Jirgen Dix Multi-Agenten Systeme (VU), SS 00

Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1-4) basiert auf
Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,
Decision Making, Kommunikation/Interaktion, Kontrakt
Netze, Coalition Formation).

Teil 2 (Kapitel 5-9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, KrausQzcan and Ross), MI[T

Press, May 2000.
Hier wird ein spezifischer Ansatz vorgestellt, der formale
Methoden aus dem logischen Programmieren benutzt,
aber nicht auf PROLOG aufsetzt (Code Call
Mechanismus, Aktionen, Agenten Zyklus, Status Menge,
Semantiken, Erweiterungen um Beliefs,
Implementierbarkeit).

Overview 1

Jirgen Dix Multi-Agenten Systeme (VU), SS 00

Ubersicht

1. EinfUhrung, Terminologie

2. 4 Grundlegende Architekturen

3. Distributed Decision Making

4. Contract Nets, Coalition Formation
5. IMPACT Architecture

6. Legacy Data and Code Calls

/. Actions and Agent Programs

8. Regular Agents

9. Meta Agent Programs

Overview 2

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6. The Code Call Mechanism

Overview

6.1 Software Code Abstractions
6.2 Code Calls

6.3 Message Box

6.4 Integrity Constraints
6.5SDL and Code Calls

Overview 175

Timetable:

e Chapter 2 needs 1 lecture.

6 Legacy Data

175-1

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

A definition of agents should not limit the choice of data structures and
algorithms that an application designer must use.

CHAIN: supplier agents on top of an existing commercial relational DBMS system.
CFIT: terrain agent on top of existing US military terrain reasoning software.

Accessing DB’s: For instance, the Product Database agenbiductDB in the
CHAIN example may access some file structures, as well as some databases.

Overview 176

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.1 Software Code Abstractions

Definition 6.1 (Software CodeS = (T5,% 5,Cs))
We may characterize the code on top of which an agent is built as a triple
S =def (T5,F 5,Cs) where:

1. I ¢ 1s the set of all data types managed by S,

2. ¥ ¢ is a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

3. (s is a set of type composition operations. A type composition operator is a
partial n-ary function C which takes as input types 11, ... ,Tn and yields as a result
a type C(11,...,Tn). As Cis a partial function, C may only be defined for certain
arguments 11, ... ,Tp, 1.€., C is not necessarily applicable on arbitrary types.

6.1 Software Code Abstractions 177

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Intuitively:
e 7 ¢ isthe set of all data types that are managed by the agent.

e 7 ¢ intuitively represents the set of all function calls supported by the package
S’s application programmer interfaca PI).

e (¢ the set of ways of creating new data types from existing data types.

6.1 Software Code Abstractions 178

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Given a software packagg we use the notatiofi ¢ to denote thelosureof 7 s
under the operations ifis. In order to formally define this notion, we introduce the

following definition.

Definition 6.2 (Cs(7) and T%)
a) Given a set‘l’ of types, we define

s(T) =qet U {t: there exists an N-ary composition operator C € (g

and types 11,... ,Tn € T such that c(1q,...,Ty) =T}.

b) We define T as follows:

g‘ —def S5

+1 [

s =def Cs(T),
s =def UienT-

6.1 Software Code Abstractions 179

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

CHAIN Revisited

s =def {Integer,Location,String,Date,OrderLog,Stock}
OrderLog IS a relation having the schema

(C|ient/string ,amOun]fInteger ,pal’t_id/String ,methOd/String :

SIC/Location , deS{/Location , PiICKUP.St/date , pickup.et/date),

while Stock is a relation having the schemangounfinteger , part_id/string).
Location IS an enumerated type containing city names.

6.1 Software Code Abstractions 180

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

In addition,# ¢ might consist of the functions:

e monitorStockAmounyinteger ,Part_id/sting) of typeString.
This function returns eithesmount_available Or amount_not_available.

e shipFreighf Amoun{finteger ,Part.id/string ,method string |,
SFC/ Location DeSt/Location)
This function, when executed, updates the order log and logs information about
the order, together with information on (i) the earliest time the order will be
ready for shipping, and (ii) the latest time by which the order must be picked up
by the shipping vendor.

Notice that this doesot mean that the shipment will in fact be picked up by the
airplane agent at that time.

e updateStocfAmounyinteger ,Part.id/sting).
This function, when executed, updates the inventory of the Supplier.

6.1 Software Code Abstractions 181

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

CFIT Revisited

s =def {Map,Path,Plan,SatelliteReport}.
Special class of maps calléI'ED Digital Terrain Elevation Datahat specify the
elevations of different regions of the world.

Suppose thautoPilot agent’s associated set of functiofig contains:

o createFlightPlariLocation/map, Flight_route/path , Nogo/map) of typePlan.

Moreover, thef ¢ of thegps might contain the following function:

e mergeGPSDat@atal/sateliteReport , Data2/satelliteReport) of type
SatelliteReport.

6.1 Software Code Abstractions 182

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

State of an Agent

Definition 6.3 (State of an Agent)

At any given pointt in time, the state of an agenill refer to a set O4(t) of objects
from the types ‘I ¢, managed by its internal software code.

An agent may change its state by taking an action—either triggered in
ternally, or by processing a message received from another agent.

We will assume that except for appending messages to an agantilbox, another
agentb cannot directly change’s state. However, it might do so indirectly by
shipping the other agent a message issuing a change request.

6.1 Software Code Abstractions 183

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.2 Code Calls

Code Calls take data from heterogenous DB’s so that such data can
be considered as logical atoms (as terms in predicate logic).

An agent built on top of a piece,S, of software, may support severa
API functions, and it may or may not make all these functions avail;

able to other agents (throughsDL).

6.2 Code Calls 184

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.4 (Code Call$:f(d4,...,d,))

Suppose S =gef (T 5, F 5,C) is some software code andf € F ¢ is a predefined
function with n arguments, and d4, ... ,d, are objects or variables such that each d;
respects the type requirements of the i ’th argument of f. Then,

S:f@y,...,dy)

is a code call A code call is groundif all the d; ’s are objects. We often switch
between the software package S and the agent providing it. Therefore instead of
writing $:f(d., ... ,d,) where S is provided by agent a, we also write
a:f@dy,...,dy).

S :f(dy4,...,d,) may be read asxecute functioh as defined in packaggon
the argumentsd, ... ,d,.

6.2 Code Calls 185

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Comment 1 (Assumption on the Output Signature) We will assume that the
output signatureof any code call is &et There is no loss of generality in making
this assumption—if a function does not return a set, but rather returns an atomic
value, then that value can be coerced into a set anyway—»by treating the value as
shorthand for the singleton set containing just the value.

6.2 Code Calls 186

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. supplier:monitorStock3, part_008).
Observe that the result of this call is either the singleton set
{ amount_available }, or the sef amount not_available }.

2. create a pickup schedule for shipping 3 pieces of_pa& from locatiorx to
paris by truck. Notice that until a value is specified fothis code call cannot be
executed.

3. GPS:mergeGPSDa{@1,S2) is a code call which merges two piec8s,ands2,
of satellite data, but the values of the two pieces are not stated.

6.2 Code Calls 187

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Variables

S =gef (T 5,F 5,Cs) Of software code. Given any typec 7 5 (wrt. software code
S =def (T5,F 5,Cs)) we will assume that there is a gebt(t) of “root” variable
symbols ranging over. Such “root” variables will be used in the construction of
code calls.

Supposq is a complex record type having fields, ... , ...

e For every variable of typeg, we require thak.f; be a variable of type&; wherer;
IS the type of fieldt;.

o If £; itself has a sub-field of typey, thenX.f;.g Is a variable of typsg, and so
on.
These are calle path variables.

e For any path variabl#& of the formX.path, whereX is a root variable, we refer to
X as the root oft, denoted byoot(Y).

6.2 Code Calls 188

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.1 CFIT Revisited)
Let X be a (root) variable of type SatelliteReport denoting the current location of

an airplane. Then X.2d1oc, X.2d1loc.x, X.2d1loc.y, X.height, and X.dist are
path variables . For each of the path variables Y, root(Y) = X. Here, X.2d1oc.x,
X.2dloc.y, and X.height are of type Integer, X.2d1loc’s type is a record of two
Integer s, and X.dist is of type NonNegative.

6.2 Code Calls 189

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.5 (Variable Assignment)
An assignment of objects to variabldsa set of equations of the form

Vi :=04,...,Vx i=0x where the V;’s are variables (root or path) and the o;’s are
objects—such an assignment is legal if the types of objects and corresponding
variables match.

Example 6.2 CFIT Revisited)
A legal assignment may be

(X.height :=50,X.sat_id:=iridium 17,X.dist:=251X.2dloc.x:=3 X.2d1loc.y := —4).

If the record is ordered as shown here, then we may abbreviate this assignment as (50,
iridium 17, 25, (3,—4)). Note however that

(X.height :=50,X.sat_id:=iridium 17,X.dist:=—25X.2d1loc.x:=3,X.2dloc.y ;= —4)

would be illegal, because -25 is not a valid object for X.dist’s type NonNegative.

6.2 Code Calls 190

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Code-call atoms aregical atomsthat are layered on top of code-calls.

Definition 6.6 (Code Call Atom)
If ccis a code call, and X is either a variable symbol, or an object of the output type of
CC, then

e in(X,cc),
e not.in(X, cc),

are called code call atoms A code call atom is groundif no variable symbols occur

anywhere 1n it.

6.2 Code Calls 191

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

e A code call atom of the fornm(X, cc) succeeds just in case whiran be set to

a pointer to one of the objects in the set of objects returned by executing the code
call.

e A code call atom of the formot_in(X, cc) succeeds just in cages not in the
result set returned byc (whenX is an object), or whe# cannot be made to
point to one of the objects returned by executing the code call.

What effects does this have on thtate of an agent?
It is an infinite set of ground code call atoms!

6.2 Code Calls 192

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. in(amount_available, supplier:monitorStock3, part_008)).
This code call succeeds just in case the Supplier has 3 unsteref 008 on

stock.

2. not_in(spender(low),profiling:classifyUsefu)). This code call succeeds just
In case usev, whose identity must be instantiated prior to evaluationoits
classified as a low spender by theofiling agent.

6.2 Code Calls 193

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.7 (Code Call Condition)
A code call conditionis defined as follows:

1. Every code call atom is a code call condition.
2. If s and t are either variables or objects, then s = t is a code call condition.

3. If s and t are either integers/real valued objects, or are variables over the
integers/reals, thens < t, s > t, s < t, and s > t are code call conditions.

4. If X1 and X2 are code call conditions, then X1 & X2 is a code call condition.

We refer to any code call condition of form 1.-3. as an atomiccode call condition.

6.2 Code Calls 194

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. X in(amount_available,supplier:monitorStocks, part_008)).

2. x@ 1 in(X, supplier:monitorStock3, part_008)) & X = amountavailable

x(3) in(amount_available, supplier:monitorStockU, part_008)) &
not_in(amount_available, supplier:monitorStockU + 1,part_008)) &
in(amount_available, supplier:monitorStockv, part_009)) &
not_in(amount_available, supplier:monitorStockv + 1,part_009)) & U< V.

6.2 Code Calls 195

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

4. in(spender(medium),profiling:classifyUsefU)) &
in(spender(high),profiling:classifyUsefV)) & U=V.

5. in(spender(medium),profiling:classifyUsefU)) &
not_in(spender(high), profiling :classifyUsefU)).

6.2 Code Calls 196

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Safety

Definition 6.8 (Safe Code Call (Condition))
A code call § .f(d4,...,d,) is safeif and only if each d; is ground. A code call

condition X1&...& Xn, N> 1, is safe if and only if there exists a permutation Tt of
X1,---,Xn such that for every 1 = 1,... ,n the following holds:

1. It Xy 1s a comparison s1 OPsz, then
1.1 at least one of s1, s, is a constant or a variable X such that root(X) belongs to
RVivi) =def {root(Y) | 3] <i s.t. Y occurs in Xryj) };
1.2 if's; is neither a constant nor a variable X such that root(X) € RV, then s;

1S a root variable.

2. If Xryjy is a code call atom of the form in(Xyy;), cCpys)) or NOLIN(Xyys), cCryy)).
then the root of each variable Y occurring in ccryj) belongs to RVii(i), and either
Xry1) 18 a root variable, or r0Ot(Xp;)) is from RVyj).

6.2 Code Calls 197

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Reconsider the three sample code call conditigfs x(?, andy®).
e ¥ andx@ are safe.

e X is unsafe, since there is no permutation of the atomic code call conditions
which allows safety requirement 2 to be met for eithenr v.

6.2 Code Calls 198

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Checking safety of code call conditions can be done at compile time of a
program.

If X is found to be safe, then we can reorder the constituents. , X, by a
permutatiorrtsuch thaly), - - - , Xmn) €an be evaluated without problems.

We need an additional definition:

Definition 6.9 (Safety Modulo Variables)

Suppose X is a code call condition, and let X be any set of root variables. Then, X is
said to be safe moduloX if and only if for an (arbitrary) assignment 0 of objects to
the variables in X, it is the case that X0 is safe.

6.2 Code Calls 199

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Checking safety of a code cajllmodulo variablex can be reduced to a call to a
routine that checks for safety. This may be done as follows:

1. Find a constant (denoted that does not occur iR.
Let 6 =qet {X = c}, I.€., every variable iiX is set toc.

2. Check ifx0 is safe.

Safety modulo variableX means: When these variabl¥sare instantiated,
the ccc can be evaluated.

6.2 Code Calls 200

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Algorithm 6.1 (safe_ccc)
safe_ccc(X: code call condition;
X: set of root variables)

(* input is a code call condition X = X1& - - - &Xn; *)

(* output is a proper reordering *)
(x X' = Xm)& - - &Xryn) if X is safe modulo X; x)
(% otherwise, the output is unsafe ; *)
I.L:=X1,..., Xn;
2. X :=true;

3. while L is not empty do

4. { select all Xj, ..., Xi, from L st. Xi; is safe modulo X;
5. if m= 0 then return unsafe (exit);

6. else
7. A X =X&Xi1 & & Ximny
8 remove Xi,, - .. , Xiy, from L;
9 X = XU{root(Y) | Y occurs in some Xiy, - -Xim}+
10. }
11.}
12. return’}’;
end.

6.2 Code Calls 201

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Theorem 6.1 (Safety Computation)
Suppose X =def X1 & ... & Xn 1s a code call condition. Then, X is safe modulo a set of
root variables X, if and only if safe_ccc(X, X) returns a reordering X' of X. Moreover,

for any assignment 0 to the variables in X, X'0 is a safe code call condition which can
be evaluated left-to-right.

6.2 Code Calls 202

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

e A straightforward implementation &lafe.cccruns in quadratic time, as the
number of iterations is bounded by the numbef constituenty; of x, and the
body of the while loop can be executed in linear time.

By using appropriate data structures, the algorithm can be implemented

to run in overall linear time.
Briefly, the method is to use cross reference lists of variable occurrences.

e safety of a code call conditioncan be checked by callirgafe ccqx,0). Thus,
checking the safety gf, combined with a reordering of its constituents for
left-to-right execution can be done very efficiently.

6.2 Code Calls 203

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.10 (Code Call Solution)

Suppose X is a code call condition involving the variables X =gef { X1, ... ,Xn}, and
suppose S =gef (T 5,F 5,C) is some software code. A solutionof X w.r.t. T s in a
state O 1s a legal assignment of objects 01, ... ,0p to the variables Xy, ... , X,, written
as a compound equation X := 0, such that the application of the assignment makes X
true in state Og.

We denote by

e Sol(X) ¢,0, (omitting subscripts Og and I ¢ when clear from the context), the
set of all solutions of the code call condition X in state Og, and by

e O Sol(X) 5,06 (where subscripts are occasionally omitted) the set of all objects

appearing in Sol(X)z ; o,

6.2 Code Calls 204

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Comment 2 (Existence of ins, del and upd)We assume that the s&t; associated
with a software code packagecontains three functions described below:

e A functioninsg, which takes as input a set of obje@snanipulated bys, and a
stateOg, and returns a new stat@’; = insg (0, Os) which accomplishes the
insertion of the objects iw into O, i.e.,inSg IS an insertion routine.

e A functiondels, which takes as input a set of obje@snanipulated bys and a
stateO, and returns a new stat@’; =qer dels (O, O) which describes the
deletion of the objects i@ from O, i.e.,dels is a deletion routine.

e A functionupds which takes as input a data object o manipulatedsbg field f
of object 0, and a value v drawn from the domain of the type of field f of object
o—this function changes the value of the f field of object o to v. (This function
can usually be described in terms of the preceding two functions.)

6.2 Code Calls 205

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Executing the functionNSr;pancerecora (X[X]) Wherex|X] is a code call condition
involving the (sole) free variablk means:

“Insert, using aFinanceRecord insertion routine, all object® such that
X|X] is true w.r.t. the current agent state when= o

In such a case, the code call conditiprs used to identify the objects to be inserted,
and theinsg;nancerecora fUNCtiON specifies the insertion routine to be used.

6.2 Code Calls 206

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

As a single agent program may manage multiple data types. , 15, each with its
own insertion routinéns,,, ... ,ins;,, respectively, it is often more convenient to

associate with any ageatan insertion routine ins, , that exhibits the following
behavior:

e given either a seD of objects (or a code call conditig{jX] of the above type),
Ins, (X[X], Os) is a generianethodthat selects which of the insertion routines
ins;, associated with the different data structures, should be invoked in order to
accomplish the desired insertion.

We assume from now on that an insertion functies, and a deletion funac-
tion del, may be associated with any agenin this way.

6.2 Code Calls 207

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.3 Message Box

1. Each agent’s associated software code includes a special type Msgbox
(short for message box).

2. The message box is a buffer that may be filled (when it sends a message) or
flushed (when it reads the message) by the agent.

3. In addition, we assume the existence of an operating-systems level messaging
protocol (e.g.SOCKETS or TCP/IP (Wilder 1993)) that can fill in (with
Incoming messages) or flush (when a message is physically sent off) this buffer.

6.3 Message Box 208

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

The msgbox operates on objects of the form
(i/0,"src,"dest,”"messagg'time’) .

i /o signifies an incoming or outgoing message respectively.
"src’ specifies the originator

"dest specifies the destination.

N

"messagyis a table consisting of triples of the form
("varName, "varTypé, "value') where"varNamé is the name of the variable,
"varTypé is the type of the variable and thealu€ is the value of the variable in

string format.

5. "time” denotes the time at which the message was sent.

6.3 Message Box 209

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

We will assume that the agent has the following functions that are integral In
managing this message box.

e sendMessade:sourceagent-, <destgent>,<message): This causes
(o,”src’,"dest,"message’time’) to be placed iMsgbox. The parametes
signifies an outgoing message. When a call of
sendMessagdesrc’, "dest,"messagg is executed, the state Mggbox changes by
the insertion of the above quintuple denoting the sending of a message from the

source agendre to a given Destination agedest involving the message body
"message

e getMessagge<src>): This causes a collection of
(1,”src’,"agent,"'msgd, "time”)

to be read fronMsgbox. Thel signifies an incoming message. Note that all
messages from the given source to the agemrint whose message box is being
examined, are returned by this operatitime’ denotes the time at which the
message was received.

6.3 Message Box 210

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

o timedGetMessage op>, <valid>): This causes the collection of all
quintuplegup of the formtup =qes (1, <Src>, <agent-, <message, time) to
be read fronMsgbox, such that the comparisamp.time op validis true, where
opis required to be any of the standard comparison operatprs, <, >, or =.

e getVar<mssgld-, <varName>): This functions searches through all the
triples in the’'messageto find the requested variable. First, it converts the
variable from the string format given by thalue’ into its corresponding data
type which is given byvarTypé. If the requested variable is not in the message
determined by th&Mssgld, then an error string is returned.

6.3 Message Box 211

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.3 STORE Revisited)
Suppose the profiling agent is asked to classity a user U with ssn S. To do this, the
profiling agent may need to obtain credit information for U from the credit agent.
The following actions may ensue:

1. Theprofiling agent sends the credit agent a message requesting S’s credit
information.

2. The credit agent reads this message and sends the profiling agent a reply.

3. The profiling agent reads this reply and uses it to generate an answer.

6.3 Message Box 212

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. Theprofiling agent is asked tdassifyUse(s). It generates a messaggeof a
particular format, e.g., a strifgsk provideCreditinfaS_low,” which encodes the
request fois’s credit information, and calls
sendMessaderofiling,credit, ;).

2. Thecredit agent either periodically caligetMessag@rofiling) until M,
arrives, or calls it triggered by the event tihd has arrived. By parsing,, it
determines that it needs to execptevideCreditinf@S, 1ow) and send the result
back toprofiling. Depending on the result of the calledit assembles a
messagd®l, encoding th&FinanceRecord which was returned, or an error
message. Here, we are assuming that the underlying OS level message protocol
does not drop or reorder messages (if it did, we would have to in¢iuded
M;’s Timein My’'s message). Next, theredit agent calls
sendMessagderedit,profiling,M,).

6.3 Message Box 213

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

3. Theprofiling agent either periodically caligetMessageredit) until M,
arrives, or it is triggered by the arrival 8, and reads the message. By parsing
M,, It can determine what errors (if any) occurred or what the resulting
finance_record was. Finally, theprofiling agent can use the contentshds
to construct the UserProfile to be returned.

6.3 Message Box 214

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.4 Integrity Constraints

Each agent has an associatealgent stateD, which is a set of objects (of the types
that the software code underlying the agent manages).

e Not all sets of such objects alegal.

Definition 6.11 (Integrity Constraints IC)
An integrity constraintC is an expression of the form

Y = X

where U is a safe code call condition, and X is an atomic code call condition such that
every root variable in X occurs in (.

6.4 Integrity Constraints 215

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. IC:i: in(amount_available,supplier:monitorStockU,part_001)) &
in(amount_available, supplier:monitorStockV, part_002))
=X
in(amount_available, supplier:monitorStockU + V,part_008)).

IC3: S=123456789 = not.in(spender(low),profiling:classifyUsefs)).

3. ICs: R.sat_id=sat_1 = R.2dloc.x>0.

6.4 Integrity Constraints 216

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.12 (Integrity Constraint Satisfaction)
A state Oy satisfies an integrity constraint |C of the form Y = X, denoted O = IC, if
for every legal assignment of objects from O to the variables in IC, either) is false

or X 1s true.

Let IC be a (finite) collection of integrity constraints |C, and let Og be an agent state.
We say that O satisfies IC, denoted Og |= IC, if and only if O satisfies every
constraint IC € IC.

6.4 Integrity Constraints 217

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.5 Service Descriptions and Code Calls

Definition 6.13 (Service Rule)

Suppose Snis the name of a service offered by an agent. Letiq,... Ik, Mig,..., Miny,
and 01, ... ,0n be the inputs, mandatory inputs, and outputs of the service sn
respectively. A service rule definingnis an expression of the form:

Sn(i]_,... ,ik,mi]_,... ,mim,Ol,-.- ,On) — X

where X is a code call condition that is safe modulo Miy, ... ,Miy. In this case, X is
said to be the body of the above rule.

Definition 6.14 (Service Definition Programsdp)
Using the same notation as above, a service definition progransdp for short)
associated with service SNis a finite set of service rules defining Sn

6.5 Service Descriptions and Code Calls 218

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

e Consider a servicendefined through a service definition program contaiming
rules.

e Let the body of thé'th rule bex (V).

e Suppose an agent specifies the mandatory inputs, i.e., an agent requesting this
service specifies a substituti@rthat assigns objects to each of the variables
Miy, ..., Miy. In addition, the agent may specify a substitutéoior the
discretionary inputs.

e Then the service definition program treats the agent’s request for senase
described in algorithmmplement_service

6.5 Service Descriptions and Code Calls 219

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Algorithm 6.2 (implement_service)
implement_service(P:sdp; |\:subs; 0:subst)

(x> P is a service definition program *)
(* W a subst. specif. values of all mandatory inputs *)
(= O a subst. specif. values of selected discret. inp. var’s x)
(* Ansis the result of evaluating P w.r.t. inputs land 0 x)

1. Ans:=0; Q:=P;
2. while Q # 0 do
3. { selectrulerj € Q;

4. Q:=Q\{ri};

5. SOL:=Sol((x)H0);
6. (% returns many substit.’s, one for each var. of SN x)
7. (x that is not assigned an object by either of 1,0 *)
8. restrict SOLto output variables;
9. Ans:=AnsuU SOL
10. }
11. return Ans
end.

6.5 Service Descriptions and Code Calls 220

Chapter 6: Legacy Data

Example 6.4 STORE Revisited)

In HERMES, each sdp for the STORE example can be thought of as a predicate
within the mediator for one of STORE’s agents. A sample sdp is:

goodSpendéfMI)CategoryUserCat (\MI)
(0)SSNList0fStrings,ClassUserProfile(\0))

Multi-Agenten Systeme (VU), SS 00

-
in(SSN, profiling:listUsergCategory)) &
in(Class, profiling:classifyUse¢ssN)) &

not_in(spender(low),general:makeSatlass)).
A HERMES invocation of this sdp is shown in Figure 6.1. The query

goodSpendefcorporateUsers, Ssn, Class)

asks for the ssn and class of all corporate users who are not low spenders. (Note
that as the second parameter of the not_in must be a set, we use the function
general:makeSedtClass) to turn Class into a singleton set.

6.5 Service Descriptions and Code Calls 221

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

[®] Netscape: Hermes Java Client page (experimental)

File Edit Wiew Go Communicator

e A 4e m $&

.§ Bookmarks & Location: http://quark.ce.umd.edu:8080/HermesJC2 . html 7| @7 What's Related

University of Maryland's JHermes interface (quark.cs.umd.edu 2

Login...l Laukch Hediator...l

Mediatar for Profiling agents of Store
example.

[®] Un#itled

Query Text: Mediator Description:

goodSpender ("Corporatellzers", S9H, Classi:l.@. Mediator for Profiling agents of Store example

Determines a spending Class for each
usetr in the given Category which is
not a low spender

Sunta:

| owSpender goodSpender (Category, S5H, Classh:l.@

goodSpender "Corporatelsers", S5M, Classr:l.8.]

uble-Click the "goodSpender" predicate entry to append query tex

F Unsigned Java Applet Window @ Unsigned Java Applet Window

o | A

Figure 6.1: Sample query on tipeofiling agent’s mediator (first result)

6.5 Service Descriptions and Code Calls 222

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

[®] Netscape: Hermes Java Client page (experimental)

File Edit Wiew Go Communicator

7| €517 What's Related

.§” Bookmarks & Location: http://quark.ce.umd.edu:8080/HermesJC2 . html

University of Maryland®s JHermes interface (quark.cs.umd.edu

Login...l Launch Hediator...l

Mediatar for Profiling agents of Store
example.

Query Text: Mediator Description:

goodSpender ¢ Corporatelzers”, S8H, Classi:l.. Mediator for Profiling agents of Store example.

Pr
lassifyullser Determines a spending Class for each
doub Wt lassified user in the given Category which is
g - not a low spender

listlsers
| owSpender Symea
kS goodSpender (Category, S5H, Classh:l.@

"Corporatelsers", "321-54-98768",
"spender (med i um) "

goodSpender ("Corporatelsers", SSM, Classr:l.8.]

ouble-Click the "goodSpender" predicate entry to append query text

@ Unsigned Java Applet Window

giUnsigned Java Applet Window
=] B W SR 2

Figure 6.2: Queries on goodSpender amdfiling Agent’s Mediator

6.5 Service Descriptions and Code Calls 223

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.5 CHAIN Revisited)

A sample query on the mediator for the supplier agent of the CHAIN example is

shown in Figure 6.3 on the next page. A sample sdp is:
sendViaTruck(MI)Amount Integer,Part.id: String(\MI)
(MI)Src String,Dest String(\MI)
(0)SuccessBoolean(\0))

H

in(amount_available, supplier:monitorStocKAmount,Part_id)) &
in(Success, supplier:shipFreigh{Amount,Part_id, truck, Src,Dest)).

If 5 units of part_008 are available, then sendViaTruck3, part_008, rome, paris,
Success) will be satisfied and Success will be true, if the shipping was possible.
But the query sendViaTruck7, part_008, rome, paris, Success) will not be satisfied,

as the first in(,) above was not satisfied and hence the second in(,) above was never
called.

6.5 Service Descriptions and Code Calls 224

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

.ce.umd.edu: gl

Login... | | Lavnch Mediztor. . |

Available Med

[®] Untitled

Sends Amount units of Part_id from
Sre to Desc wia truck if Amount units
are available

Suntax:

sendViaTruck (Amcunt, Part_id, Sre,
Dest, Successy:l.@

sendViaTruck3, "part_B83", "Rome", "Paris", Success):il.@.]

Figure 6.3: Sample query on tkapplier agent’s Mediator

6.5 Service Descriptions and Code Calls 225

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.6 Summary
This chapter was about a mechanism ¢ode call atom3 to abstract from given
legacy code and declaratively describe its effects.

1. In order toagentizelegacy code, we must make the most important datatypes
and functions of it available tbMPACT.

2. We call these functionkcode calls § :f(d4,...,d.).
3. We assume thdtalways returns a set.

4. To encapsulate these functions in a logical language, weads=call atoms
in(X,8:f(dy,...,dy)).

5. Code call atoms can be conjunctively merged together (with comparison
statements) and lead t@ode Call Conditions

6. To ensure that Code Call Conditions can be evaluated, we introduced the notion
of Safety.

6.6 Summary 226

References

Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-
edge. In J. Minker (Ed.Foundations of Deductive Databases and Logic Pro-
gramming pp. 89—148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sourcésternational Journal of
Intelligent Cooperative Information Systen(2f 127—158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating AgentsEEE Intelli-
gent Systems 144—72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Bdbgeedings
of ACM SIGMOD Conference on Management of Ddiacson, Arizona, pp.
195-206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
ReasoninglEEE Computer 2¢9), 33-39.

463-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources.Rmoceedings of the 10th Meeting of the
Information Processing Society of Japafokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (1999, September). Temporal agent pro-
grams. Technical Report CS-TR-4055, Dept. of CS, University of Maryland,
College Park, MD 20752. currently under submission for a Journal.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logi¢2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Progrdoasnal
of Logic Programming 48).

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:
SemanticsArtificial Intelligence 1081-2), 179-255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
l1I: Polynomially Implementable Agent&rtificial Intelligence 1171), 107—-
167.

463-2

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, Il: Algo-
rithms and ComplexityArtificial Intelligence 1081-2), 257-307.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Ag@aisimunications
of the ACM 377), 49-53.

Rogers Jr., H. (1967).heory of Recursive Functions and Effective Computability
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. KrausC)Ecan, and R. Ross
(2000).Heterogenous Active AgentdIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information.Proceedings of
ACM SIGMOD Conference on Management of Datéashington, DC, pp.
434-437.

Wilder, F. (1993) A Guide to the TCP/IP Protocol SuitArtech House.

463-3

