli1heli1heli1 believes tank1tank1tank1’s position is
pos3.

The table for heli1heli1heli1 is as shown in Table 9.4, where Bcondheli1heli1heli1
1 stands for

in(((((((((pos2,heli2heli2heli2 :getPositiongetPositiongetPosition((())))))))))))

and Bcondtank1tank1tank1
2 is defined by

in(((((((((〈tank1tank1tank1,belief atom〉,BTaaaaaaaaa : proj-select(agent,=,tank1tank1tank1)))))))))),

where

belief atom =def BBBtank1tank1tank1(heli1heli1heli1, in(((((((((pos4,heli1heli1heli1 :getPositiongetPositiongetPosition((())))))))))))).

9.2 Belief Language and Data Structures 432

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Agent Formula Condition

heli2heli2heli2 in(((((((((pos2,heli2heli2heli2 :getPositiongetPositiongetPosition((()))))))))))) true

tank1tank1tank1 in(((((((((pos1,tank1tank1tank1 :getPositiongetPositiongetPosition((()))))))))))) true

tank1tank1tank1 BBBtank1tank1tank1(heli1heli1heli1, in(((((((((pos1,heli1heli1heli1 :getPositiongetPositiongetPosition((())))))))))))) Bcondheli1heli1heli1
1

tank2tank2tank2 BBBtank2tank2tank2(tank1tank1tank1,BBBtank1tank1tank1(heli1heli1heli1, in(((((((((pos4,heli1heli1heli1 :getPositiongetPositiongetPosition((()))))))))))))) Bcondheli1heli1heli1
2

Table 9.4: A Belief Table for agent heli1heli1heli1.

9.2 Belief Language and Data Structures 433

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.3 Meta Agent Programs and Status Sets

Definition 9.6 (Meta Agent Program (map) BP)
A meta agent rule, (mar for short), for agent aaa is an expression r of the form

Opααα(~t)← L1, . . . ,Ln (9.6)

where Opα(~t) is an action status atom, and each of L1, . . . , Ln is either a code call
literal, an action literal or a belief literal from BBBLit ∞(aaaaaaaaa,AAAAAAAAA).

A meta agent program, (map for short), for agent aaa is a finite set BP of meta agent
rules for aaa.

9.3 Meta Agent Programs and Status Sets 434

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.6 (map ’s For CFIT*-Agents)
Let heli1heli1heli1’s meta agent program be as follows:

P attackattackattack(P1,P2) ← BBBheli1heli1heli1(tank1tank1tank1, in(((((((((P2,tank1tank1tank1 :getPosgetPosgetPos((())))))))))))) ,

P flyflyfly(P1,P3,A,S),
P attackattackattack(P3,P2).

where attackattackattack(P1,P2) is an action which means attack position P2 from position P1.
heli1heli1heli1’s program says heli1heli1heli1 can attack position P2 from P1 if heli1heli1heli1 believes tank1tank1tank1

is in position P2, heli1heli1heli1 can fly from P1 to another position P3 at altitude A and speed
S, and heli1heli1heli1 can attack position P2 from P3.

Let tank1tank1tank1’s meta agent program be as follows:

O attackattackattack(P1,P2) ← O driveRoutedriveRoutedriveRoute([P0,P1,P2,P3],S),
BBBtank1tank1tank1(tank2tank2tank2, in(((((((((P2,tank2tank2tank2 :getPosgetPosgetPos((())))))))))))).

If tank1tank1tank1 must drive through a point where it believes tank2tank2tank2 is, it must attack tank2tank2tank2.

9.3 Meta Agent Programs and Status Sets 435

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

From now on we assume that the software packageSSSaaa = (TTTTTTTTT SSSaaa ,FFFFFFFFF SSSaaa) of each agent

aaa contains as distinguished data types

1. the belief tableBTaaaaaaaaa, and

2. the belief semantics tableBSemTaaaaaaaaa,

as well as the corresponding functions

BTaaaaaaaaaaaaaaaaaaaaaaaaaaa : B-proj-select(r,hhh,φ) andBSemTaaaaaaaaaaaaaaaaaaaaaaaaaaa : select(agent,=,hhh).

9.3 Meta Agent Programs and Status Sets 436

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

What is a status set?

Definition 9.7 (Belief Status SetBS)
A belief status set BSof agent aaa, also written BS(aaa), is a set consisting of two kinds
of elements:

• ground action status atoms over SSSaaa and

• belief atoms from BBBAt∞(aaaaaaaaa,AAAAAAAAA) of level greater or equal to 1.

The reason that we do not allow belief atoms of level 0 is to avoid having code call

conditions in our set. In agent programs without beliefs (which we want to extend)

they are not allowed (see Definition 7.15 on page 286).

9.3 Meta Agent Programs and Status Sets 437

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

We note that such a status set must be determined in accordance with

1. themap BP of agentaaa,

2. the current stateOOO of aaa,

3. the underlying set of action (ACACAC) and integrity constraints (ICICIC) of aaa.

• In contrast to agent programs without beliefs we now haveto cope with all
agents about whichaaa holds certain beliefs.

• Even if themap BP does not contain nested beliefs (which are allowed), we

cannot restrict ourselves to belief atoms of level 1. This is because the belief

tableBTaaaaaaaaa may contain nested beliefs and, by the belief semantics table

BSemTaaaaaaaaa, such nested beliefs may imply (trigger) other beliefs.

9.3 Meta Agent Programs and Status Sets 438

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Any belief status setBSof agentaaa induces, in a natural way, for any agentbbb ∈AAA, two

sorts of sets: thestateand the variousaction status setsthat agentaaa believes other

agentsbbb to hold or those thataaa believes other agentsbbb to hold about other agentsccc.

To easily formalize the latter conditions, we introduce the notion of a sequence:

Definition 9.8 (Sequenceσσσ, [ρρρ] of Agents)
A sequence σσσ of agents fromAAA is defined inductively as follows:

1. The empty sequence [] is a sequence.

2. If aaa ∈AAA and [ρρρ] is a sequence, then [aaa], [−aaa], [aaa,ρρρ], [ρρρ,aaa] are sequences.

We use both σσσ and [ρρρ] to refer to an arbitrary sequence.

9.3 Meta Agent Programs and Status Sets 439

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• The overall intuition of the formulaBBBaaaaaaaaa(bbbbbbbbb,BBBbbbbbbbbb(ccccccccc,BBBccccccccc(ddddddddd,χ))) is that if we keep

agentaaa in mind, then agentaaa believes in a code call condition of type[bbb,ccc,ddd],
i.e., a ccc thatbbb believes thatccc believes that it holds inddd’s state.

• We also say sometimes “σσσ’s state” and refer to the code call conditions that are

true in whataaa believes thatbbb believes. . . where[aaa,bbb, . . .] = σσσ.

9.3 Meta Agent Programs and Status Sets 440

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.9 (Induced Status SetΠaction
bbb (BS) and StateΠstate

bbb (BS))
Let aaa,bbb be agents and BP a map of aaa. Every belief status set BSof an agent aaa
induces the following two sets describing aaa’s beliefs about bbb’s actions and bbb’s state

Πaction
bbb (BS) =def { Opα(~t) | BBBaaaaaaaaa(bbbbbbbbb,Opα(~t)) ∈ BS, where Op ∈ {O,W,P,F,Do}}

Πstate
bbb (BS) =def { χ | BBBaaaaaaaaa(bbbbbbbbb,χ) ∈ BS and χ is a code call condition}

Now assume that agent aaa believes in BS. Then Πstate
bbb (BS) formalizes the state of

agent bbb as believed by agent aaa. Similarly, Πaction
bbb (BS) represents the action status set

of agent bbb as believed by agent aaa.

For any sequence σσσ, BS induces the following two sets:

Πaction
σσσ (BS) describing aaa’s belief about actions corresponding to σσσ

Πstate
σσσ (BS) describing aaa’s belief about the state corresponding to σσσ,

depending on the depth of the belief atoms occuring in BP .

9.3 Meta Agent Programs and Status Sets 441

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The formal definition ofΠaction
σσσ (BS) andΠstate

σσσ (BS) is by induction on the structure

of σσσ. As it should be clear, we avoid this technical definition. Instead we shortly

illustrate the case forσσσ = [bbb,ccc]. Then

Πaction
[bbb,ccc] (BS) =def { Opα(~t) | BBBaaaaaaaaa(bbbbbbbbb,BBBbbbbbbbbb(ccccccccc,Opα(~t))) ∈ BS}

Πstate
[bbb,ccc](BS) =def { χ | BBBaaaaaaaaa(bbbbbbbbb,BBBbbbbbbbbb(ccccccccc,χ)) ∈ BS}.

9.3 Meta Agent Programs and Status Sets 442

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• It is important to note that for any sequence,σσσ of agents,

– Πaction
σσσ (BS) is a set of action status atoms.

– Πstate
σσσ (BS) is a set of code call conditions that donot involve beliefs.

• For the empty sequence[], we identifyΠaction
[] (BS) (resp.Πstate

[] (BS)) with aaa’s

own action status set (resp.aaa’s own state) as defined by the subset ofBSnot

involving belief atoms.

9.3 Meta Agent Programs and Status Sets 443

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 9.7 (Belief Status Sets forCFIT*-Agents)
We consider the map of heli1heli1heli1 given in Example 9.6 on page 435

BS(heli1heli1heli1) =def { Pflyflyfly(pointA,pointB,10000,200),Oflyflyfly(pointA,pointB,10000,200),

BBBheli1heli1heli1(heli2heli2heli2,Pflyflyfly(PointA,PointB,10000,200)),

BBBheli1heli1heli1(heli2heli2heli2, in(((((((((pos,heli2heli2heli2 :getPosgetPosgetPos((())))))))))))),

BBBheli1heli1heli1(heli2heli2heli2,BBBheli2heli2heli2(tank1tank1tank1, in(((((((((pos,tank1tank1tank1 :getPosgetPosgetPos((())))))))))))))

BBBheli1heli1heli1(heli2heli2heli2,BBBheli2heli2heli2(tank1tank1tank1,Pdrivedrivedrive(pointX,pointY,40)))}

This belief status set is for heli1heli1heli1 and it says:

1. It is possible to fly from pointA to pointB at an altitude of 10000 feet and a speed
of 200 knots.

2. It is obligatory to fly from pointA to pointB at an altitude of 10000 feet and a
speed of 200 knots.

9.3 Meta Agent Programs and Status Sets 444

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. heli1heli1heli1 believes that in heli2heli2heli2’s state it is possible to fly from pointA to pointB at
10000 feet and 200 knots.

4. heli1heli1heli1 believes that in heli2heli2heli2’s state the position of heli2heli2heli2 is pos.

5. heli1heli1heli1 believes heli2heli2heli2 believes that tank1tank1tank1’s position is pos.

6. heli1heli1heli1 believes heli2heli2heli2 believes that in tank1tank1tank1’s state it is possible to drive from
pointX to pointY at 40 miles per hour.

We then have:

Πaction
heli2heli2heli2(BS(heli1heli1heli1)) = {Pflyflyfly(pointA,pointB,10000,200)}

Πstate
heli2heli2heli2(BS(heli1heli1heli1)) = {in(((((((((pos,heli2heli2heli2 :getPosgetPosgetPos((())))))))))))}

Πaction
[heli2heli2heli2,tank1tank1tank1](BS(heli1heli1heli1)) = {Pdrivedrivedrive(pointX,pointY,40)}

Πstate
[heli2heli2heli2,tank1tank1tank1](BS(heli1heli1heli1)) = {in(((((((((pos,tank1tank1tank1 :getPosgetPosgetPos((())))))))))))}

9.3 Meta Agent Programs and Status Sets 445

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

These sets formalize the following:

• Πaction
heli2heli2heli2(BS(heli1heli1heli1)) describes heli1heli1heli1’s beliefs about heli2heli2heli2’s actions and it says

that it is possible to fly from pointA to pointB at 10000 feet and 200 knots.

• Πstate
heli2heli2heli2(BS(heli1heli1heli1)) describes heli1heli1heli1’s beliefs about heli2heli2heli2’s state and it says that

its position is pos.

• Πaction
[heli2heli2heli2,tank1tank1tank1](BS(heli1heli1heli1)) describes heli1heli1heli1’s beliefs about heli2heli2heli2’s beliefs about

tank1tank1tank1’s actions, and it says that it is possible to drive from pointX to pointY at
40 miles per hour.

• Πstate
[heli2heli2heli2,tank1tank1tank1](BS(heli1heli1heli1)) describes heli1heli1heli1’s beliefs about heli2heli2heli2’s beliefs about

tank1tank1tank1’s state, and it says that its position is pos.

9.3 Meta Agent Programs and Status Sets 446

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Obviously foraaa to make a guess about agentbbb’s behaviour, agentaaa not only

needs a belief table and a belief semantics table, butaaa also needs to guess

aboutbbb’s action base, action program as well as the action and integrity con-

straints used bybbb.

This is very much like having a guess aboutbbb’s software package which we

motivated and illustrated just before Definition 9.1 on page 407 (see the notion of

compatiblecode call condition).

For notational convenience and better readability we merge all these ingredi-

ents into a setΓaaa(bbb).

9.3 Meta Agent Programs and Status Sets 447

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 9.10 (Γaaa(bbb), Info(aaaaaaaaa))
For agents aaa,bbb ∈AAA, we denote by Γaaa(bbb) the following list of all beliefs that agent aaa
holds about another agent bbb: the software package SSSaaa(bbb), the action baseABABABaaa(bbb),
the action programPPP aaa(bbb), the integrity constraintsICICIC aaa(bbb) and the action

constraintsACACAC aaa(bbb). Γaaa(bbb) may also contain these objects for sequences σσσ = [bbb,ccc]
instead of bbb: we use therefore also the notation Γaaa([bbb,ccc]). Γaaa(σσσ) represents aaa’s
beliefs about bbb’s beliefs about ccc.

In addition, given an agent aaa, we will often use the notation Info(aaaaaaaaa) to denote the
software package SSSaaa, the action base ABABAB , the action program PPP , the integrity
constraints ICICIC and action constraints ACACAC used by agent aaa. Thus we define
Info(aaaaaaaaa) =def Γ[](aaa).

9.3 Meta Agent Programs and Status Sets 448

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

The setΓaaa(bbb) is very important and therefore we introduce the corresponding

software code calls, thereby extending our original packageSSS .

Definition 9.11 (Extended Code Calls,SextSextSext)
Given an agent aaa, we will from now on distinguish between basicand extendedcode
calls (resp. conditions). The basic code calls refer to the package SSS , while the latter
refer to the extended software package which also contains

1. the following function of the belief table:

(a) aaa :belief tablebelief tablebelief table((())), which returns the full belief table of agent aaa, as a set of
triples 〈hhh,φ,χB〉,

2. the following functions of the belief semantics table:

(b) aaa :belief semtablebelief semtablebelief semtable((())), which returns the full belief semantics table, as a set of
pairs 〈hhh,BSemaaaaaaaaahhhhhhhhh〉,

(c) aaa :bel semanticsbel semanticsbel semantics(((hhh,φ,ψ))), which returns true when φ |=BSemaaaaaaaaahhhhhhhhh
ψ and false

otherwise.

9.3 Meta Agent Programs and Status Sets 449

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

3. the following functions, which implement for every sequence σσσ the beliefs of
agent aaa about σσσ as described in Γaaa(σσσ):

(d) aaa :softwarepackagesoftwarepackagesoftwarepackage(((σσσ))), which returns the set SSSaaa(σσσ),

(e) aaa :action baseaction baseaction base(((σσσ))), which returns the set ABABABaaa(σσσ),

(f) aaa :action programaction programaction program(((σσσ))), which returns the set PPPaaa(σσσ),

(g) aaa : integrity constraintsintegrity constraintsintegrity constraints(((σσσ))), which returns the set ICICIC aaa(σσσ)

(h) aaa :action constraintsaction constraintsaction constraints(((σσσ))), which returns the set ACACAC aaa(σσσ),

9.3 Meta Agent Programs and Status Sets 450

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

4. the following functions which simulate the state of another agent bbb or a sequence
σσσ,

(i) aaa :bel ccc actbel ccc actbel ccc act(((σσσ))), which returns all the code call conditions and action status
atoms that aaa believes are true in σσσ’s state. We write these objects in the form
”in(((((((((,)))))))))” (resp. ”Opα” for action status atoms) in order to distinguish them from
those that have to be checked in aaa’s state.

(j) aaa :not bel ccc actnot bel ccc actnot bel ccc act(((σσσ))), which returns all the code call conditions and action status
atoms that aaa does not believe to be true in σσσ’s state.

We also write S extS extS ext for this extended software package and distinguish it from the
original SSS from which we started.

9.3 Meta Agent Programs and Status Sets 451

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.4 Feasible Belief Status Sets

• Consider now an agentaaa with associated structures,Info(aaaaaaaaa).

• SupposeBS is an arbitrary status set. We would like to first identify the

conditions that determine whether it “makes sense” for agentaaa to hold the set of

beliefs prescribed byBS.

• Intuitively, BS is feasible if and only if it satisfies two types of conditions

– conditions on the agentaaa, and

– conditions on the beliefs of agentaaa about other agentsbbb or sequencesσσσ.

9.4 Feasible Status Sets 452

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Conditions on agentaaa (as in the classical case):

1. Deontic and action consistency:BSmust not contain anyinconsistencies.

2. Deontic and action closure:This condition says thatBSmust

be closed under the deontic operations.

3. Closure under rules ofBP : Furthermore, if we have a rule inBP having a

ground instance whose body’s code-call conditions are all true in the current

agent state, and whose action status atoms and belief literals are true inBS,

then the head of that (ground) rule must be inBS.

4. State consistency:Suppose we concurrently execute all actions in the set

Todo. Then thenew state that results must be consistentwith the integrity

constraints associated with agentaaa.

9.4 Feasible Status Sets 453

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Conditions on beliefs of agentaaa about other agentsbbb (new conditions):

5. Local coherence:This condition requires that for any agentbbb, every induced

status setΠaction
bbb (BS) is feasible (in the original sense) with respect to the induced

stateΠstate
bbb (BS) and action programPPPaaa(bbb). Furthermore a similar condition must

hold for any sequenceσσσ instead of justbbb.

6. Compatibility with BT aaaaaaaaa: We have to ensure that (1) all belief atoms of the basic

belief table are contained inBSand that (2) whenever a belief condition is true,

then the corresponding belief formula is true inBS.

7. Compatibility with BSemTaaaaaaaaa: If 〈bbb,BSemaaaaaaaaabbbbbbbbb〉 is an entry inBSemTaaaaaaaaa, we have to

ensure thatbbb’s induced state is closed under the semanticsBSemaaaaaaaaabbbbbbbbb.

9.4 Feasible Status Sets 454

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

9.5 Reducingmap ’s to Ordinary Agent Programs

This can be done by

1. transforming meta agent programs into agent programs,
(this is a source-to-source transformation: the belief atoms in a meta agent

program are replaced by suitable code calls to the new datastructures),

2. taking advantage of extended code callsSextSextSext as introduced in Definition 9.11 on

page 449.

9.5 Reducingmap ’s to Ordinary Agent Programs 455

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• Suppose the belief table does not contain any belief conditions (i.e., it coincides

with its basic belief table).

• Then if χ is any code call condition of agentccc, the extended code call atom

in(((((((((〈ccc,χ, true〉,aaa :belief tablebelief tablebelief table((())))))))))))

corresponds to the belief atom

BBBaaaaaaaaa(ccccccccc,χ).

• But beliefs can also be triggered by entries in the belief table and/or in the belief

semantics table!

9.5 Reducingmap ’s to Ordinary Agent Programs 456

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

• What happens if the formulaχ is not a code call, but again a belief formula, say

BBBccccccccc(ddddddddd,χ′)?

• Here is where the inductive definition ofTransTransTrans comes in. We map

BBBaaaaaaaaa(ccccccccc,BBBccccccccc(ddddddddd,χ′))

to

in(((((((((”χ′”,aaa :bel ccc actbel ccc actbel ccc act((([ccc,ddd])))))))))))).

9.5 Reducingmap ’s to Ordinary Agent Programs 457

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Our main theorem in this section states that there is indeed a uniform transformation

TransTransTrans from arbitrary meta agent programs (which can also contain nested beliefs) to

agent programs such that the semantics are preserved:

SemSemSem(BP) = SemSemSem(TransTransTrans(BP)) (9.7)

whereSemSemSem is either thefeasible, rational or reasonablebelief status set semantics.

BP TransTransTrans−−−−−−−−→ PPP
Compatible with
Belief Semantics
Belief Table

xSemSemSemnew ICICIC ext

Closure

xSemSemSemold

BS
TransTransTrans−−−−−−−−→ S

(9.8)

9.5 Reducingmap ’s to Ordinary Agent Programs 458

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

Summary
This chapter was about an extension of agent programs bybeliefs.
Agents have beliefs about other agents. How can we extend agent programs

to incorporate such beliefs?

1. Belief Language

(a) BBBaaaaaaaaa(bbbbbbbbb,χ): aaa believes that inbbb’s state the cccχ holds.

(b) Nestings are also allowed:BLBLBLaaaaaaaaa∞.

2. Two new datastructures:Belief-, Belief Semantics-Table.

3. Meta Agent programs: allow beliefs in bodies of rules.

9.6 Summary 459

Chapter 9: Meta Agent Programs Multi-Agenten Systeme (VU), SS 00

4. Semantics

(a) Belief Status setsBS: Status sets + Beliefs.

(b) BS’s induce:Πaction
bbb (BS) andΠstate

bbb (BS)

(c) Feasibility ofBS:

i. Compatibility with Belief-, Belief Semantics-Table,

ii. Πaction
bbb (BS) must be feasible wrt.Πstate

bbb (BS)

5. Meta agent programs can be transformed to ordinary agent programs (using

extended code calls) s.t.SemSemSem (BP)=SemSemSem (TransTransTrans(BP)).

9.6 Summary 460

References
Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-

edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sources.International Journal of
Intelligent Cooperative Information Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelli-
gent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Ed.),Proceedings
of ACM SIGMOD Conference on Management of Data, Tucson, Arizona, pp.
195–206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
Reasoning.IEEE Computer 28(9), 33–39.

460-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. InProceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (1999, September). Temporal agent pro-
grams. Technical Report CS-TR-4055, Dept. of CS, University of Maryland,
College Park, MD 20752. currently under submission for a Journal.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal
of Logic Programming 45(1).

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:
Semantics.Artificial Intelligence 108(1-2), 179–255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
III: Polynomially Implementable Agents.Artificial Intelligence 117(1), 107–
167.

460-2

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algo-
rithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.Communications
of the ACM 37(7), 49–53.

Rogers Jr., H. (1967).Theory of Recursive Functions and Effective Computability.
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross
(2000).Heterogenous Active Agents. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. InProceedings of
ACM SIGMOD Conference on Management of Data, Washington, DC, pp.
434–437.

Wilder, F. (1993).A Guide to the TCP/IP Protocol Suite. Artech House.

460-3

