
Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1–4) basiert auf

Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,

Decision Making, Kommunikation/Interaktion, Kontrakt

Netze, Coalition Formation).

Teil 2 (Kapitel 5–9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, Kraus,̈Ozcan and Ross), MIT

Press, May 2000.

Hier wird ein spezifischer Ansatz vorgestellt, der formale

Methoden aus dem logischen Programmieren benutzt,

aber nicht auf PROLOG aufsetzt (Code Call

Mechanismus, Aktionen, Agenten Zyklus, Status Menge,

Semantiken, Erweiterungen um Beliefs,

Implementierbarkeit).

Overview 1

Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Übersicht

1. Einführung, Terminologie
2. 4 Grundlegende Architekturen
3. Distributed Decision Making
4. Contract Nets, Coalition Formation
5. IMPACT Architecture
6. Legacy Data and Code Calls
7. Actions and Agent Programs
8. Regular Agents
9. Meta Agent Programs

Overview 2

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7. Actions and Agent Programs

Overview

7.1 Action Base

7.2 Execution and Concurrency

7.3 Action Constraints

7.4 Agent Programs: Syntax

7.5 Status Sets

7.6 Feasible Status Sets

7.7 Rational Status Sets

7.8 Reasonable Status Sets

Overview 227

Timetable:

• Chapter 7 needs 1 lecture, but without detailed discussion of the semantics.

7 Actions and Agent Programs

227-1

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

to execute

Actions

Code Calls

OUT

IN
Messages

Messages Legacy Data

Actions

Set of
Status
Atoms

Update

A Single agentagentagent

Agent Program PPP SemSemSem conc

State OOO

Figure 7.1: Agent Decision Architecture

Overview 228

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Underlying Software Code: Basic set of data structures and legacy code on top of

which the agent is built. The set of all such objects, across all the data types

managed by the software code, is called thestate of the agent at timettt. Clearly,

the state of the agent varies with time.

Integrity Constraints: The agent has an associated finite set,ICICIC , These integrity

constraints reflect theexpectations, on the part of the designer of the agent, that

thestate of the agentmust satisfy.

Overview 229

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Actions: Each agent has an associated set ofactions. An action is

implemented by a body of codeimplemented in any suitable imperative (or

declarative) programming language.

Action Constraints: In certain cases, the creator of the agent may wish to prevent

the agent from concurrently executing certain actions even though it may be

feasible for the agent to take them.

Overview 230

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Agent Programs: Finally, an agent program is a set of rules, in a language to be

defined, that an agent’s creator might use to specify the principles according to

which the agent behaves, and the policies governing what actions the agent takes,

from among a possible plethora of possible actions.

In short, theagent programassociated with an agentencodes the “do’s and
dont’s” of the agent.

Overview 231

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.1 Action Base

Definition 7.1 (Action; Action Atom)
An actionααα consists of six components:

Name: A name, usually written ααα(X1, . . . ,Xn), where the Xi’s are root variables.

Schema: A schema, usually written as (τ1, . . . ,τn), of types. Intuitively, this says
that the variable Xi must be of type τi , for all 1≤ i ≤ n.

Action Code: This is a body of code that executes the action.

7.1 Action Base 232

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Pre: A code-call condition χ, called the preconditionof the action, denoted by
Pre(ααα) (Pre(ααα) must be safe modulo the variablesX1, . . . ,Xn);

Add: a set Add(ααα) of code-call conditions;

Del: a set Del(ααα) of code-call conditions.

An action atomis a formula ααα(t1, . . . , tn), where ti is a term, i.e., an object or a
variable, of type τi , for all i = 1, . . . ,n.

7.1 Action Base 233

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Item Classical AI Our framework

Agent State Set of logical atoms Arbitrary data structures

Precondition Logical formula Code call condition

Add/delete list set of ground atoms Code call condition

Action Implementation Via add list and delete list Via arbitrary program code

Action Reasoning Via add list and delete list Via add list and delete list

Comment 3 We assume that the precondition, add and delete lists associated with an

action, correctly describe the behavior of the action code associated with the action.

7.1 Action Base 234

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.1 (CHAIN Revisited)
Suppose the suppliersuppliersupplier agent of the CHAIN example has

Name: updatestockDBupdatestockDBupdatestockDB(Part id,Amount,Company)

Schema: (String, Integer, String)

Pre: in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))& X.amount> Amount.

Del: in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))&

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,Part id))))))))))))

Add:
in(((((((((〈part id,X.amount−Amount〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id))))))))))))&

in(((((((((〈part id,Y.amount+Amount〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,Part id))))))))))))

7.1 Action Base 235

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

This action updates the two ACCESS databases for uncommittedand committed

stock. The suppliersuppliersupplier agent should first make sure that the amount requested is
available by consulting the uncommittedstock database. Then, the suppliersuppliersupplier agent
updates the uncommittedstock database to reduce the amount requested and then
adds a new entry to the committedstock database for the requesting company.

7.1 Action Base 236

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.2 (CFIT Revisited)
Suppose the autoPilotautoPilotautoPilot agent in the CFIT example has the following action for
computing the current location of the plane:

Name: computecurrentLocationcomputecurrentLocationcomputecurrentLocation(Report)

Schema: (SatelliteReport)

Pre: in(((((((((Report,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Report ”))))))))))))

Del: in(((((((((OldLoc,autoPilotautoPilotautoPilot : locationlocationlocation((()))))))))))).

Add:
in(((((((((NewLoc,autoPilotautoPilotautoPilot : locationlocationlocation((())))))))))))&

in(((((((((FlightRoute,autoPilotautoPilotautoPilot :getFlightRoutegetFlightRoutegetFlightRoute((())))))))))))&

in(((((((((Velocity,autoPilotautoPilotautoPilot :velocityvelocityvelocity((())))))))))))&

in(((((((((NewLoc,autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((OldLoc,FlightRoute,Velocity))))))))))))

7.1 Action Base 237

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

This action requires a satellite report which is produced by the gpsgpsgps agent by merging
the GPS Data. Then, it computes the current location of the plane based on this report
as well as the allocated flight route of the plane.

7.1 Action Base 238

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.3 (STORE Example Revisited)
The profilingprofilingprofiling agent might have the following action:

Name: updatehighProfileupdatehighProfileupdatehighProfile(Ssn,Name,Profile)

Schema: (String, String, UserProfile)

Pre: in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn))))))))))))

Del: in(((((((((〈Ssn,Name,OldProfile〉,profilingprofilingprofiling :allallall(((′highProfile′))))))))))))

Add: in(((((((((〈Ssn,Name,Profile〉,profilingprofilingprofiling :allallall(((′highProfile′))))))))))))

This action updates the user profiles of those users who are high spenders. In order to
determine the high spenders, it first invokes the classifyUserclassifyUserclassifyUsercode call. After
obtaining the target list of users, it updates entries of those users in the profile
database. The profilingprofilingprofiling agent may also have similar actions for low and medium
spenders.

7.1 Action Base 239

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.2 (Action Base)
An action base, ABABAB , is any finite collection of actions.

7.1 Action Base 240

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.2 Execution and Concurrency of Actions

What is the result of executing an action?

Definition 7.3 ((θ,γ)-Executability)
Let ααα(~X) be an action, and let SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) be an underlying software code

accessible to the agent. A ground instance ααα(~X)θ of ααα(~X) is said to be executablein
state OOOSSS , if, by definition,there exists a solution γ of Pre(ααα(~X))θ w.r.t. OOOSSS . In this

case, ααα(~X) is said to be (θ,γ)-executablein state OOOSSS , and (ααα(~X),θ,γ) is a feasible

execution triplefor OOOSSS .

By ΘΓ(ααα(~X),OOOSSS) we denote the set of all pairs (θ,γ) such that (ααα(~X),θ,γ) is
a feasible execution triple in state OOOSSS .

7.2 Execution and Concurrency 241

Intuitively, in ααα(~X), the substitutionθ causes all variables in~X to be grounded.
However, it is entirely possible that the precondition ofααα has occurrences of other
free variables not occurring in~X. Appropriate ground values for these variables are
given by solutions ofPre(ααα(~X)θ) with respect to the current stateOOOSSS . These variables
can be viewed as “hidden parameters” in the action specification, whose value is of
less interest for an action to be executed.

241-1

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.4 (Action Execution)
Suppose (ααα(~X),θ,γ) is a feasible execution triple in state OOOSSS . Then the resultof

executing ααα(~X) w.r.t. (θ,γ) is given by the state

apply((ααα(~X),θ,γ),OOOSSS) = ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where OaddOaddOadd = OOO Sol(Add(ααα(~X)θ)γ) and OdelOdelOdel = OOO Sol(Del(ααα(~X)θ)γ); i.e., the state
that results if first all objects in solutions of call conditions from Del(ααα(~X)θ)γ on OOOSSS

are removed, and then all objects in solutions of call conditions from Add(ααα(~X)θ))γ
on OOOSSS are inserted.

7.2 Execution and Concurrency 242

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Suppose then we wish to simultaneously execute a set of (not necessarily all)

feasible execution triplesAS. There are many ways to define this.

Definition 7.5 (Concurrency Notion)
A notion of concurrencyis a function, conc, that takes as input, an object state, OOOSSS ,
and a set of execution triples AS, and returns as output, a single new execution triple
such that:

1. if AS= {ααα} is a singleton action, then conc(OOOSSS ,ASi) = ααα.

2. if AS1⊆ AS2 and conc(OOOSSS ,ASi) = (αααi(~Xi),θi ,γi) for i = 1,2, and ααα2 is
(θ2,γ2)-executable in state OOOSSS , then ααα1 is (θ2,γ2) executable in state OOOSSS .

7.2 Execution and Concurrency 243

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.6 (Weakly Concurrent Execution)
Suppose ASis a set of feasible execution triples in the agent state OOOSSS . The weakly

concurrent execution ofASin OOOSSS , is defined to be the agent state

apply(AS,OOOSSS) =def ins(OaddOaddOadd,del(OdelOdelOdel,OOOSSS)),

where

OaddOaddOadd =def

⋃
(ααα(~X),θ,γ)∈AS

OOO Sol(Add(ααα(~X)θ)γ),

OdelOdelOdel =def

⋃
(ααα(~X),θ,γ)∈AS

OOO Sol(Del(ααα(~X)θ)γ).

7.2 Execution and Concurrency 244

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

For any set A of actions, the execution of A on OOOSSS is the execution of the set

{(ααα(~X),θ,γ) |ααα(~t) ∈ AS, ααα(~X)θ = ααα(~t)θ ground, (θ,γ) ∈ΘΓ(ααα(~X))}

of all feasible execution triples stemming from some grounded action in AS, and
apply(A,OOOSSS) denotes the resulting state.

7.2 Execution and Concurrency 245

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.7 (Sequential-Concurrent Execution)
Suppose we have a set AS=def {(αααi(~Xi ,θi ,γi)) | 1≤ i ≤ n} of feasible execution
triples on an agent state OOOSSS . Then, ASis said to be S-concurrently executablein state
OOOSSS , if, by definition,there exists a permutation π of ASand a sequence of states
OOO0

SSS , . . . ,OOO
n
SSS such that:

• OOO0
SSS = OOOSSS and

• for all 1≤ i ≤ n, the action αααπ(i)(~Xπ(i)) is (θπ(i),γπ(i))-executable in the state

OOO i−1
SSS , and OOO i

SSS = apply((~Xπ(i),θπ(i),γπ(i)),OOO
i−1
SSS).

In this case, ASis said to be π-executable, and OOOn
SSS is the final state resulting from the

executionAS[π].

A set ACSof actions is S-concurrently executable on the agent state OOOSSS , if the set
{(ααα(~X),θ,γ) |ααα(~t) ∈ ACS, ααα(~X)θ = ααα(~t)θ ground, (θ,γ) ∈ΘΓ(ααα(~X))} is
S-concurrently executable on OOOSSS .

7.2 Execution and Concurrency 246

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.8 (Full-Concurrent Execution)
Suppose we have a set AS=def {(αααi(~Xi ,θi ,γi)) | 1≤ i ≤ n} of feasible execution
triples and an agent state OOOSSS . Then, ASis said to be F-concurrently executablein
state OOOSSS , if and only if the following holds:

1. For every permutation π, ASis π-executable.

2. For any two permutations π1,π2 of AS, the final states AS[π1] and AS[π2],
respectively, which result from the executions are identical.

A set ACSof actions is F-concurrently executable on the agent state OOOSSS , if the set

{(ααα(~X),θ,γ) |ααα(~t) ∈ ACS,ααα(~X)θ = ααα(~t)θground,(θ,γ) ∈ΘΓ(ααα(~X))},

is F-concurrently executable on OOOSSS .

7.2 Execution and Concurrency 247

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.4 (CHAIN Revisited)
Consider the following set of action executions:

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB).

The uncommitted stock database contains 〈widget5,1000〉, 〈widget10,500〉 and
〈widget15,1500〉, and the committed stock database contains 〈widget5,2000〉,
〈widget10,900〉 and 〈widget15,1500〉. Weak concurrent execution of these actions
will attempt to execute an action, having delete list

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))),

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget10)))))))))))),

in(((((((((Y,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget10)))))))))))).

7.2 Execution and Concurrency 248

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

It is important to note that even though we should have two “copies” each of the first
two code calls above, one copy suffices, because weak concurrent executions
considers the union of the delete lists and the union of the add list. Likewise, this
action has the add list

in(((((((((〈widget5,750〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((〈widget5,500〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget5)))))))))))),

in(((((((((〈widget5,2250〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))),

in(((((((((〈widget5,2500〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget5)))))))))))).

in(((((((((〈widget10,400〉,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,widget10)))))))))))),

in(((((((((〈widget10,1000〉,suppliersuppliersupplier :selectselectselect(((′committed′,id,=,widget10)))))))))))).

We see that the above executions lead to an intuitively inconsistent state in which the
committed stock database claims that the number of committed items of widget 5 is
both 2250 and 2500 !

7.2 Execution and Concurrency 249

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.5 (CHAIN example revisited)
Let us return to the situation raised in Example 7.4 on page 248. The following set of
action executions are F-concurrently executable:

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget15,500,companyB).

Further assume that the uncommitted stock database contains the same tuples as in
Example 7.4 on page 248. This set of action executions is F-concurrently executable
on this state of the suppliersuppliersupplier agent, because any permutation of these three actions
will result in the same final agent state. That is, whatever the execution sequence is,
the resulting uncommitted stock database will contain the following tuples:
〈widget5,750〉, 〈widget10,400〉 and 〈widget15,1000〉.

7.2 Execution and Concurrency 250

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Comment 4 Throughout the rest of this course, we will assume that the developer of

an agent has chosen some notion,conc, of concurrent action execution for his agent.

This may vary from one agent to another, but each agent uses a single notion of

concurrency. Thus, when talking of an agentaaa, the phrase

“AS is concurrently executable”

is to be considered to be synonymous with the phrase

“AS is concurrently executable w.r.t. the notionconcused by agentaaa.”

7.2 Execution and Concurrency 251

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.3 Action Constraints

Definition 7.9 (Action Constraint)
An action constraint AC has the syntactic form:

{ααα1(~X1), . . . ,αααk(~Xk)}←↩ χ (7.1)

where ααα1(~X1), . . . ,αααk(~Xk) are action names, and χ is a code call condition.

7.3 Action Constraints 252

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.6 (CHAIN Example Revisited)
The following are some action constraints for the suppliersuppliersupplier agent of CHAIN example:

{ updatestockDBupdatestockDBupdatestockDB(Part id1,Amount1,Company1),

updatestockDBupdatestockDBupdatestockDB(Part id2,Amount2,Company2) } ←↩
Part id1 = Part id2 &

in(((((((((X,suppliersuppliersupplier :selectselectselect(((′uncommitted′,id,=,Part id1)))))))))))) &

X.amount< Amount1+Amount2 &

Company1 6= Company2.

7.3 Action Constraints 253

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

{respondrequestrespondrequestrespondrequest(Part id1,Amount1,Company1),

respondrequestrespondrequestrespondrequest(Part id2,Amount2,Company2) } ←↩ Part id1 = Part id2 &

Company1 6= Company2.

The first constraint states that if the two update stockDB actions update the same
Part id and the total amount available is less than the sum of the requested amounts,
then these actions cannot be concurrently executable. The second constraint states
that if two companies request the same Part id, then the suppliersuppliersupplier agent does not
respond to them concurrently. That is, the suppliersuppliersupplier agent processes requests one at a
time.

7.3 Action Constraints 254

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.7 (CFIT Example Revisited)
The following is an action constraint for the autoPilotautoPilotautoPilot agent:

{computecurrentLocationcomputecurrentLocationcomputecurrentLocation(Report),

adjust courseadjust courseadjust course(No go,FlightRoute,CurrentLocation)}←↩

This action constraint states that the actions compute currentLocation and
adjust course may never be executed concurrently. This is because the adjust course
action requires the current location of the plane as input, and the
compute currentLocation action computes the required input.

7.3 Action Constraints 255

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

The following example shows an action constraint for the gpsgpsgps agent:

{collect datacollect datacollect data(Satellite),mergedatamergedatamergedata(Satellite1,Satellite2)} ←↩
Satellite =Satellite1.

{collect datacollect datacollect data(Satellite),mergedatamergedatamergedata(Satellite1,Satellite2)} ←↩
Satellite =Satellite2.

These two action constraints state that the gpsgpsgps agent cannot concurrently execute the
action merge data and collect data, if the satellite it is collecting data from is one of
the satellites whose data it is merging.

7.3 Action Constraints 256

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.8 (STORE Example Revisited)
The following are some action constraints for the profilingprofilingprofiling agent in the STORE

example:

{updatehighProfileupdatehighProfileupdatehighProfile(Ssn1,Name1,profile),updatelowProfileupdatelowProfileupdatelowProfile(Ssn2,Name2,profile)} ←↩
in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((Ssn1))))))))))))

Ssn1 = Ssn2 Name1 = Name2

{updateuserProfileupdateuserProfileupdateuserProfile(Ssn1,Name1,Profile),classifyuserclassifyuserclassifyuser(Ssn2,Name2)} ←↩
Ssn1 = Ssn2 & Name1 = Name2

7.3 Action Constraints 257

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

The first action states that if the user is classified as a high spender, then the
profilingprofilingprofiling agent cannot execute updatehighProfileupdatehighProfileupdatehighProfileand updatelowProfileupdatelowProfileupdatelowProfile

concurrently. In contrast, the second action constraint states that the profilingprofilingprofiling agent
cannot classify a user profile if it is currently updating the profile of that user.

7.3 Action Constraints 258

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.10 (Action Constraint Satisfaction)
A set Sof ground actions satisfies an action constraint AC as in (7.1) on a state OOOSSS ,
denoted S,OOOSSS |= AC, if there is no legal assignment θ of objects in OOOSSS to the variables
in ACACAC such that χθ is true and {ααα1(~X)θ, . . . , αααk(~X)θ} ⊆ Sholds (i.e., no concurrent
execution of actions excluded by AC is included in S). We say that Ssatisfiesa set ACACAC
of actions constraints on OOOSSS , denoted S,OOOSSS |= ACACAC , if S,OOOSSS |= AC for every AC∈ACACAC .

Clearly, action constraint satisfaction ishereditaryw.r.t. the set of actions in-

volved, i.e.,S,OOOSSS |= ACACAC implies thatS′,OOOSSS |= ACACAC , for everyS′ ⊆ S.

7.3 Action Constraints 259

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.9 (STORE Example Revisited)
Suppose our state consists of the three uncommitted stock database tuples given in
Example 7.4 on page 248 and let ACACAC be the first action constraint given in
Example 7.6 on page 253. Then if S1 consists of

updatestockDBupdatestockDBupdatestockDB(widget5,250,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB)

and S2 consists of

updatestockDBupdatestockDBupdatestockDB(widget5,750,companyA),

updatestockDBupdatestockDBupdatestockDB(widget10,100,companyB),

updatestockDBupdatestockDBupdatestockDB(widget5,500,companyB)

S1 satisfies ACACAC but S2 does not because (Part id1 = Part id2 = widget5), only
X.amount = 1000 units of this part are available, and
(Amount1+Amount2) = (750+500)≥ 1000.

7.3 Action Constraints 260

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.4 Agent Programs: Syntax

Thus far, we have introduced the following important concepts:

Software Code Calls (SSSSSSSSS :fff (((a1, . . . ,an)))): this provides a single framework within

which the interoperation of diverse pieces of software may be accomplished;

Software/Agent states (OOOSSS): this describes exactly what data objects are being

managed by a software package at a given point in time;

Integrity Constraints (ICICIC): this specifies exactly which software states are “valid”

or “legal”;

Action Base (ABABAB): this is a set of actions that an agent can physically execute (if the

preconditions of the action are satisfied by the software state);

Concurrency Notion (conc): this is a function that merges together a set of actions

an agent is attempting to execute into a single, coherent action;

Action Constraints (ACACAC): this specifies whether a certain set of actions is

incompatible.

7.4 Status Atoms and Action Rules 261

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.11 (Action Status Atom)
Suppose ααα(~t) is an action atom, where~t is a vector of terms (variables or objects)
matching the type schema of ααα. Then, the formulas P(ααα(~t)), F(ααα(~t)), O(ααα(~t)),
W(ααα(~t)), and Do(ααα(~t)) are action status atoms.

The set AS= {P,F,O, W,Do} is called the action status set .

• Pααα means that the agent is permitted to take actionααα;

• Fααα means that the agent is forbidden from takingααα;

• Oααα means that the agent is obliged to take actionααα;

• Wααα means that obligation to take actionααα is waived; and,

• Doααα means that the agent does take actionααα.

7.4 Status Atoms and Action Rules 262

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.12 (Action Rule)
An action rule(rule, for short) is a clause r of the form

Opααα(~t)← L1, . . . ,Ln (7.2)

where Opααα(~t) is an action status atom, and each of L1, . . . , Ln is either an action
status atom, or a code call atom, each of which may be preceded by a negation sign
(¬).

7.4 Status Atoms and Action Rules 263

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.13 (Safety)
We require that each rule r be safein the sense that:

1. Bcc(r) is safe modulo the root variables occurring explicitly in B+
as(r), and

2. the root of each variable in r occurs in Bcc(r)∪B+
as(r).

7.4 Status Atoms and Action Rules 264

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

• All variables in a ruler are implicitly universally quantified at the front of the

rule. A rule ispositive, if no negation sign occurs in front of an action status

atom in its body.

• For any ruler of the form (7.2), we denote by

– H(r), the atom in the head ofr,

– B(r), the collection of literals in the body;

– B−(r) the negative literals inB(r),

– B+(r) the positive literals inB(r),

– ¬.B−(r) the atoms of the negative literals inB−(r).

• Finally, the indexas(resp.,cc) for any of these sets denotes restriction to the

literals involving action status atoms (resp., code call atoms).

7.4 Status Atoms and Action Rules 265

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.14 (Agent Program)
An agent programPPP is a finite collection of rules. An agent program PPP is positiveif
all its rules are positive.

7.4 Status Atoms and Action Rules 266

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.10 (CHAIN Example Revisited)
The suppliersuppliersupplier agent may use the agent program shown below. In the following rules,
the suppliersuppliersupplier agent makes use of the message box to get various variables it needs. In
order to extract variables, the suppliersuppliersupplier agent invokes the code call getVar of the
message box domain.

r1: F updatestockDBupdatestockDBupdatestockDB(Part id,Amount requested,Company)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((Company,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Company”)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount requested,Part id))))))))))))

This rule ensures that we cannot invoke update stockDB when
Amount requested exceeds the amount available.

7.4 Status Atoms and Action Rules 267

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r2: F updatestockDBupdatestockDBupdatestockDB(Part id1,Amount requested1,Company1)←
O processrequestprocessrequestprocessrequest(Msg.Id1,Agent1),
O processrequestprocessrequestprocessrequest(Msg.Id2,Agent2),
in(((((((((Amount requested1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Amount requested1 ”)))))))))))),
in(((((((((Amount requested2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Amount requested2 ”)))))))))))),
in(((((((((Part id1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Part id1 ”)))))))))))),
in(((((((((Part id2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Part id2 ”)))))))))))),
in(((((((((Company1,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Company1 ”)))))))))))),
in(((((((((Company2,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id2, ”Company2 ”)))))))))))),
=(Part id1, Part id2),
Do updatestockDBupdatestockDBupdatestockDB(Part id2,Amount requested2,Company2),
=(Amount requested, Amount requested1 + Amount requested2),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount requested,Part id))))))))))))
Company1 6= Company2

7.4 Status Atoms and Action Rules 268

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

This rule ensures that we do not invoke update stockDB for
Amount requested1 units of Part id1 when the Amount requested1

exceeds the amount that will be available after our agent finishes the
update stockDB action for Amount requested2 units of Part id2.

7.4 Status Atoms and Action Rules 269

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r3: O order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies too low,suppliersuppliersupplier :too low thresholdtoo low thresholdtoo low threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies too low,Part id)))))))))))),

If our supply for Part id falls below the supplies too low threshold, then we
are obliged to order amount to order more units for this part. Note that
amount to order and supplies too low represent integer constants.

7.4 Status Atoms and Action Rules 270

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r4: P order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))),

If our supply for Part id falls below the supplies low threshold, then we may
order amount to order more units for this part. When supplies low >

supplies too low, we may use rule r4 to reduce the number of times we need
to invoke rule R3. Note that amount to order and supplies too low

represent integer constants.

7.4 Status Atoms and Action Rules 271

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r5: W order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),

in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))),
in(((((((((part discontinued,suppliersuppliersupplier :productStatusproductStatusproductStatus(((Part id))))))))))))

If the part Part id has been discontinued, we are not obliged to order
amount to order more units of the part when supplies fall below our
supplies too low threshold (i.e., when rule R3 is fired).

7.4 Status Atoms and Action Rules 272

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r6: O requestrequestrequest(”plant ”, ”find:supplier”)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested)

If we decide to order Amount requested units of part Part id, request the
plantplantplant agent’s find: supplierservice to determine if there is a supplier which can
provide Amount requested units of Part id. Note that the suppliersuppliersupplier agent
does not know how the plantplantplant agent decides upon which manufacturing plant to
use.

7.4 Status Atoms and Action Rules 273

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r7: O requestrequestrequest(”shipping”, ”prepare:schedule(shipping”)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
O processrequestprocessrequestprocessrequest((Msg.Id1,Agent1),
=(Agent1, plantplantplant),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((Part supplier,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id1, ”Part supplier”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),

If we decide to order Amount requested units of part Part id, we must also
use the shippingshippingshipping agent’s prepare: schedule(shipping)service to determine how
and when the requested Amount requested units can be shipped to us from the
Part supplier, which is determined by the plantplantplant agent. Part supplier is
extracted from a message sent from the plantplantplant agent in response to the suppliersuppliersupplier

agent’s request to the find: supplierservice.

7.4 Status Atoms and Action Rules 274

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

r8: O processrequestprocessrequestprocessrequest(Msg.Id,Agent)←
in(((((((((Msg,msgboxmsgboxmsgbox :getAllMsgsgetAllMsgsgetAllMsgs((()))))))))))),
=(Agent,Msg.Source),

This rule says that the agent is obliged to process all requests in its message box
from other agents. This does not mean that it will respond positively to a request.

r9: O deletemsgdeletemsgdeletemsg(Msg.Id)←
Do processrequestprocessrequestprocessrequest(Msg.Id,Agent)

This rule says that the agent deletes all messages that it has processed from its
message box.

7.4 Status Atoms and Action Rules 275

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Before proceeding to discuss the formal semantics of agent programs, we quickly

revisit the architecture of an agent’s decisionmaking component shown in Figure 7.1

on page 228.

1. Every agent manages aset of data typesthrough a set of well-definedmethods.

2. These data types and methods include a message box data structure, with

associated manipulation algorithms described in Chapter 3.

3. At a given pointt in time, thestate of an agent, OOO, reflects the set of data items

the agent currently has access to—these data items must all be of one of the data

types alluded to above.

4. At time t, the agent may receive a set ofnew messages—these new messages

constitute achange to the state of the agent.

7.4 Status Atoms and Action Rules 276

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

5. The aforementioned changes maytrigger one or more rulesin the agent’s

associated agent program to become true. Based on the selected semantics for

agent programs (to be described in Subsection 7.5), the agent makes a decision

on what actions to actually perform, in keeping with the rules governing its

behavior encoded in its associated Agent Program. This computation is made by

executing a program calledComputeSemComputeSemComputeSemwhich computes the semantics of the

agent.

6. The actions that are supposed to be performed according to the above

mentioned semanticsare then concurrently executed, using the notion of

concurrency,conc, selected by the agent’s designer. The agent’s state may

(possibly) change as a consequence of the performance of such actions. In

addition, the message box of other agents may also change.

7. The cycle continues perpetually.

7.4 Status Atoms and Action Rules 277

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Algorithm 7.1 (Agent-Decision-Cycle)
Agent-Decision-Cycle(Curr: agent state;

ICICIC : integrity constraint set;

ACACAC : action constraint set;

ABABAB : action base;

conc: notion of concurrency;

Newmsg: set of messages)

1. while true do
2. { DoSet:= ComputeSemComputeSemComputeSem(Curr,ICICIC ,ACACAC ,ABABAB,conc,Newmsg);

(? find a set of actions to execute based on messages received ?)
3. Curr := result of executing the single action conc(DoSet); }

end.

7.4 Status Atoms and Action Rules 278

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.11 (CHAIN Example Revisited)
Consider the agent program for the suppliersuppliersupplier agent given in Example 7.10 on
page 267.

1. Each time we sell supplies, our agent consults rules r1 and r2 to ensure that the
amount requested never exceeds the amount available, even if the requests are
coming from multiple companies. If two concurrent requests for the same part
are considered by the suppliersuppliersupplier of Example 7.10 on page 267, and if both these
requests can be individually (but not jointly) satisfied, then our current example
non-deterministically satisfies one. The agent program in question does not adopt
any preference strategies.

2. If we do not replenish our supplies, rule r4 will fire when our supply of part
Part id falls below the supplies low threshold. Our agent is now allowed to
order more supplies. If more supplies are not ordered, rule r3 will eventually fire
when our supply of part Part id falls below the supplies too low threshold. The
agent is now obliged to order more parts. This obligation can be waived,
however, if part Part id has been discontinued (see rule r5).

7.4 Status Atoms and Action Rules 279

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

3. When we order parts, rule r6 will fire. Here, the suppliersuppliersupplier agent consults the
plantplantplant agent to determine which supplier to use. Once an appropriate supplier
has been found, the suppliersuppliersupplier agent asks the shippingshippingshipping agent to provide a
shipping schedule (rule r7) so the ordered parts can be delivered.

It is easy to see, from rules (r8) and (r9) that the same message requesting parts will
not be considered twice. Rule (r9) ensures that once a message is processed, it is
deleted from the message box.

7.4 Status Atoms and Action Rules 280

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.12 (CFIT Example: Multiagent Interaction)
The reader may be wondering exactly how the agents in a multiagent application
interact with one another. In this example, we provide a discussion of how this
happens in a microcosm of the CFIT example. Appendix A of this book contains the
full working code for agents in the CFIT example.

Consider the autoPilotautoPilotautoPilot agent in the CFIT example. Every ∆ units of time, the
autoPilotautoPilotautoPilot agent receives a message from a clockclockclock agent. This message includes a
“Wake” request telling the autoPilotautoPilotautoPilot agent to wake up.

The agent program associated with autoPilotautoPilotautoPilot causes the Dowakeaction to be
executed, which in turn triggers other actions. These include:

• Executing an action sendMessagesendMessagesendMessage(autoPilot,gps,<servicerequest>) where
the service request <servicerequest> of the gpsgpsgps agent is requesting the current
location of the plane.

7.4 Status Atoms and Action Rules 281

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

• The gpsgpsgps agent executes its getAllMsgsgetAllMsgsgetAllMsgsand retrieves the message sent by the
autoPilotautoPilotautoPilot agent.

• The decision program of the gpsgpsgps agent executes this request and also executes
the action sendMessagesendMessagesendMessagegps,autoPilot,<answer>) where <answer> is the
answer to the request made by the autoPilotautoPilotautoPilot agent.

• The autoPilotautoPilotautoPilot agent executes the getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message
sent by the gpsgpsgps agent.

• The decision program of the autoPilotautoPilotautoPilot agent checks to see if the location of the
plane sent by the GPS is where the flight plan says the plane should be. If yes, it
executes the action sleepsleepsleepand goes to sleep for another ∆ units of time. If not, it
executes the action

sendMessagesendMessagesendMessage(autoPilot,terrain,<request>)

where <request> requests the terrainterrainterrain agent to send the elevation of the plane
at its current location (as determined by the GPS agents) as well as send the
No go areas.

7.4 Status Atoms and Action Rules 282

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

• The terrainterrainterrain agent executes its getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message sent
by the autoPilotautoPilotautoPilot agent.

• The decision program of the terrainterrainterrain agent executes this request and also
executes the action sendMessagesendMessagesendMessage(terrainterrainterrain,autoPilotautoPilotautoPilot,Ans) where Ans is the
answer to the request made by the autoPilotautoPilotautoPilot Agent.

• The autoPilotautoPilotautoPilot agent executes the getAllMsgsgetAllMsgsgetAllMsgsaction and retrieves the message
sent by the terrainterrainterrain agent.

• It then executes its replanreplanreplanaction with the new terrain (correct) location of the
plan and the terrain “no go” areas.

7.4 Status Atoms and Action Rules 283

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.5 Status Sets

If an agent uses an agent programPPP , the question that the agent must answer, over

and over again is:

What is the set of all action status atoms of the formDoααα that are true with re-

spect toPPP , the current state,OOOSSS , the underlying setACACAC of action constraints,

and the setICICIC of underlying integrity constraints on agent states?

This defines the set of actions that the agent must execute concurrently.

7.2 Execution and Concurrency 284

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

While feasible status sets do not constitute a semantics for agent programs, every

semantics we define for Agent Programs will build upon this basic definition.

Intuitively, a feasible status set consists of assertions about the status of ac-

tions, such that these assertions are compatible with (but are not necessarily

forced to be true by) the rules of the agent program and the underlying action

and integrity constraints.

7.2 Execution and Concurrency 285

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.15 (Status Set)
A status setis any set Sof ground action status atoms over SSS . For any operator
Op ∈ {P,Do,F,O,W }, we denote by Op(S) the set Op(S) = {ααα | Op(ααα) ∈ S}.

Informally, a status setS represents information about the status of ground

actions. If some atomOp(ααα) occurs inS, then this means that the statusOp is

true forααα.

7.2 Execution and Concurrency 286

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.16 (Deontic and Action Consistency)
A status set S is called deontically consistent , if, by definition,it satisfies the
following rules for any ground action ααα:

• If Oααα ∈ S, then Wααα /∈ S

• If Pααα ∈ S, then Fααα /∈ S

• If Pααα ∈ S, then OOOSSS |= ∃∗Pre(ααα), where ∃∗Pre(ααα) denotes the existential closure
of Pre(ααα), i.e., all free variables in Pre(ααα) are governed by an existential
quantifier.

This condition means that the action ααα is in fact executable in the state OOOSSS .

A status set S is called action consistent , if S,OOOSSS |= ACACAC holds.

7.2 Execution and Concurrency 287

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Besides consistency, we also wish that the presence of certain atoms inSentails the

presence of other atoms inS. For example,

• if Oααα is in S, then we expect thatPααα is also inS, and

• if Oααα is in S, then we would like to haveDoααα in S.

7.2 Execution and Concurrency 288

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.17 (Deontic and Action Closure)
The deontic closure of a status S, denoted D-Cl(S), is the closure of Sunder the rule

If Oααα ∈ S, then Pααα ∈ S,

where ααα is any ground action. We say that S is deontically closed, if S= D-Cl(S)
holds.

The action closure of a status set S, denoted A-Cl(S), is the closure of Sunder the
rules

If Oααα ∈ S, then Doααα ∈ S,

If Doααα ∈ S, then Pααα ∈ S,

where ααα is any ground action. We say that a status S is action-closed, if S= A-Cl(S)
holds.

7.2 Execution and Concurrency 289

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Proposition 7.1
Suppose S is a status set. Then,

1. A-Cl(S) = S implies D-Cl(S) = S

2. D-Cl(S)⊆ A-Cl(S), for all S.

A status setSwhich is consistent and closed is certainly a meaningful assignment of a

status to each ground action.

Note that we may have ground actionsααα that do not occur anywhere within a status

set—this means that no commitment about the status ofααα has been made.

The following definition specifies how we may “close” up a status set under the rules

expressed by an agent programPPP .

7.2 Execution and Concurrency 290

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.18 (Operator AppPPP ,OOOSSS (S))

Suppose PPP is an agent program, and OOOSSS is an agent state. Then, AppPPP ,OOOSSS (S) is
defined to be the set of all ground action status atoms A such that there exists a rule in
P having a ground instance of the form r : A← L1, . . . ,Ln such that

1. B+
as(r)⊆ Sand ¬.B−as(r)∩S= /0, and

2. every code call χ ∈ B+
cc(r) succeeds in OOOSSS , and

3. every code call χ ∈ ¬.B−cc(r) does not succeed in OOOSSS , and

4. for every atom Op(ααα) ∈ B+(r)∪{A} such that Op ∈ {P,O,Do}, the action ααα is
executable in state OOOSSS .

7.2 Execution and Concurrency 291

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.6 Feasible Status Sets

Our approach is to base the semantics of agent programs on consistent and

closed status sets. However, we have to take into account the rules of the pro-

gram as well as integrity constraints. This leads us to the notion of a feasible

status set.

Definition 7.19 (Feasible Status Set)
Let PPP be an agent program and let OOOSSS be an agent state. Then, a status set S is a
feasible status setfor PPP on OOOSSS , if the following conditions hold:

(S1) (closure under the program rules) AppPPP ,OOOSSS (S)⊆ S;

(S2) (deontic and action consistency) S is deontically and action consistent;

(S3) (deontic and action closure) S is action closed and deontically closed;

(S4) (state consistency) OOO ′SSS |= ICICIC , where OOO ′SSS = apply(Do(S),OOOSSS) is the state
which results after taking all actions in Do(S) on the state OOOSSS .

7.6 Feasible Status Sets 292

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

In general, there are action programs that have zero, one or several feasible status

sets. This is illustrated through the following examples.

Example 7.13 (CHAIN example revisited)
Let us consider a simple agent program containing just the rule (r4) of Example 7.10,
together with rule (r8) and (r9) that manage the message box.

r4: P order partorder partorder part(Part id,amount to order)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
in(((((((((supplies low,suppliersuppliersupplier : low thresholdlow thresholdlow threshold(((Part id)))))))))))),
in(((((((((amount not available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((supplies low,Part id)))))))))))).

7.6 Feasible Status Sets 293

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Suppose the current state of the agent suppliersuppliersupplier is such that the number of items of a
certain part say (p50) falls below the supplies low threshold for that part. Suppose
the company making the request is zzz corp, and the Amount requested is 50, and
the amount to order is 2000. In this case, this agent program will have multiple
feasible status sets. Some feasible status sets will contain P order partorder partorder part(p50,2000)
but will not contain Do order partorder partorder part(p50,2000). However, other feasible status sets
will contain both P order partorder partorder part(p50,2000) and Do order partorder partorder part(p50,2000).

7.6 Feasible Status Sets 294

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.14 (CHAIN example revisited)
On the other hand, suppose our agent program contains rules (r3), (r8) and (r9) of
Example 7.10 on page 267, and suppose that for all parts, the amount of the part in
stock is above the too low threshold amount. Further, suppose our agent program
contains the rule

F order partorder partorder part(Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
¬O order partorder partorder part(Part id,Amount requested).

In this case, for all parts, we are forbidden from placing an order. Hence, this agent
program has only one feasible status set, viz. that which contains status atoms of the
form

F order partorder partorder part(Part id,Amount requested)

together with relevant message processing action status atoms .

7.6 Feasible Status Sets 295

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.15
The following (artificial) example shows that some agent programs may have no
feasible status sets at all.

Pααα ←
Fααα ←

Clearly, if the current object state allows ααα to be executable, then no status set can
satisfy both the closure under program rules requirement, and the deontic consistency
requirement.

Proposition 7.2 (Properties of Feasible Status Sets)
Let Sbe a feasible status set. Then,

1. If Do(ααα) ∈ S, then OOOSSS |= Pre(ααα);

2. If Pααα /∈ S, then Do(ααα) /∈ S;

3. If Oααα ∈ S, then OOOSSS |= Pre(ααα);

4. If Oααα ∈ S, then Fααα /∈ S.

7.6 Feasible Status Sets 296

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

We note that feasible status sets may includeDoing actions that are not strictly

necessary.

Example 7.16 (ExpandedCHAIN Example)
Let us return to the example feasible status sets we saw in Example 7.13 on page 293.
In this case, this agent program had multiple feasible status sets. Some feasible status
sets will contain P order partorder partorder part(p50,2000) but will not contain
Do order partorder partorder part(p50,2000). However, other feasible status sets will contain both
P order partorder partorder part(p50,2000) and Do order partorder partorder part(p50,2000). It is immediately apparent
that we do not want bothaction status atoms P order partorder partorder part(p50,2000) and
Do order partorder partorder part(p50,2000) to be present in feasible status sets: there is no good
reason to in fact perform the action order partorder partorder part(p50,2000) (the agent program in
question does not mandate that Do order partorder partorder part(p50,2000) be true).

7.6 Feasible Status Sets 297

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.7 Rational Status Sets

• The notion of a rational status set is postulated to accommodate this kind of

reasoning. It is based on the principle that each action that is executed should be

sufficiently “grounded” or “justified” by the agent program.

• That is, there should be evidence from the rules of the agent program that

a certain action must be executed.

• For example, it seems unacceptable that an actionααα is executed, ifααα does not

occur in any rule of the agent program at all.

7.7 Rational Status Sets 298

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Definition 7.20 (Groundedness; Rational Status Set)
A status set S is grounded, if there exists no status set S′ 6= Ssuch that S′ ⊆ Sand S′

satisfies conditions (S1)–(S3) of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is
grounded.

7.7 Rational Status Sets 299

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.17 (ExpandedCHAIN Example Continued)
Returning to Example 7.16 on page 297, it is immediately apparent that all feasible
status sets that contain both P order partorder partorder part(P,N) and Do order partorder partorder part(P,N) are not
rational, while those that only contain P order partorder partorder part(P,N) satisfy rationality.

7.7 Rational Status Sets 300

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Observe that the definition of groundedness does not include condition(S4) of a

feasible status set. A moment of reflection will show that omitting this condition is

indeed appropriate.

Recall that the integrity constraints must be maintained when the current agent state

is changed into a new one.

If we were to include the condition(S4) in groundedness, it may happen that

the agent is forced to execute some actions which the program does not men-

tion, just in order to maintain the integrity constraints.

7.7 Rational Status Sets 301

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

We define for every positive programPPP and agent stateOOOSSS an operatorTPPP ,OOOSSS that

maps a status setS to another status set.

Definition 7.21 (TPPP ,OOOSSS Operator)

Suppose PPP is an agent program and OOOSSS an agent state. Then, for any status set S,

TPPP ,OOOSSS (S) = AppPPP ,OOOSSS (S)∪D-Cl(S)∪A-Cl(S).

7.7 Rational Status Sets 302

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Lemma 7.1
Let PPP be an agent program, let OOOSSS be any agent state, and let Sbe any status set. If S

satisfies (S1) and (S3) of feasibility, then S is pre-fixpoint of TPPP ,OOOSSS , i.e.,
TPPP ,OOOSSS (S)⊆ S.

Theorem 7.1
Let PPP be a positive agent program, and let OOOSSS be an agent state. Then, S is a rational
status set of PPP on OOOSSS , if and only if S= lfp(TPPP ,OOOSSS) and S is a feasible status set.

Corollary 1
Let PPP be a positive agent program. Then, on every agent state OOOSSS , the rational status
set of PPP (if one exists) is unique, i.e., if S,S′ are rational status sets for PPP on OOOSSS , then
S= S′.

7.7 Rational Status Sets 303

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.18 (CHAIN example revisited)
Let us return to the agent program described in Example 7.16 on page 297. Let us
augment this example with a new action, fax order. Suppose we augment our agent
program of Example 7.16 on page 297 with the two rules

Do fax orderfax orderfax order(company1,Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),
¬ Do fax orderfax orderfax order(company2,Part id,Amount requested).

P fax orderfax orderfax order(company2,Part id,Amount requested)←
O processrequestprocessrequestprocessrequest(Msg.Id,Agent),
in(((((((((Amount requested,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Amount requested ”)))))))))))),
in(((((((((Part id,msgboxmsgboxmsgbox :getVargetVargetVar(((Msg.Id, ”Part id ”)))))))))))),
Do order partorder partorder part(Part id,Amount requested),
=(Part id,p50).

7.7 Rational Status Sets 304

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

It is now easy to see that there are two rational status sets—one of which contains the
status atom Do fax orderfax orderfax order(company1,Part id,2000) and the other
Do fax orderfax orderfax order(company2,Part id,2000). Thus, the introduction of negated status
atoms in rule bodies leads to this potential problem.

7.7 Rational Status Sets 305

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

As shown by Example 7.18 on page 304 Corollary 1 on page 303 is no longer true in

the presence of negated action status atoms .

We note the following property on the existence of a (not necessarily unique) rational

status set.

Proposition 7.3
Let PPP be an agent program. If ICICIC = /0, then PPP has a rational status set if and only ifPPP
has a feasible status set.

7.7 Rational Status Sets 306

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.8 Reasonable Status Sets

A more serious attack against rational status sets, is that for agent programs with

negation, the semantics ofrational status sets allows logical contrapositionof the

program rules. For example, consider the following program:

Do(ααα) ← ¬Do(βββ).

This program has two rational status sets:S1 = {Do(ααα),P(ααα)}, and

S2 = {Do(βββ),P(βββ)}. The second rational status set is obtained by applying the

contrapositive of the rule:

Do(βββ) ← ¬Do(ααα)

However, the second rational set seems less intuitive than the first as there is no

explicit rule in the above program that justifies the derivation of thisDo(βββ).

7.8 Reasonable Status Sets 307

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

We introduce the concept of areasonable status set. The reader should note that if he

really does want to use contraposition, then he should choose the rational status set

approach, rather than the reasonable status set approach.

Definition 7.22 (Reasonable Status Set)
Let PPP be an agent program, let OOOSSS be an agent state, and let Sbe a status set.

1. If PPP is a positive agent program, then S is a reasonable status setfor PPP on OOOSSS , if
and only if S is a rational status set for PPP on OOOSSS .

2. The reduct of PPP w.r.t. Sand OOOSSS , denoted by redS(PPP ,OOOSSS), is the program which is
obtained from the ground instances of the rules in PPP over OOOSSS as follows.

(a) First, remove every rule r such that B−as(r)∩S 6= /0;

(b) Remove all atoms in B−as(r) from the remaining rules.

Then S is a reasonable status setfor PPP w.r.t. OOOSSS , if it is a reasonable status set of
the program redS(PPP ,OOOSSS) with respect to OOOSSS .

7.8 Reasonable Status Sets 308

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

Example 7.19 (CHAIN example revisited)
Let us return to the case of the agent program presented in Example 7.18 on
page 304. Here we have two rational status sets, one containaing
Do fax orderfax orderfax order(company1,p50,500), while the other contains
Do fax orderfax orderfax order(company2,p50,500).

According to the above definition, only the rational status set that contains the status
atom Do fax orderfax orderfax order(company1,p50,500) is reasonable. The reason is that the first
rule listed explicitly in Example 7.18 on page 304 says that if we do not infer
Do fax orderfax orderfax order(company2,p50,500), then we should infer
Do fax orderfax orderfax order(company1,p50,500), thus implicitly providing higher priority to the
rational status set containing Do fax orderfax orderfax order(company1,p50,500),.

7.8 Reasonable Status Sets 309

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

A more simplistic example is presented below.

Example 7.20
For the program PPP :

Doβββ ← ¬Doααα,

the reduct of PPP w.r.t. S= {Doβββ,Pβββ} on agent state OOOSSS is the program

Doβββ ← .

Clearly, S is the unique reasonable status set of redS(PPP ,OOOSSS), and hence S is a
reasonable status set of PPP .

7.8 Reasonable Status Sets 310

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

The use of reasonable status sets also has some benefits with respect to knowledge

representation. For example, the rule

Doααα←¬Fααα (7.3)

says that actionααα is executed by default, unless it is explicitly forbidden (provided, of

course, that its precondition succeeds). This default representation is possible because

under the reasonable status set approach, the rule itself can not be used to deriveFααα,

which is inappropriate for a default rule.

Proposition 7.4
Let PPP be an agent program and OOOSSS an agent state. Then, every reasonable status set of
PPP on OOOSSS is a rational status set of PPP on OOOSSS .

7.8 Reasonable Status Sets 311

Chapter 7: Actions and Agent Programs Multi-Agenten Systeme (VU), SS 00

7.9 Summary

This chapter was about thedecision making componentof an agent:

How to decide what actions to take given the current state of the world?

1. We introducedactionsααα.

(a) Much like the classical STRIPS-approach: instead of logical atoms, we

consider code call atoms. Actions are implemented by code.

(b) How to concurrently execute actions? We assume givenconc.

(c) Actions do have a status:{P,F,O, W,Do}.

2. The semantics is given by certainstatus setsof an agent program:

(a) An agent program consists of rulesOpααα←Opβ1β1β1, . . . ,Opβnβnβn,ccc1, . . . ,cccn.

(b) A feasible status setis a set of status atoms{Op1α1α1α1, . . . ,Opnαnαnαn} satisfying

certain properties.

(c) Rational status sets = Feasible +Groundedness

(d) Reasonablestatus sets =Rational + Contraposition not allowed

7.9 Summary 312

References
Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-

edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sources.International Journal of
Intelligent Cooperative Information Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelli-
gent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Ed.),Proceedings
of ACM SIGMOD Conference on Management of Data, Tucson, Arizona, pp.
195–206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
Reasoning.IEEE Computer 28(9), 33–39.

463-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. InProceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (1999, September). Temporal agent pro-
grams. Technical Report CS-TR-4055, Dept. of CS, University of Maryland,
College Park, MD 20752. currently under submission for a Journal.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal
of Logic Programming 45(1).

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:
Semantics.Artificial Intelligence 108(1-2), 179–255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
III: Polynomially Implementable Agents.Artificial Intelligence 117(1), 107–
167.

463-2

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algo-
rithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.Communications
of the ACM 37(7), 49–53.

Rogers Jr., H. (1967).Theory of Recursive Functions and Effective Computability.
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross
(2000).Heterogenous Active Agents. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. InProceedings of
ACM SIGMOD Conference on Management of Data, Washington, DC, pp.
434–437.

Wilder, F. (1993).A Guide to the TCP/IP Protocol Suite. Artech House.

463-3

