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Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1-4) basiert auf
Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,
Decision Making, Kommunikation/Interaktion, Kontrakt
Netze, Coalition Formation).

Teil 2 (Kapitel 5-9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, KrausQzcan and Ross), MI[T

Press, May 2000.
Hier wird ein spezifischer Ansatz vorgestellt, der formale
Methoden aus dem logischen Programmieren benutzt,
aber nicht auf PROLOG aufsetzt (Code Call
Mechanismus, Aktionen, Agenten Zyklus, Status Menge,
Semantiken, Erweiterungen um Beliefs,
Implementierbarkeit).
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e We define (in Section 8.1), a class of agents ce weak regular agentghat
serve as a stepping stone to later defining regular agents.

e We derive (in Section 8.2) various theoretical properties of weak regular agents
that make the design of computation proceduréo compute regular agents
polynomial.

e We extend (in Section 8.3) the definition of weak regular agents to define
regular agents—the central contribution of this Section.
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8.1 Weakly Regular Agents

WRAPs are characterized by three basic properties:

Strong Safety: In addition to the safety requirement on rules introduced in Section 6
(Definition 6.8), code call conditions are required to satisfy some additional
conditions which ensure that th always return finite answers

Conflict-Freedom: The set of rulesin a WRAP should not lead to conflicts—for
example, the rules must not force an agent to do something it is forbidden to do.

Deontic Stratifiability: This is a property in the spirit of stratification in logic
programs (Apt, Blair, and Walker 1988), which
prevents problems with negatioim rule bodies. However, deontic stratification
IS more complex than ordinary stratification (due to deontic modalities).
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8.1.1 Strong Safety

Safety is acompile-timecheck that ensures that all code calls generatedgmatime
have instantiated parameters. However, executability of a code call condition does not
depend solely on safety. For example, consider the simple code call condition

in(X, math:geq25)).

Though this code call condition is safe, it leads to an infinite set of ppssi-
ble answers, leading to non-termination.
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Consider, for instance, the code call condition
in(X, math:geq25)) & in(Y, math:squaréx)) & Y < 2000
Clearly, over the integers there are only finitely many ground substitutions that cause

this code call condition to be true. Furthermore, this code call condition is safe.

However, its evaluation may never terminate. The reason for this is that safety
requires that we first compute the set of all integers that are greater than 25, leading to
an infinite computation.

This means that in general, we must impose some restrictions on code call
conditions to ensure that they are finitely evaluable.
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As is well known, determining whether a function is finite or not is undecid-
able (Rogers Jr. 1967), and hence, input from the agent developer is impera-
tive.

Definition 8.1 (Binding Pattern)

Suppose we consider a code call § :f(ay,...,a,) where each a; is of type T;. A
binding patternfor § :f(ay, ... ,ay) is an n-tuple (bty, ... ,bt,) where each bt; (called a
binding term is either:

1. A value of type T1j, or

2. The expression b denoting that this argument is bound to an unknown value.

8.1 Weakly Regular Agents 318



Chapter 8: Implementing Agents Multi-Agenten Systeme (VU), SS 00

We require that the agent developer must specifyigenesspredicate that
may be defined via &niteness tabldaving two columns—the first column

IS the name of the code call, while the second column is a binding pattern for
the function in question.

Intuitively, suppose we have a row of the form

(S :f(a1,az,23),(P,5,0))

In the finiteness table. Then this row says that the answer returned by any code call of
the forms :f(—, 5, —) is finite.
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Example 8.1 (Finiteness Table for AutoPilot Agent InCFIT Example)

An example of a finiteness table is given below.

Code Call Binding Pattern
autoPilot:readGPSDaté&ensorId) (b)
autoPilot:calculateLocatiofLocation,FlightRoute, Speed) (b,b,b)
autoPilot : calculateNFlightRoutg€urrentLocation,No_go,N) (b,b,1)
autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N) (b,b,2)
autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N) (b,b,3)

This indicates that autoPilot :readGPSDat@ and autoPilot : calculateLocatiog)

always return a finite number of answers.
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The code call autoPilot:calculateNFlightRoutgSurrentLocation,No_go,N)
returns up to N flight routes when N # 0. If N = 0, then an infinite number of flight
routes (which start at CurrentLocation and avoid the given No_go areas) may be
returned. Our finiteness table above indicates that when 1 < N < 3,

autoPilot : calculateNFlightRoute3 will only return a finite number of answers.
Notice that this table is incomplete since it does not indicate that a finite number of

answers will be returned when N > 3.
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From the fact that any code call of the fonf(—,5, —) has a finite answer, we
should certainly be able to infer that the code galf (20,5, 17) has a finite answer.

In order to make this kind of inference, we need to associate@ring on binding
patterns We say thab < val for all values, and take the reflexive closure. We may
now extend this< ordering to binding patterns.
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Definition 8.2 (Ordering on Binding Patterns)
We say a binding pattern (bty, ... ,bt,) is equally or less informativéhan another
binding pattern (bty,... ,bt,) if, by definition,for all 1 <i < n, bt; < bt

We will say (bty, ... ,bt,) is less informativehan(bty, ... ,bt)) if and only if it is
equally or less informative thafoty, ... ,bt}) and(bty, ... ,bt}) is not equally or less
informative thanbty, ... ,bt,). If (bty,...,bt)) is less informative thafbty, ... ,bt,),
then we will say thatbty, ... ,bt,) is more informativehan(bt, ... ,bt)).
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Suppose now that the developer of an agent specifies a finitenesBINIAS. The
following definition specifies what it means for a specific code call atom to be
considered finite w.r.tFINTAB.

Definition 8.3 (Finiteness)

Suppose FINTAB is a finite finiteness table , and (bty, ... ,bty) is a binding pattern
associated with the code call § :f(---). Then FINTAB is said to entail the finiteness of
S :f(bty,...,bty) if, by definition,there exists an entry of the form
($:f(..),(bty,...,bt})) in FINTAB such that (bty, ... ,bt,) is more informative than

(bt,,....bt).
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Example 8.2 (Finiteness Table)

Let FINTAB be the finiteness table given in Example 8.1 on page 320. Then FINTAB
entails the finiteness of autoPilot :readGPSDaté&) and

autoPilot : calculateNFlightRoutg%221,379,433),0,2) but it does not entail the
finiteness of autoPilot : calculateNFlightRoutg%221,379,433),0,0) (since this
may have an infinite number of answers) or

autoPilot :calculateNFlightRoute$221,379,433),0,5) (since FINTAB is not

complete).

8.1 Weakly Regular Agents 325



Chapter 8: Implementing Agents Multi-Agenten Systeme (VU), SS 00

e \We have now defined a condition to ensure finiteness of a code call of the form
S:f(..).

e Defining strong safety of a code calbndition is more complex. For instance,
even if we know thas :f(t4,...,ty) is finite, the code call atom
not_in(X,8 :f(t4,...,t,)) may have an infinite answer. Likewise for comparison

conditions.
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We make two simplifying assumptions, though both of them can be easily modified to
handle other cases:

1. First, we will assume that every functidnhas a complemerft. An objecto is
returned by the code cafl: f(t4,...,ty) if, by definition, dis not returned by
S:f(ty,...,tn). Once this occurs, all code call atomst_in(X,S$ :f(t4,...,tm))
may be rewritten as(X,S$: f(t4, ..., t,)) thus eliminating the negation
membership predicate.

When the agent developer creaf¥STAB, he must also specify the finite-
ness conditions (if any) associated with function célls
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2. Second, in the definition of strong safety below, we assume that all comparison
operators involve variables over types having the following property.

Downward Finiteness Property. A typet is said to have thdownward finiteness
property if, by definitionit has an associated partial orderkdgsuch that for all
objectsx of typeTt, the set{d’ | 0’ is an object of typa andd’ < o} is finite.

It IS easy to see that the positive integers have this property, as do the set of all
strings ordered by the standard lexicographic ordering. (Later, we will show how
this property may be relaxed to accommodate the reals, the negative integers, and

sSo on.)
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Definition 8.4 (Strong Safety)

A safe code call conditionX = X1 & ...& Xn is strongly safew.r.t. a list X of root
variables if, by definition,there is a permutation Tt witnessing the safety of X modulo
X such that for each 1 <i <n, Xn(i) 18 strongly safe modulo X, where strong safety of

Xmi) 1s defined as follows:

1. Xm) 1s a code call atom.
Here, let the code call of Xyiy be S :f(ty,...,tn) and let the binding pattern
(bty, ..., bty) be defined as follows:
(a) Ift; is a value, then bty =gef ;.
(b) Otherwise t; must be a variable whose root occurs either in X or in Xn(j) for

some | < I. In this case, bty =gef b.

Then, Xy is strongly safe if, by definition,FINTAB entails the finiteness
OfS :f(btl, 50 0 ,btn).
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2. Xn(i) iss #t.
In this case, Xryi) is strongly safe If, by definition,each of s and t is either a

constant or a variable whose root occurs either in X or in Xr(j) for some ] <.

3. Xmi) iIss<tors<t.
In this case, Xqyi) is strongly safe If, by definition,t is either a constant or a

variable whose root occurs either in X or somewhere in Xryj) for some | <.

4. Xm(i) iIss>tors>t.
In this case, Xryi) is strongly safe If, by definition;t < s ort < s, respectively,
are strongly safe.
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Algorithm safe.cccdefined in Section 6 may easily be modified to handle a strong
safety check, by replacing the test “select@ll . .. , Xi,, from L such thak;, is safe

moduloX” in step (4) of that algorithm by the test “select al, ... Xi, fromL such
thaty;, Is stronglysafe moduloX.”

Definition 8.5 (Strongly Safe Agent Program)
A ruler is strongly safef, by definition,it is safe, and Bec(r) is a strongly safe code

call condition. An agent program is Strongly safef, by definition,all rules in it are
strongly safe.
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8.1.2 Conflict-Freedom

The deontic consistency requirement associated with a feasible status set mandates
that all feasible status sets (and hence all rational and reasonable status sets) be
deontically consistenflherefore, we need some way of

ensuring that agent programs are conflict-free
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Definition 8.6 (Conflicting Modalities)
Given two action modalities Op,0p’ € {P,F,0,Do,W} we say that Op conflicts
with Op’ if, by definition,there is an entry “x ” in the following table at row Op and

column Op’:
op\op’ | P F O W Do
P X
F X X X
@) X X
W X
Do X

Observe that the conflicts-with relation 1s symmetric, i.e. if Op conflicts-with

Op’, then Op’ conflicts-with Op.
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Definition 8.7 (Conflicting Action Status Literals)
Suppose Li,Lj are two action status literals. L; is said to conflict with L; if, by

definition,
e L, L are unifiable and their modalities conflict, or
e Li,L; are of the form Lj = Op(a(f)) and Lj = —0p/(a(t")), and
Op (a(T)),0p’(a(t)) are unifiable, and the entry “x” is in the following table at

row Op and column —Op’:

Op\—-Op'| P -F -O -W -Do
P X

F X

O X X X
W X

Do X X
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e the action status atonkx(a, b, X) andPa(Z, b, c) conflict. HoweverFa(a, b, X)
and—Pa(Z,b,c) do not conflict.

e —Pa(Z,b,c) andDoa(Z,b,c) conflict, while the literalfa(Z, b, c) and
—Doa(Z,b,c) do not conflict.

The conflicts-with relation imot symmetric when applied to action status literals.
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A definition expressing that an agent program does not conflict, not must ap-
ply just to the current state, but rather to all possible states the agent can be
In.

Definition 8.8 (Conflicting Rules w.r.t. a State)
Consider two rules rj,rj (whose variables are standardized apart) having the form

ri:Opi(a(®) « B(rj)
rj:0pj(B(t')) « B(r))

We say thatri and rj conflict w.r.t. an agent state Og If, by definition,Op; conflicts
with Opj, and there is a substitution 8 such that:

e 0(t9) = B(t'0) and

o (Bcc(ri) A Bec(rj))0yis true in Og for some substitution Y that causes
(Bee(ri) A Bedrj))0 to become ground and
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e IfOp; € {P,Do,0} (resp., Op;j € {P, Do, O}) then a(tB) (resp., B(t'0)) is
executable in Og, and

o (Bas(ri) UBas(rj))0 contains no pair of conflicting action status literals.

Intuitively, the above definition says that for two rules to conflict in a given
state, they must have a unifiable head and conflicting head-modalities, and
furthermore, their bodies must be deontically consistent (under the unifying
substitution) and their bodies’ code call components must have a soluti<|3n.
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Definition 8.9 (Conflict Free)
An agent program, P, is said to be conflict freeif and only ifit satisfies two
conditions:

1. For every possible agent state Og, there is no pair 1, of conflicting rules in P.

2. For any rule Op;(a(T)) «— ..., (=)0p;(t'),... in P, Opi(a(t)) and (-)Opj (a(t'))
do not conflict.
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Unfortunately, as the following theorem shows, the problem of determining whether
an agent program is conflict-free in the above definition is undecidable, because
checking the first condition is undecidable.

Theorem 8.1 (Undecidability of Conflict Freedom Checking)
The problem of deciding whether an input agent program P satisfies the first
condition of conflict-freedom is undecidable. Hence, the problem of deciding

whether an input agent program P is conflict free is undecidable.
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However, there are many possible ways to deduficientconditions on agent
programs that guarantee conflict freedom.

If an agent developer encodes his agent program in a way that satisfies these sufficient
conditions, then he is guaranteed that his agent is going to be conflict free.

Definition 8.10 (Conflict-Freedom Test)
A conflict-freedom tesis a function cft that takes as input any two rules r1,r2, and

provides a boolean output such that: if cft(rq,r2) = true, then the pair r1,r, satisfies

the first condition of conflict freedom.
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Definition 8.11 (Conflict-Free Agent Program w.r.t. cft)
An agent program P is conflict free w.r.t.cft if and only if for all pairs of distinct
rulesri,rj € P, cft(rj,rj) =true, and all rules in ‘P satisfy the second condition in the

definition of conflict free programs.

Intuitively, different choices of the functioeft may be made, depending upon the
complexity of such choices, and the accuracy of such choices (i.e. how often does a
specific functiorcft return “false€’ on argumentsr;,rj) when in factrj,r; do not
conflict?).

In IADE, the agent developer can choose one of several conflict-freedom tests
to be used for his application (and he can add new ones to his list).

Some instances of this test are given below.
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Example 8.3 (Head-CFTcfty)
Letrj,rj be two rules of the form

Now let the head conflict-freedom test cfty, be as follows,

( true, if either Opj,Opj do not conflict, or
cftn(ri,rj) = < a(t) and B('F’) are not unifiable;

| false otherwise.
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Example 8.4 (Body Code Call CFTgft o)
Let the body-code conflict-freedom test Cftpcc be as follows:

( true, if either Opj,Opj do not conflict, or
o (F) and B(t") are not unifiable, or
Cftpec(ri, j) = < Opi, Opj conflict and o (T), B(t") are unifiable via mgu © and

there is a pair of contradictory code call atoms in Bec(r10), Bec(r20);

\ false otherwise.

The expression “J a pair of contradictory code call atoms in Bec(r10),Bec(r20)”
means that there exist code call atoms of form in(X, cc) and not_in(X, cc) which
occur in Bee(r10) UB¢c(r20), or comparison atoms of the form sq = s, and sy # s3;

S1 < So and S1q > So €elcC.
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Example 8.5 (Body-Modality-CFT, cft pm)
The body-modality conflict-freedom test 1s similar to the previous one, except that

action status atoms are considered instead. Now let cftpm be as follows,

)
true if Opj,Opj do not conflict or

o (T), B(t") are not unifiable or

foce(Ti. 1) = 4 Opi,Op; conflict, and o (t), B(t") are unifiable via mgu © and
Cllpcclliy ) = - _
literals (—)Opja (") in Bag(ri0) fori = 1,2 exist

such that (—)Op1 and (—)Op2 conflict;

\ false otherwise.

8.1 Weakly Regular Agents 344



Chapter 8: Implementing Agents Multi-Agenten Systeme (VU), SS 00

Example 6.6 (Precondition-CkT,cft )

Often, we might have action status atoms of the form Pa,Doa,Oa in a rule. For a
rule ri as shown in Example 8.3 on the page before, denote by r* the new rule
obtained by appending to B(i) the precondition of any action status atom of the form
Pa, Doa, Oa (appropriately standardized apart) from the head or body of ri. Thus,

suppose I' is
Doa(X,Y) « in(X,d:f(Y))&PB& Fy(Y).

Suppose pre(a(X,Y)) =in(Y,d; :f1(X)) and pre(B) =in(3,d; :f2()). Then r* is the
rule
Doa(X,Y) « in(X,d:f(Y))&in(Y,d;:fi(X)) &in(3,d2:f20) &
PB&Fy(Y).
true  ifcftpec(ri,ry) =true
We now define cftp(ri,rj) = if eftoedl 17 1)
false otherwise.
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Theorem 8.2
Suppose I is a rule, and o (X) is an action such that some atom Opa (t) appears inr’s
body where Op € {P,0,Do}. Then:

1. Ifr is safe and a(X) has a safe precondition modulo the variables in X, then r* is
safe.

2. Ifr 1s strongly safe and O (f() has a strongly sate precondition modulo X, then r*
is strongly safe.
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8.1.3 Deontic Stratification
Definition 8.12 (Layering Function)
Let P be an agent program. A layering functior¥ is a function £ : P — N\..

A layering function assigns a nonnegative integer to each rule in the program, and in
doing so, it groups rules into layers as defined below.

Definition 8.13 (Layers of an Agent Program)
If P is an agent program, and ¢ is a layering function over ‘P, then the i-th layer of ‘P
w.r.t. ¢, denoted l’f , is defined as:

Pt = {re®|lr)=i}.

When £ is clear from context, we will drop the superscript and write P; instead of ﬂ’ie.
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Example 8./ (Layering Functions)
Consider the agent program ‘P given below.

r1: Do executeflight_ plan(Flight _route) <
in(automated, autoPilot : pilotStatugpilot message)),
Do createflight_plan(No_go, Flight_route, Current_location)

If the plane is on autopilot and a flight plan has been created, then execute fit.

ro: O createflight_plan(No_go, Flight _route, Current_location) «
O adjustcourseNo_go, Flight_route, Current_location)

If our agent is required to adjust the plane’s course, then it is also required to
create a flight plan.

r3. O maintaincourseno_go, flight_route, current_location) «—
in(automated, autoPilot : pilotStatugpilot message)),
— O adjust.courseno_go, flight_route, current_location)

If the plane is on autopilot and our agent is not obliged to adjust the plane’s
course, then our agent must ensure that the plane maintains its current course.
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r4. O adjustcourseno_go, flight_route, current_location) <
O adjustAltitudgAltitude)

If our agent must adjust the plane’s altitude, this it is obliged to also adjust the
plane’s flight route as well.

Note that for simplicity, these rules use constant valued parameters for
maintaincourseand adjustcourse

Let function £1 assign O to rule r4, 1 to rules r»,r3, and 2 to rule r1. Then {1 is a
layering function which induces the program layers Tgl = {rs}, 1"11 = {rp,r3}, and
:Pgl = {r1}. Likewise, the function £2 which assigns O to rule r4 and 1 to the
remaining rules is also a layering function. In fact, the function £3 which assigns O to

all rules in P is also a layering function.
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Using the concept of a layering function, we would like to define whidg@ntically
stratiflableagent program is. Before doing so, we introduce a simple ordering on
modalities.

Definition 8.14 (Modality Ordering)

The partial ordering “<” on the set of deontic modalities M = {P, O, Do, W, F} is
defined as follows (see Figure 8.1 on page 350): O < Do, O <P, Do <P, and

Op < Op, for each Op € M. Furthermore, for ground action status atoms A and B, we
define that A < B if, by definition, A= Opa, B= Op’a, and Op’ < Op all hold.

°p

°\V ®Dp OF

*0

Figure 8.1: Modality ordering
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Definition 8.15 (Deontically Stratifiable Agent Program)
An agent program P is deontically stratifiablef, by definition,there exists a layering
function £ such that:

1. Forevery ruler; : Opj(a(f)) —...,0p;(B(t)),... in®P¢, ifr: Op(B(t")) — ...
is a rule in P such that B(t’) and B(t") are unifiable and Op < Op j» then
£(r) < L(ry).

2. Forevery ruler;: Opj(a(f)) « ... ,—nOpj(B(’p)),... in PY, if

r: Op(B(t")) « ... is arule in P such that B(t") and B(t") are unifiable and
Op < Opj, then £(r) < £(rj).

Any such layering tunction £ is called a witnessto the stratifiability of P.

8.1 Weakly Regular Agents 351



Chapter 8: Implementing Agents Multi-Agenten Systeme (VU), SS 00

Example 8.8 (Deontic Stratifiability)

Consider the agent program and layer functions given in Example 8.7 on page 348.
Then the first condition of deontic stratifiability requires £(ro) < £(r1) and

£(rg) <£(r2). Also, the second condition of deontic stratifiability requires

£(rg) < £(r3). Thus, £1 and £, (but not £3) are witnesses to the stratifiability of P.

Note that some agent programs are not deontically stratifiable. For instance, let P’

contain the following rule:

ri: Do computecurrentLocatiorreport) <
- Do computecurrentLocatiorn(report)

Here, the author is trying to ensure that a plane’s current location is always computed.
The problem is that the second condition of deontic stratifiability requires

£(ry) < £(ry) which is not possible so P’ is not deontically stratifiable. Note that if we
replace ry with “Do computecurrentlLocation(report) < ”, then P’ would be
deontically stratifiable.
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8.1.4 Definition of Weakly Regularity

Definition 8.16 (Strongly Safe Action)
An action o (X) is said to be strongly safew.r.t. FINTAB if its precondition is strongly

safe modulo X, and each code call from the add list and delete list is strongly safe
modulo Y where Y includes all root variables in X as well as in the precondition of .

The intuition underlying strong safety is that we should be able to check
whether a (ground) action is safe by evaluating its precondition. If sa, we
should be able to evaluate the effects of executing the action.
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Definition 8.17 (Weak Regular Agent Program)

Let P be an agent program, FINTAB a finiteness table, and cft a conflict-freedom test.
Then, P is called a weak regular agent prografWRAP for short) w.r.t. FINTAB and
cft, if, by definition,the following three conditions all hold:

Strong Safety: All rules in P and actions O in the agent’s action base are strongly
safe w.r.t. FINTAB.

Conflict-Freedom: P is conflict free under cft.

Deontic Stratifiability: P is deontically stratifiable.
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Example 8.9 (SampleWRAP)

Let P be the agent program given in Example 8.7 on page 348 and suppose that all
actions in P are strongly safe w.r.t. a finiteness table FINTAB. Consider the conflict
freedom test cftn. Then ‘P is a WRAP as it is conflict free under cfty, and as it is
deontically stratified according to Example 8.8 on page 352. Now, suppose we add
the following rule to P:

rs: W createflight_plan(no_go, flight_route, current_location) <
not_in(automated, autoPilot : pilotStatugpilot message))

This rule indicates that our agent is not obligated to adjust the plane’s course if the
plane is not on autopilot. Note that as cft,(r2,rs) = false our new version of P is not
conflict free and so P would no longer be a WRAP.
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Definition 8.18 (Weakly Regular Agent)
An agent a is weakly regulaif, by definition,its associated agent program is weakly

regular and the action constraints, integrity constraints, and the notion of concurrency

in the background are all strongly safe.
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It remains to define strongly safeness for constraints and the concurrency notion.

Definition 8.19 (Strongly Safe Integrity and Action Constraints)

An integrity constraint of the form Y = X is strongly safeif, by definition,y is
strongly safe and X is strongly safe modulo the root variables in ). An action
constraint {011(Xy),. .. ,0ax(X)} < X is strongly safef and only if X is strongly safe.

Definition 8.20 (Strongly Safe Notion of Concurrency)
A notion of concurrency, CONG, is said to be strongly safeif, by definition,for every
set A of actions, if all members of 4 are strongly sate, then so is con(4).
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8.2 Properties of Weakly Regular Agents

e Every deontically stratifiable agent program (and hence eW&RAP) has a
so-called “canonical layering”.

e Every WRAP has an associated fixpoint computation method—the fixpoint
computed by this method is the only possible reasonable status S&RA®

may have.

e Given an agent program, we denote bwtn(P) the set of all witnesses to the
deontic stratifiability ofP. Thecanonical layeringof P, denotedtan? is defined
as follows.

canf(r) = min{4i(r) |4 € win(P)}.
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8.3 Regular Agent Programs

e Aregular agent program then is a program which is weakly regulabaodded
(to be defined below).

Boundedness means that by repeatedly unfolding the positive parts|of the
¢ | rulesin the program, we will eventually get rid of all positive action status
atoms.

e Thus, in this section, we will associate with any agent progfaam operator
Unfoldy which is used for this purpose.
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Definition 8.21 (Regular Agent)
An agent is said to be regularw.r.t. a layering £ and a selection of pf-constraint

equivalence tests eqi(i>, if 1t is weakly regular and its associated agent program is
b-regular w.r.t. £ and the eqim, for some b > 0.
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8.4 Compile-Time Algorithms

Algorithm 8.1
Check_WRAP(P)

(* input is an agent program P, a conflict-freedom test cft, and a finiteness table FINTAB x)
(x output is a layering £ € win(P), if P is regular and “no” otherwise x)

1. If some action O or rule r in P is not strongly sate then return “no” and halt.

2. If some rulesr : Op (0a(X)) andr’ : Op’(a(Y)) in P exist such that
cft(r,r’) = false then return “no” and halt.

3. Ifaruler : Opi(a(X)) « ..., (—=)0pj(a(Y)),... is in P such that Op;(a (X)) and
Op;((Y)) conflict, then return “no” and halt.
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4. Build the graph G = (V,E), whereV = P and an edge ri — r is in E for each pair
of rules Iy and r as in the two Stratifiability conditions.

5. Compute, using Tarjan’s algorithm, the supergraph S(G) = (V*,E*) of G.

6. If some rules ri,r as in the second stratifiability condition exists such that
ri,r € C for some C € V*, then return “no” and halt else set| := 0.

7. For each C € V* having out-degree O (i.e. no outgoing edge) in S(G), and each
ruler € C, define £(r) :=1.

8. Remove each of the above C’s from S(G), and remove all incoming edges
associated with such nodes in S(G) and seti :=1+1;

9. If S(G) is empty, i.e., V* = 0, then return { and halt else continue at 7.
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Theorem 8.3
For any agent program P, Check_ WRAP(P) returns w.r.t. a conflict-freedom test cft

and a finiteness table FINTAB, a layering £ € wtn(P) if P is a WRAP, and returns “no”
if P is not regular.
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Check WRAP can be modified to compute the canonical layerag as follows.

For each nod€ < V*, use two countersut(C) andblock(C), and initialize them in
step 5 to the number of outgoing edges fronm E*. Steps 7 and 8 aCheck WRAP
are replaced by the following steps:

7. SetU =0
while someC € V* exists such thablock(C) = 0 do
U :=UuU{C};

Setout(C’) := out(C’) — 1 for eachC’ € V* such thaC’ — C;

Setblock(C’) := block(C’) — 1 for eachC’ € V* such thaC’ — C due to the
first stratification condition but not the second stratification condition.
for each rule in U do{(r) :=1;

8. Seti :=i+1,;
Remove each node € U from §(G), and seblock(C) := out(C) for each
retained nod€.
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When properly implemented, stepsand 8 can be executed in linear time
the size ofS(G), and thus ofG.

n

Thus, the upper bounds on the time complexityCoieck Regular discussed above
also apply to the variant which computes the canonical layering.
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Algorithm 8.2

Reasonable-SS(P,¢, IC,AC,0Oys)

(x input is a regular agent consisting of a RAP P, a layering £ € wtn(?P), *)
(* a strongly safe set IC of integrity constraints, *)
(x a strongly safe set AC of action constraints, and an agent state O *)

(x output is a reasonable status set Sof P on Og, if one exists, and “no” otherwise. %)
1| .
1. S._Fﬂ,ps T w;
2. Do(S):={a |Do(a) € S};

3. while AC # 0 do
select and remove some ac € AC;
if ac is not satisfied w.r.t. DO(S) then return “no” and halt;

4. O := apply conq(Do(S),Og); ( resulting successor state x)
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5. while IC # 0 do
select and remove some iCc € IC;
if O [~ ic then return “no” and halt.

6. return S and halt.
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Even though AlgorithnrReasonableSS can be executed on weakly regular
agent programs, rather th&®sPs, there is no guarantee of termination in that
case.

The following theorem states the result that for a regular agent, its reasonable status
set on an agent state is effectively computable.

Theorem 8.4 (Termination of ReasonableSS for Regular Agents)
If a is a regular agent, then algorithm Reasonable_SS terminates. The result is either
“No” or a reasonable status set is computed.
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Theorem 8.5
Suppose a is a fixed regular agent. Assume that the following holds:

(1) Every ground code call § :f(d4,... ,d,), has a polynomial set of solutions, which
is computed in polynomial time; and

(2) no occurrence of a variable in a’s description loose.

Furthermore, assume that assembling and executing conc(Do(S), Os) is possible in
polynomial time in the size of DO(S) and Os. Then the following holds:

The algorithm Reasonable_SS computes a reasonable status set (if one exists)
on a given agent state O in polynomial time (in the size of Og).

8.4 Compile-Time Algorithms 369



Chapter 8: Implementing Agents Multi-Agenten Systeme (VU), SS 00

8.5 IADE

Our implementation of the regular agent program paradigm consists of two major
parts. The first part is thBMPACT Agent Development EnvironmentADE for

short), which is used by the developer to build and compile agents. The second part is
the run-time part that allows the agent to autonomously update its reasonable status
set and execute actions as its state changes. Below, we describe each of these two
parts.IADE supports their tasks as follows.
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e First, it provides an easy to us network accessible graphical user interface
through which an agent developer can specify the data types, functions, actions,
Integrity constraints, action constraints, notion of concurrency and agent program
associated with his/her agent.

e Second, it provides support for compilation and testing. In particihddE
allows the agent developer specify various parameter&.g., conflict freedom
test, finiteness table) he wants to use for compilation. It allows the agent
developer to view the reasonable status set associated with his agent program
w.r.t the current state of the agent.
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[=3 IMPACT AgentDE Frame2 M=l E3
File Edit Help Debug

Interactive Maryland Platform for Agents Collaborating Together (IMPACT)

Agent Development Environment {AgentDE) %
Defined Types:

Defined Functions: Defined Actions:
APsS_LOC_20; {=string =} time.localTimelnt froid): retfinte LocTotals (czLOC fstring, D_Aut
LOC _Recd]: <string= oracle. project (SrcTable/file, Cdo|lLocT otalstring (SzLocT otals/ stri
oracle.project_select (5rcT able - CetTgtFile (FnT arget/ffile); --=
aracle.project? (T ableffile, 0 Create] otalsFile (FrT argetffile);
sum_double (TotFile fild™ tIsFiIE (FnT arget/file
= y

EquipEU_2E: {<integer, integer:
EEU_Eecdl: <integer, integer=

jilad. cs urmd. edu |

waley | E—

fsfiiladfrogers Hermes/DatafLogisticsfLIAD ata. med

Status:Agent MetaData restored -- continue work...

Figure 8.2: MainlADE Screen
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'-'E%AgentDE test dialog.
Test results for ag... ¥ ** UnNamed ***

Agent test summary data:

l) Layering: Pending...

2) Program unfolding: Pending...
3) Server connection: Pending...
4] Data comnection: Fending...

4] Status set generation: FPending...

|_| Echo RHermes. | | Echo Debug [ | Skip 55G. || Run base ¥l Log timing
Status: Controls initialized -- Continue work...

Figure 8.3:IADE Test Dialog Screen Prior to Program Testing
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TheIADE includes the safety, strong safety, conflict freedom algorithms, and the
Check WRAP algorithms (the last is slightly modified). The unfold algorithm

currently works on positive agent programs—this is being extended to the full fledged
case.

Figure 8.2 on page 372 shows a screendumipAGiE’s top-level screen.

Figure 8.3 on the page before specifies what happens when the agent developer
presses the “Test Program” button in the Figure 8.2 on page 372 screen.
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E%%.ﬁgEHIDE test dialog.

Agent test summany data:
1) Lavering: Passed

21 Pragram unfolding: Fassed -- 1AD_Prograrm unfold succeeded.
(11 source rules unfolded --= 10 rules )
i Total cost 968 milliseconds == 0.968 seconds)

5 Data connection{s): Passed --
“Jilad" data connection togoled openiclosed.
"Lacal* data cannection togaled openfclosed.

43 Status set generation: Passed -- IAD_Program S5G: Succeeded
i Total cost 29859 milliseconds == 29.859 seconds)

( Metwork cost: 24532 milliseconds == 24.532 seconds)

i Local cost: 5327 milliseconds == 5327 seconds).

) Status Atom execution: Passed

_ Begin test T-Test Help |_

[ ]Echo RHermes. [ |EchoDebug [ ] Skip SSG. [ | Run base Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 8.4:JADE Test Execution Screen
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Once the status sets have been generated after the test execution phase is completed,
the user can press the “Unfold Info” tab (to see the unfolded program) or the “Layer
Info” tab (to see the layers of the agent program) or the “Status Set Info” tab (to see
status information). Figure 8.5 on page 377 shows the results of viewing the unfold
Information.
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[23 AgentDE test dialog. [ x|
Test results for agemtlocERC_Totals

Agent rule unfold data:

Rule aM110:;
Daf AppendTotalsFile! IAR10_F_TatFile, IAR10_SzLoc, IAR10_SzERC, IAR10_SzLocERCTotals)) -
={ IAR10_SzLoc, "COLLEGE PARE™,
= IAR10_F_TuoifFile, '"=P_LocERCTotals td],
=( |AR10_SzAddr, "vsics.umd.edu™),
in{ IARD1_LocRecd, Jilad--=oracleprojecti 'aps_loc:2d', "lia93apr@@bestenarac|e”, "LOC",
={ IAR10_SzLoc, IARDT _LocRecd LOC),
=( IARD0S_SzCd, "B"M,
={ IAR10_SzZERC, "P",
is( "Otys.hrm', Jilad--=oracle:project_selectM{ 'equipru:2h’, "lia98apriggborgforacle”, "Auth_gty, Met_short', 2, "LOC" "=" |AR10_S
zZloc, "Erc”, =", IAR0S_SzCd)),
inf AROG_L_AothGty, Jilad--=hermes:sum_daoubled 'Gyvs.brin', "Auth_ b,
inf 1AROS_D_Shor, Jilad--=hermes:sum_doubled 'Gtes.brm', "Met_short™),
inf AROG_L_ OnHand, Local--=math:real _Subtract! IAR06_L_Authoty, IARDS_ D Shorth,
inf IARO6_SzOne, Local--=text:concat{ IAR10_SzLoc, ., "N,
inf AROG_SzTwa, Local--=text:concat{ IAR10_SzERC, ", ",
ing I1AROG_SzThree, Local--=text:concat] IARDE_L_AuthSby, ", "0,
int AROB_SzAlpha, Local-=textconcat! IARDG_SzC0ne, IARDE_SzTwial),
inf IARDOG_SzBravo, Local-=textconcat! IARDGE_SzAlpha, IARDGE_SZThree),
in IAR10_SzLocERCTotals, Local--=text:.concat! IAR0E_SzBrawo, IARQDG_L_OnHand).

Fule GiM10:
[ ]Echo RHermes. [ |EchoDebug [ ] Skip SSG. [ | Run base Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 8.5:JADE Unfold Information Screen
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When the user selects the “Status set Info” tab, he sees the screen shown in Figure 8.6
on page 379. Note that this screen has tabs on the right, corresponding to the various
deontic modalities. By selecting a modality, the agent developer can see what action
status atoms associated with that modality are true in the status set. Figure 8.6 on the

next page shows what happens when the user wishes to see all action status atoms of
the formDo(...) in the status set.
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E%%.ﬁgEHIDE test dialog.

Status set atoms grouped by categony:

"Permitted" atom data:

[A0_Program

HaActionCallArray node 2638:
CreateLocERCTotalsFile( AX_LocERCTotals k)
CreateLocERCTotalsFile! 'CP_LocERCTotals b

HActionCallArray node 4683:

MailLocERCTotals( A _LocERCTotals td, "ALEXANDRIA", "rogers@es. umd.edu™)
MailLocERCTotals) 'CP_LocERCTotals tf', "COLLEGE PAREY, "vs@cs umd.edu”)

HActionCallArray node 5205;

AppendTotalsFile] Ax_LocERCTotals k' "ALEXANDRIA", "BAC" "ALEXAMDRIA, BIC, 6928.0, 6343.0")
ApnpendTotalsFile 'Ax_LocERCTotals td' "ALEXANDRIA" "A", "ALEXANDRILA, A, 2138.0,1706.0"
AppendTotalsFile] Ax_LocERCTotals bt "ALEXANDREIA", "FP" "ALEEANDRIA, P, 4440, 422.0%
AppendTotalsFile] 'CP_LocERCTotals td', "COLLEGE PARK" "B/C" "COLLEGE PARI, BIC, 5365.0, 4947 .0"
AppendTotalsFile] 'CP_LocERCTotals td', "COLLEGE PARK" "A" "COLLEGE PARI, A, 1758.0,1355.0%
AppendTotalsFile] 'CP_LocERCTotals td', "COLLEGE PARK" "P" "COLLEGE PARK, F, 834.0, B63.0"

_ Begin test T-Test Help |_

[ ]Echo RHermes. [ |EchoDebug [ ] Skip SSG. [ | Run base

Log timing
Status: Agent tests succeeded -- Deployment possible.

Figure 8.6:JADE Status Set Screen
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Figure 8.7 on page 382 shows the interface used to specify the “finiteness” table. As
mentioned earlier on in this chapter, in tdPACT implementation, we actually
represent code calls that are infinite in this table, using some extra syntax.
Specifically, the first row of the table shown in Figure 8.7 on page 382 says that when
Q > 3 andR > 4, all code calls of the formdomain; :function(Q,R) are infinite.
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Figure 8.8 on page 383 shows the interface used by the agent developer to specify
what notion of concurrency he wishes to use, what conflict freedom implementation
he wishes to use and what semantics he wishes to use. Each of the items in the figure
have associated drop-down menus (not visible in the picture). The last item titled
“Calculation Method” enables us (as developersMPACT) to test different

computation algorithms. It will be removed from the fidBIPACT release.

8.5 TheIMPACT Agent Development Environment (ADE) 381



Chapter 8: Implementing Agents

Multi-Agenten Systeme (VU), SS 00

[3 IMPACT AgentDE Frame2
File Edit Help Debug

IS =] E3

Interactive Maryland Platform for Agents Collaborating Together (IMPACT)

Agent Development Environment (AgentDE)

Defined Types:
APL_LOC_20: {<string=}
LOC _Eecd1: <string=

EquipEU_ZE: {<integer, integer:>

ERU_Eecdl: <integer, integer=

Defined Functions:

time. localTimelnt fvaid): retfinte
aracle project (xrcTableffile, C
aracle.project_select (5T able
aracle project? (5rcT ablefile, 0

Defined Actions:
LocTotals (5zLOC fstring, D_Aut

isetTgtFile (FnTarget,/file), —-=
CreateT otalsFile (FnT arget/file);

&

LocTotalstring (szlocT otals st

Camain_1:Function_1 (g, B3

Darnain_1:Function_2 if, 5,05
Darnain_2:Function_ 1 5, 3, 3
Dormain_2:Function_2 ()]

Status:Agent MetaData restored -- continue work...

Figure 8.7:IADE (In-)Finiteness Table Screen
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[3 IMPACT AgentDE Frame2

M=] E3
File Edit Help Debug
Interactive Maryland Platform for Agents Collaborating Together (IMPACT)
Agent Development Environment {AgentDE)

Defined Types:
APL_LOC_20: {<string=}
LOC _Eecd1: <string=

Defined Functions: Defined Actions:
time. localTimelnt fvaid): retfinte LocTotals (5zLOC fstring, D_Aut

aracle project (xrcTableffile, C LocTotalstring (szlocT otals st
EquipEU_ZE: {<integer, integer:> {foracle. project_select (3rcT able

ERU_Eecdl: <integer, integer= aracle. project? &rcT ableffile, O

isetTgtFile (FnTarget,/file), —-=
CreateT otalsFile (FnT arget/file);

Concurrency: | Sequential

Conflict Freedom Implimentation:|Modality and Action

Test CF1

Semantics: Feasible

Calculation method: | Ground Fixpoint

Status:Agent MetaData restored -- continue work...

Figure 8.8:IADE Option Selection Screen
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8.6 Experimental Results
8.6.1 Performance of Safety

Figure 8.9 on page 386 shows the performance of our implemented safety check
algorithm. In this experiment, we varied the number of conjuncts in a code call
condition from 1 to 20 in steps of 1. This is shown on ¥ka&xis of Figure 8.9 on

page 386.

For each KK x < 20, we executed theafe cccalgorithm 1000 times, varying the
number of arguments of each code call from 1 to 10 in steps of 1, and the number of
root variables occurring in the code call conditions from 1 to twice the number of
conjuncts (i.e., 1 t0.
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The actual conjuncts were generated randomly once the number of conjuncts, number
of arguments, and number of root variables was fixed. For each fixed number

1 <1 < 20 of conjuncts, the execution time shown on yhexis represents the

average over 1000 runs with varying values for number of arguments and number of

variables. Times are given in milliseconds.
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tween 0.02 milliseconds and 0.04 milliseconds. Thus, checking safety
agent program with a 1000 rules can probably be done in 20-40 millisec

The reader can easily see that algoritbaife cccis extremely fast, taking be

| >4
1

for an
onds.
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Figure 8.11: Performance of Conflict Freedom Tests
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8.6.2 Performance of Conflict Freedom

In IADE, we have implemented the Head-CFT and Body-Modality-CHT—
several other CFTs are being implemented to form a library of CFTs that may
be used by agent developers. Figures 8.12 on page 391, 8.13 on page 392
shows the time taken to execute the Head-CFT and Body-Modality-CFTs.

Note that Head-CFT is clearly much faster than Body-Modality-CFT when returning
“false”—however, this is so because Head-CFT returns “false” on many cases when
Body-Modality-CFT does not do so. However, on returnstaié,” both mechanisms
are very fast, usually taking time on the orderﬁg to %O of a millisecond, with some
exceptions.
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Figure 8.13: Performance of Conflict Freedom Tests
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These very small times also explain the “zigzag” nature of the graphs—even small
discrepancies (on the order %Lo of a second) appear as large fluctuations in the
graph.
Even if an agent program contains a 1000 rules (which we expect to pe an
exceptional case), one would expect the Body-Modality-CFT to only take a
matter of seconds to conduct the one-time, compile-time test—a factor that is

well worth paying for in our opinion.
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8.6.3 Performance of Deontic stratification

Our experiments generated graphs randomly (as described below) and the programs
associated with those graphs can be reconstructed from the graphs.

In our experiments, we randomly varied the number of rules from 0 tg 200
In steps of 20, and ensured the there were betweamd 2/ edges in the
resulting graph, wher¥ is the number of rules (vertices).

\J

The precise number was randomly generated. For each such selection, we performed
twenty runs of the algorithm. The time taken to generate the graphs was included in
these experimental timings. Figures 396 on page 396 (a) and (b) show the results of
our experiments.
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Figure 396 on page 396(a) shows the time taken to execute all but the safety and
conflict freedom tests of theheck WRAP algorithm.

The reader will note that the algorithm Is very fast, taking only about|260
milliseconds on an agent program with 200 rules.

Figure 396 on the next page(b) shows the relationship between the number of SCCs
in a graph, and the time taken to compute whether the agent program in question is
deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time
taken goes to about 320 milliseconds. Again, the deontic stratifiability re-
guirement seems to be very efficiently computable.
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Figure 8.14: Performance of Deontic Stratification
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Figure 396 on the following page(a) shows the time taken to execute all but the safety
and conflict freedom tests of tligheck WRAP algorithm.

The reader will note that the algorithm Is very fast, taking only about|260
milliseconds on an agent program with 200 rules.

Figure 396 on the page before(b) shows the relationship between the number of SCCs
in a graph, and the time taken to compute whether the agent program in question is
deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-
guirement seems to be very efficiently computable.
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8.6.4 Performance of Unfolding Algorithm

We were unable to conduct detailed experiments on the time taken for unfolding and
the time taken to compute status sets as there are no good benchmark agent programs
to test against, and no easy way to vary the very large number of parameters
associated with an agent.

In a sample application shown in Figures 8.5 on page 377 and 8.6 on page 379,
we noticed that it took about 1 second to unfold a program containing 11 rules,
and to evaluate the status set took about 30 seconds.

However, In this application, massive amounts of Army War reserves data resident in
Oracle as well as in a multi-record, nested, unindexed flat file were accessed, and the
time reported (30 seconds) includes times taken for Oracle and the flat file to do their
work, plus network times. Network cost alone is about 25 seconds. We did not yet
Implement any optimizations, like caching etc.
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8.7 Summary

This chapter was about afficiently implementable class of agents:
Regular Agents

What are suitable syntactic conditions on agent programs, to ensure pplyno-
mial implementability?

1. Weakly regular agents:

(a) Strong Safety To ensure that code calls returnitely many answers
(~ Finiteness Table).

(b) Conflict-Freedom: The program should be conflict-free«{(cft-tests).

(c) Deontic Stratifiability : Problems with negation are ruled out.

2. Regular Agents weakly regular +Unfolding.

8.7 Summary 399
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