
Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1–4) basiert auf

Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,

Decision Making, Kommunikation/Interaktion, Kontrakt

Netze, Coalition Formation).

Teil 2 (Kapitel 5–9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, Kraus,̈Ozcan and Ross), MIT

Press, May 2000.

Hier wird ein spezifischer Ansatz vorgestellt, der formale

Methoden aus dem logischen Programmieren benutzt,

aber nicht auf PROLOG aufsetzt (Code Call

Mechanismus, Aktionen, Agenten Zyklus, Status Menge,

Semantiken, Erweiterungen um Beliefs,

Implementierbarkeit).

Overview 1

Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Übersicht

1. Einführung, Terminologie
2. 4 Grundlegende Architekturen
3. Distributed Decision Making
4. Contract Nets, Coalition Formation
5. IMPACT Architecture
6. Legacy Data and Code Calls
7. Actions and Agent Programs
8. Regular Agents
9. Meta Agent Programs

Overview 2

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6. The Code Call Mechanism

Overview

6.1 Software Code Abstractions

6.2 Code Calls

6.3 Message Box

6.4 Integrity Constraints

6.5SDL and Code Calls

Overview 175

Timetable:

• Chapter 2 needs 1 lecture.

6 Legacy Data

175-1

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

A definition of agents should not limit the choice of data structures and
algorithms that an application designer must use.

CHAIN: suppliersuppliersupplier agents on top of an existing commercial relational DBMS system.

CFIT: terrainterrainterrain agent on top of existing US military terrain reasoning software.

Accessing DB’s: For instance, the Product Database agentproductDBproductDBproductDB in the

CHAIN example may access some file structures, as well as some databases.

Overview 176

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.1 Software Code Abstractions

Definition 6.1 (Software CodeSSS = (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS))
We may characterize the code on top of which an agent is built as a triple
SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) where:

1. TTTTTTTTT SSS is the set of all data types managed by SSS ,

2. FFFFFFFFF SSS is a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

3. CCCCCCCCCSSS is a set of type composition operations. A type composition operator is a
partial n-ary function c which takes as input types τ1, . . . ,τn and yields as a result
a type c(τ1, . . . ,τn). As c is a partial function, c may only be defined for certain
arguments τ1, . . . ,τn, i.e., c is not necessarily applicable on arbitrary types.

6.1 Software Code Abstractions 177

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Intuitively:

• TTTTTTTTT SSS is the set of all data types that are managed by the agent.

• FFFFFFFFF SSS intuitively represents the set of all function calls supported by the package

SSS ’s application programmer interface (API).

• CCCCCCCCCSSS the set of ways of creating new data types from existing data types.

6.1 Software Code Abstractions 178

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Given a software packageSSS , we use the notationTTTTTTTTT ?
SSS to denote theclosureof TTTTTTTTT SSS

under the operations inCCCCCCCCCSSS . In order to formally define this notion, we introduce the

following definition.

Definition 6.2 (CCCCCCCCCSSS (TTTTTTTTT) andTTTTTTTTT ?
SSS)

a) Given a set TTTTTTTTT of types, we define

CCCCCCCCCSSS (TTTTTTTTT) =def TTTTTTTTT ∪ {τ : there exists an n-ary composition operator c∈CCCCCCCCCSSS

and types τ1, . . . ,τn ∈TTTTTTTTT such that c(τ1, . . . ,τn) = τ}.

b) We define TTTTTTTTT ?
SSS as follows:

TTTTTTTTT 0
SSS =def TTTTTTTTT SSS ,

TTTTTTTTT i+1
SSS =def CCCCCCCCCSSS (TTTTTTTTT i

SSS),

TTTTTTTTT ?
SSS =def

⋃
i∈NTTTTTTTTT i

SSS .

6.1 Software Code Abstractions 179

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

CHAIN Revisited

TTTTTTTTT SSS =def {Integer,Location,String,Date,OrderLog,Stock}
OrderLog is a relation having the schema

(client/string , amount/Integer , part id/String , method/String ,

src/Location , dest/Location , pickupst/date , pickupet/date),

while Stock is a relation having the schema (amount/Integer , part id/String).

Location is an enumerated type containing city names.

6.1 Software Code Abstractions 180

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

In addition,FFFFFFFFF SSS might consist of the functions:

• monitorStockmonitorStockmonitorStock(Amount/Integer ,Part id/String) of typeString.

This function returns eitheramount available or amount not available.

• shipFreightshipFreightshipFreight(Amount/Integer ,Part id/String ,method/String ,

Src/Location ,Dest/Location).
This function, when executed, updates the order log and logs information about

the order, together with information on (i) the earliest time the order will be

ready for shipping, and (ii) the latest time by which the order must be picked up

by the shipping vendor.

Notice that this doesnot mean that the shipment will in fact be picked up by the

airplaneairplaneairplane agent at that time.

• updateStockupdateStockupdateStock(Amount/Integer ,Part id/String).
This function, when executed, updates the inventory of the Supplier.

6.1 Software Code Abstractions 181

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

CFIT Revisited

TTTTTTTTT SSS =def {Map,Path,Plan,SatelliteReport}.
Special class of maps calledDTED Digital Terrain Elevation Datathat specify the

elevations of different regions of the world.

Suppose theautoPilotautoPilotautoPilot agent’s associated set of functionsFFFFFFFFF SSS contains:

• createFlightPlancreateFlightPlancreateFlightPlan(Location/Map,Flight route/Path ,Nogo/Map) of typePlan.

Moreover, theFFFFFFFFF SSS of thegpsgpsgpsmight contain the following function:

• mergeGPSDatamergeGPSDatamergeGPSData(Data1/SatelliteReport ,Data2/SatelliteReport) of type

SatelliteReport.

6.1 Software Code Abstractions 182

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

State of an Agent

Definition 6.3 (State of an Agent)

At any given point t in time, the state of an agentwill refer to a set OOOSSS (t) of objects
from the types TTTTTTTTT SSS , managed by its internal software code.

An agent may change its state by taking an action—either triggered in-
ternally, or by processing a message received from another agent.

We will assume that except for appending messages to an agentaaa’s mailbox, another

agentbbb cannot directly changeaaa’s state. However, it might do so indirectly by

shipping the other agent a message issuing a change request.

6.1 Software Code Abstractions 183

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.2 Code Calls

Code Calls take data from heterogenous DB’s so that such data can
be considered as logical atoms (as terms in predicate logic).

An agent built on top of a piece,SSS , of software, may support several
API functions, and it may or may not make all these functions avail-
able to other agents (throughSDL).

6.2 Code Calls 184

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.4 (Code CallSSSSSSSSS :fff (((d1, . . . ,dn))))
Suppose SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) is some software code and fff ∈FFFFFFFFF SSS is a predefined
function with n arguments, and d1, . . . ,dn are objects or variables such that each di
respects the type requirements of the i’th argument of fff . Then,

SSSSSSSSS :fff (((d1, . . . ,dn)))

is a code call. A code call is groundif all the di’s are objects. We often switch
between the software package SSS and the agent providing it. Therefore instead of
writing SSSSSSSSS :fff (((d1, . . . ,dn))) where SSS is provided by agent aaa, we also write
aaaaaaaaa :fff (((d1, . . . ,dn))).

SSSSSSSSS :fff (((d1, . . . ,dn))) may be read as:execute functionfff as defined in packageSSS on

the argumentsd1, . . . ,dn.

6.2 Code Calls 185

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Comment 1 (Assumption on the Output Signature)We will assume that the

output signatureof any code call is aset. There is no loss of generality in making

this assumption—if a function does not return a set, but rather returns an atomic

value, then that value can be coerced into a set anyway—by treating the value as

shorthand for the singleton set containing just the value.

6.2 Code Calls 186

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008))).
Observe that the result of this call is either the singleton set

{ amount available }, or the set{ amount not available }.

2. create a pickup schedule for shipping 3 pieces of part008 from locationX to

paris by truck. Notice that until a value is specified forX, this code call cannot be

executed.

3. GPSGPSGPS :mergeGPSDatamergeGPSDatamergeGPSData(((S1,S2))) is a code call which merges two pieces,S1 andS2,

of satellite data, but the values of the two pieces are not stated.

6.2 Code Calls 187

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Variables

SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) of software code. Given any typeτ ∈TTTTTTTTT SSS (wrt. software code

SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS)) we will assume that there is a setroot(τ) of “root” variable

symbols ranging overτ. Such “root” variables will be used in the construction of

code calls.

Supposeτ is a complex record type having fieldsf1, . . . ,fn.

• For every variable of typeτ, we require thatX.fi be a variable of typeτi whereτi

is the type of fieldfi.

• If fi itself has a sub-fieldg of typeγ, thenX.fi.g is a variable of typeγ, and so

on.

These are calledpath variables.

• For any path variableY of the formX.path, whereX is a root variable, we refer to

X as the root ofY, denoted byroot(Y).

6.2 Code Calls 188

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.1 (CFIT Revisited)
Let X be a (root) variable of type SatelliteReport denoting the current location of
an airplane. Then X.2dloc, X.2dloc.x, X.2dloc.y, X.height, and X.dist are
path variables . For each of the path variables Y, root(Y) = X. Here, X.2dloc.x,
X.2dloc.y, and X.height are of type Integer, X.2dloc’s type is a record of two
Integer s, and X.dist is of type NonNegative.

6.2 Code Calls 189

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.5 (Variable Assignment)
An assignment of objects to variablesis a set of equations of the form

V1 := o1, . . . ,Vk := ok where the Vi’s are variables (root or path) and the oi’s are
objects—such an assignment is legal, if the types of objects and corresponding
variables match.

Example 6.2 (CFIT Revisited)
A legal assignment may be

(X.height := 50,X.sat id := iridium 17,X.dist := 25,X.2dloc.x := 3,X.2dloc.y :=−4).

If the record is ordered as shown here, then we may abbreviate this assignment as (50,
iridium 17, 25, 〈3,−4〉). Note however that

(X.height := 50,X.sat id := iridium 17,X.dist :=−25,X.2dloc.x := 3,X.2dloc.y :=−4)

would be illegal, because -25 is not a valid object for X.dist’s type NonNegative.

6.2 Code Calls 190

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Code-call atoms arelogical atomslogical atomslogical atomsthat are layered on top of code-calls.

Definition 6.6 (Code Call Atom)
If cc is a code call, and X is either a variable symbol, or an object of the output type of
cc, then

• in(((((((((X,cc))))))))),

• not in(((((((((X,cc))))))))),

are called code call atoms. A code call atom is groundif no variable symbols occur
anywhere in it.

6.2 Code Calls 191

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

• A code call atom of the formin(((((((((X,cc))))))))) succeeds just in case whenX can be set to

a pointer to one of the objects in the set of objects returned by executing the code

call.

• A code call atom of the formnot in(((((((((X,cc))))))))) succeeds just in caseX is not in the

result set returned bycc (whenX is an object), or whenX cannot be made to

point to one of the objects returned by executing the code call.

What effects does this have on thestateof an agent?

It is an infinite set of ground code call atoms!

6.2 Code Calls 192

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008)))))))))))).
This code call succeeds just in case the Supplier has 3 units ofpart 008 on

stock.

2. not in(((((((((spender(low),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))). This code call succeeds just

in case userU, whose identity must be instantiated prior to evaluation, isnot

classified as a low spender by theprofilingprofilingprofiling agent.

6.2 Code Calls 193

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.7 (Code Call Condition)
A code call conditionis defined as follows:

1. Every code call atom is a code call condition.

2. If s and t are either variables or objects, then s = t is a code call condition.

3. If s and t are either integers/real valued objects, or are variables over the
integers/reals, then s< t, s> t, s≤ t, and s≥ t are code call conditions.

4. If χ1 and χ2 are code call conditions, then χ1& χ2 is a code call condition.

We refer to any code call condition of form 1.-3. as an atomiccode call condition.

6.2 Code Calls 194

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. χ(1) : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008)))))))))))).

2. χ(2) : in(((((((((X,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((3,part 008))))))))))))& X = amountavailable.

3.
χ(3) : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U,part 008)))))))))))) &

not in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U+1,part 008)))))))))))) &

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V,part 009)))))))))))) &

not in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V+1,part 009)))))))))))) & U< V.

6.2 Code Calls 195

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

4. in(((((((((spender(medium),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))) &

in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((V)))))))))))) & U = V.

5. in(((((((((spender(medium),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))) &

not in(((((((((spender(high),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((U)))))))))))).

6.2 Code Calls 196

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Safety

Definition 6.8 (Safe Code Call (Condition))
A code call SSSSSSSSS :fff (((d1, . . . ,dn))) is safeif and only if each di is ground. A code call

condition χ1& . . .& χn, n≥ 1, is safe if and only if there exists a permutation π of
χ1, . . . ,χn such that for every i = 1, . . . ,n the following holds:

1. If χπ(i) is a comparison s1ops2, then

1.1 at least one of s1,s2 is a constant or a variable X such that root(X) belongs to

RVπ(i) =def {root(Y) | ∃ j < i s.t. Y occurs in χπ(j)};

1.2 if si is neither a constant nor a variable X such that root(X) ∈ RVπ(i), then si
is a root variable.

2. If χπ(i) is a code call atom of the form in(((((((((Xπ(i),ccπ(i)))))))))) or not in(((((((((Xπ(i),ccπ(i)))))))))),
then the root of each variable Y occurring in ccπ(i) belongs to RVπ(i), and either
Xπ(i) is a root variable, or root(Xπ(i)) is from RVπ(i).

6.2 Code Calls 197

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Reconsider the three sample code call conditionsχ(1), χ(2), andχ(3).

• χ(1) andχ(2) are safe.

• χ(3) is unsafe, since there is no permutation of the atomic code call conditions

which allows safety requirement 2 to be met for eitherU or V.

6.2 Code Calls 198

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Checking safety of code call conditions can be done at compile time of a

program.

If χ is found to be safe, then we can reorder the constituentsχ1, . . . , χn by a

permutationπ such thatχπ(1), . . . , χπ(n) can be evaluated without problems.

We need an additional definition:

Definition 6.9 (Safety Modulo Variables)
Suppose χ is a code call condition, and let X be any set of root variables. Then, χ is
said to be safe moduloX if and only if for an (arbitrary) assignment θ of objects to
the variables in X, it is the case that χθ is safe.

6.2 Code Calls 199

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Checking safety of a code callχ modulo variablesX can be reduced to a call to a

routine that checks for safety. This may be done as follows:

1. Find a constant (denotedc) that does not occur inχ.

Let θ =def {X = c}, i.e., every variable inX is set toc.

2. Check ifχθ is safe.

Safety modulo variablesX means: When these variablesX are instantiated,

the ccc can be evaluated.

6.2 Code Calls 200

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Algorithm 6.1 (safe ccc)
safe ccc(χ: code call condition;

X: set of root variables)

(? input is a code call condition χ = χ1& · · ·&χn; ?)
(? output is a proper reordering ?)
(? χ′ = χπ(1)& · · ·&χπ(n) if χ is safe modulo X; ?)
(? otherwise, the output is unsafe ; ?)

1. L := χ1, . . . ,χn;

2. χ := true;

3. while L is not empty do
4. { select all χi1, . . . ,χim from L st. χi j is safe modulo X;
5. if m= 0 then return unsafe (exit);
6. else
7. { χ := χ&χi1& · · ·&χim;

8. remove χi1, . . . ,χim from L;

9. X = X∪{root(Y) | Y occurs in some χi1, . . .χim};
10. }
11. }
12. return χ′;

end.

6.2 Code Calls 201

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Theorem 6.1 (Safety Computation)
Suppose χ =def χ1& . . .& χn is a code call condition. Then, χ is safe modulo a set of
root variables X, if and only if safe ccc(χ,X) returns a reordering χ′ of χ. Moreover,
for any assignment θ to the variables in X, χ′θ is a safe code call condition which can
be evaluated left-to-right.

6.2 Code Calls 202

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

• A straightforward implementation ofsafecccruns in quadratic time, as the

number of iterations is bounded by the numbern of constituentsχi of χ, and the

body of the while loop can be executed in linear time.

•
By using appropriate data structures, the algorithm can be implemented

to run in overall linear time.
Briefly, the method is to use cross reference lists of variable occurrences.

• safety of a code call conditionχ can be checked by callingsafeccc(χ, /0). Thus,

checking the safety ofχ, combined with a reordering of its constituents for

left-to-right execution can be done very efficiently.

6.2 Code Calls 203

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.10 (Code Call Solution)
Suppose χ is a code call condition involving the variables X =def {X1, . . . ,Xn}, and
suppose SSS =def (TTTTTTTTT SSS ,FFFFFFFFF SSS ,CCCCCCCCCSSS) is some software code. A solutionof χ w.r.t. TTTTTTTTT SSS in a
state OOOSSS is a legal assignment of objects o1, . . . ,on to the variables X1, . . . ,Xn, written
as a compound equation X := o, such that the application of the assignment makes χ
true in state OOOSSS .

We denote by

• Sol(χ)TTTTTTTTT SSS ,OOOSSS
(omitting subscripts OOOSSS and TTTTTTTTT SSS when clear from the context), the

set of all solutions of the code call condition χ in state OOOSSS , and by

• OOO Sol(χ)TTTTTTTTT SSS ,OOOSSS
(where subscripts are occasionally omitted) the set of all objects

appearing in Sol(χ)TTTTTTTTT SSS ,OOOSSS

6.2 Code Calls 204

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Comment 2 (Existence of ins, del and upd)We assume that the setFFFFFFFFF SSS associated

with a software code packageSSS contains three functions described below:

• A functioninsSSS , which takes as input a set of objectsO manipulated bySSS , and a

stateOOOSSS , and returns a new stateOOO ′SSS = insSSS (O,OOOSSS) which accomplishes the

insertion of the objects inO into OOOSSS , i.e., insSSS is an insertion routine.

• A functiondelSSS , which takes as input a set of objectsO manipulated bySSS and a

stateOOOSSS , and returns a new stateOOO ′SSS =def delSSS (O,OOOSSS) which describes the

deletion of the objects inO fromOOOSSS , i.e.,delSSS is a deletion routine.

• A functionupdSSS which takes as input a data object o manipulated bySSS , a field f

of object o, and a value v drawn from the domain of the type of field f of object

o—this function changes the value of the f field of object o to v. (This function

can usually be described in terms of the preceding two functions.)

6.2 Code Calls 205

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Executing the function,insFinanceRecord(χ[X]) whereχ[X] is a code call condition

involving the (sole) free variableX means:

“Insert, using aFinanceRecord insertion routine, all objectso such that

χ[X] is true w.r.t. the current agent state whenX := o.”

In such a case, the code call conditionχ is used to identify the objects to be inserted,

and theinsFinanceRecord function specifies the insertion routine to be used.

6.2 Code Calls 206

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

As a single agent program may manage multiple data typesτ1, . . . ,τn, each with its

own insertion routineinsτ1, . . . , insτn, respectively, it is often more convenient to

associate with any agentaaa an insertion routine,insaaa , that exhibits the following

behavior:

• given either a setOOO of objects (or a code call conditionχ[X] of the above type),

insaaa(χ[X],OOOSSS) is a genericmethodthat selects which of the insertion routines

insτi , associated with the different data structures, should be invoked in order to

accomplish the desired insertion.

We assume from now on that an insertion functioninsaaa and a deletion func-

tion delaaa may be associated with any agentaaa in this way.

6.2 Code Calls 207

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.3 Message Box

1. Each agent’s associated software code includes a special type calledMsgbox

(short for message box).

2. The message box is a buffer that may be filled (when it sends a message) or

flushed (when it reads the message) by the agent.

3. In addition, we assume the existence of an operating-systems level messaging

protocol (e.g.,SOCKETS or TCP/IP (Wilder 1993)) that can fill in (with

incoming messages) or flush (when a message is physically sent off) this buffer.

6.3 Message Box 208

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

The msgbox operates on objects of the form

(i/o,”src”,”dest”,”message”,”time”) .

1. i/o signifies an incoming or outgoing message respectively.

2. ”src” specifies the originator

3. ”dest” specifies the destination.

4. ”message” is a table consisting of triples of the form

(”varName”, ”varType”, ”value”) where”varName” is the name of the variable,

”varType” is the type of the variable and the”value” is the value of the variable in

string format.

5. ”time” denotes the time at which the message was sent.

6.3 Message Box 209

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

We will assume that the agent has the following functions that are integral in

managing this message box.

• sendMessagesendMessagesendMessage(<sourceagent>,<destgent>,<message>): This causes

(o, ”src”, ”dest”, ”message”, ”time”) to be placed inMsgbox. The parametero

signifies an outgoing message. When a call of

sendMessagesendMessagesendMessage(”src”, ”dest”, ”message”) is executed, the state ofMsgbox changes by

the insertion of the above quintuple denoting the sending of a message from the

source agentsrcsrcsrc to a given Destination agentdestdestdest involving the message body

”message”.

• getMessagegetMessagegetMessage(<src>): This causes a collection of

(i, ”src”, ”agent”, ”msg”, ”time”)

to be read fromMsgbox. Thei signifies an incoming message. Note that all

messages from the given source to the agentagentagentagent whose message box is being

examined, are returned by this operation.”time” denotes the time at which the

message was received.

6.3 Message Box 210

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

• timedGetMessagetimedGetMessagetimedGetMessage(<op>,<valid>): This causes the collection of all

quintuplestupof the formtup=def (i,<src>,<agent>,<message>,time) to

be read fromMsgbox, such that the comparisontup.time op valid is true, where

op is required to be any of the standard comparison operators<,>,≤,≥, or =.

• getVargetVargetVar(<mssgId>,<varName>): This functions searches through all the

triples in the”message” to find the requested variable. First, it converts the

variable from the string format given by the”value” into its corresponding data

type which is given by”varType”. If the requested variable is not in the message

determined by the”MssgId”, then an error string is returned.

6.3 Message Box 211

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.3 (STORE Revisited)
Suppose the profilingprofilingprofiling agent is asked to classify a user U with ssn S. To do this, the
profilingprofilingprofiling agent may need to obtain credit information for U from the creditcreditcredit agent.
The following actions may ensue:

1. The profilingprofilingprofiling agent sends the creditcreditcredit agent a message requesting S’s credit
information.

2. The creditcreditcredit agent reads this message and sends the profilingprofilingprofiling agent a reply.

3. The profilingprofilingprofiling agent reads this reply and uses it to generate an answer.

6.3 Message Box 212

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. Theprofilingprofilingprofiling agent is asked toclassifyUserclassifyUserclassifyUser(S). It generates a messageM1 of a

particular format, e.g., a string”askprovideCreditInfoS low,” which encodes the

request forS’s credit information, and calls

sendMessagesendMessagesendMessage(profilingprofilingprofiling,creditcreditcredit,M1).

2. Thecreditcreditcredit agent either periodically callsgetMessagegetMessagegetMessage(profilingprofilingprofiling) until M1
arrives, or calls it triggered by the event thatM1 has arrived. By parsingM1, it

determines that it needs to executeprovideCreditInfoprovideCreditInfoprovideCreditInfo(S,low) and send the result

back toprofilingprofilingprofiling. Depending on the result of the call,creditcreditcredit assembles a

messageM2 encoding theFinanceRecord which was returned, or an error

message. Here, we are assuming that the underlying OS level message protocol

does not drop or reorder messages (if it did, we would have to includeM1 and

M1’s Timein M2’s message). Next, thecreditcreditcredit agent calls

sendMessagesendMessagesendMessage(creditcreditcredit,profilingprofilingprofiling,M2).

6.3 Message Box 213

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

3. Theprofilingprofilingprofiling agent either periodically callsgetMessagegetMessagegetMessage(creditcreditcredit) until M2
arrives, or it is triggered by the arrival ofM2 and reads the message. By parsing

M2, it can determine what errors (if any) occurred or what the resulting

finance record was. Finally, theprofilingprofilingprofiling agent can use the contents ofM2

to construct the UserProfile to be returned.

6.3 Message Box 214

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.4 Integrity Constraints

Each agent has an associatedagent stateOOO, which is a set of objects (of the types

that the software code underlying the agent manages).

• Not all sets of such objects arelegal.

Definition 6.11 (Integrity Constraints ICICIC)
An integrity constraintIC is an expression of the form

ψ ⇒ χ

where ψ is a safe code call condition, and χ is an atomic code call condition such that
every root variable in χ occurs in ψ.

6.4 Integrity Constraints 215

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

1. I CI CI C 1 : in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U,part 001)))))))))))) &

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((V,part 002))))))))))))

⇒
in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((U+V,part 008)))))))))))).

2.

I CI CI C 3 : S = 123 45 6789⇒ not in(((((((((spender(low),profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((S)))))))))))).

3. I CI CI C 5 : R.sat id = sat 1 ⇒ R.2dloc.x≥ 0.

6.4 Integrity Constraints 216

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Definition 6.12 (Integrity Constraint Satisfaction)
A state OOOSSS satisfies an integrity constraint IC of the form ψ⇒ χ, denoted OOOSSS |= IC, if
for every legal assignment of objects from OOOSSS to the variables in IC, either ψ is false
or χ is true.

Let ICICIC be a (finite) collection of integrity constraints IC, and let OOOSSS be an agent state.
We say that OOOSSS satisfies ICICIC , denoted OOOSSS |= ICICIC , if and only if OOOSSS satisfies every
constraint IC ∈ ICICIC .

6.4 Integrity Constraints 217

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.5 Service Descriptions and Code Calls

Definition 6.13 (Service Rule)
Suppose snis the name of a service offered by an agent. Let i1, . . . , ik, mi1, . . . ,mim,

and o1, . . . ,on be the inputs, mandatory inputs, and outputs of the service sn,
respectively. A service rule definingsnis an expression of the form:

sn(i1, . . . , ik,mi1, . . . ,mim,o1, . . . ,on) ← χ

where χ is a code call condition that is safe modulo mi1, . . . ,mim. In this case, χ is
said to be the bodyof the above rule.

Definition 6.14 (Service Definition Programsdp)
Using the same notation as above, a service definition program(sdp for short)
associated with service snis a finite set of service rules defining sn.

6.5 Service Descriptions and Code Calls 218

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

• Consider a servicesndefined through a service definition program containingr

rules.

• Let the body of thei’th rule beχ(i).

• Suppose an agent specifies the mandatory inputs, i.e., an agent requesting this

service specifies a substitutionθ that assigns objects to each of the variables

mi1, . . . ,mim. In addition, the agent may specify a substitutionδ for the

discretionary inputs.

• Then the service definition program treats the agent’s request for servicesnas

described in algorithmimplement service.

6.5 Service Descriptions and Code Calls 219

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Algorithm 6.2 (implement service)
implement service(P:sdp; µ:subs; δ:subst)

(? P is a service definition program ?)
(? µ a subst. specif. values of all mandatory inputs ?)
(? δ a subst. specif. values of selected discret. inp. var’s ?)
(? Ansis the result of evaluating P w.r.t. inputs µ and δ ?)

1. Ans:= /0; Q := P;

2. while Q 6= /0 do
3. { select rule r i ∈ Q;
4. Q := Q\{r i};
5. SOL:= Sol((χ)µδ);
6. (? returns many substit.’s, one for each var. of sn ?)
7. (? that is not assigned an object by either of µ,δ ?)
8. restrict SOLto output variables;
9. Ans:= Ans∪ SOL;

10. }
11. return Ans;

end.

6.5 Service Descriptions and Code Calls 220

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.4 (STORE Revisited)
In HERMES, each sdp for the STORE example can be thought of as a predicate
within the mediator for one of STORE’s agents. A sample sdp is:

goodSpender(〈MI〉Category: UserCat〈\MI〉
〈O〉SSN: ListOfStrings,Class: UserProfile〈\O〉)
←

in(((((((((SSN,profilingprofilingprofiling : listUserslistUserslistUsers(((Category)))))))))))) &

in(((((((((Class,profilingprofilingprofiling :classifyUserclassifyUserclassifyUser(((SSN)))))))))))) &

not in(((((((((spender(low),generalgeneralgeneral :makeSetmakeSetmakeSet(((Class)))))))))))).
A HERMES invocation of this sdp is shown in Figure 6.1. The query

goodSpender(corporateUsers, Ssn, Class)

asks for the ssn and class of all corporate users who are not low spenders. (Note
that as the second parameter of the not in must be a set, we use the function
generalgeneralgeneral :makeSetmakeSetmakeSet(((Class))) to turn Class into a singleton set.

6.5 Service Descriptions and Code Calls 221

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Figure 6.1: Sample query on theprofilingprofilingprofiling agent’s mediator (first result)

6.5 Service Descriptions and Code Calls 222

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Figure 6.2: Queries on goodSpender andprofilingprofilingprofiling Agent’s Mediator

6.5 Service Descriptions and Code Calls 223

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Example 6.5 (CHAIN Revisited)
A sample query on the mediator for the suppliersuppliersupplier agent of the CHAIN example is
shown in Figure 6.3 on the next page. A sample sdp is:

sendViaTruck(〈MI〉Amount: Integer,Part id: String〈\MI〉
〈MI〉Src: String,Dest: String〈\MI〉
〈O〉Success: Boolean〈\O〉)
←

in(((((((((amount available,suppliersuppliersupplier :monitorStockmonitorStockmonitorStock(((Amount,Part id)))))))))))) &

in(((((((((Success,suppliersuppliersupplier :shipFreightshipFreightshipFreight(((Amount,Part id,truck,Src,Dest)))))))))))).

If 5 units of part 008 are available, then sendViaTruck(3, part 008, rome, paris,
Success) will be satisfied and Success will be true, if the shipping was possible.
But the query sendViaTruck(7, part 008, rome, paris, Success) will not be satisfied,
as the first in(((((((((,))))))))) above was not satisfied and hence the second in(((((((((,))))))))) above was never
called.

6.5 Service Descriptions and Code Calls 224

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

Figure 6.3: Sample query on thesuppliersuppliersupplier agent’s Mediator

6.5 Service Descriptions and Code Calls 225

Chapter 6: Legacy Data Multi-Agenten Systeme (VU), SS 00

6.6 Summary

This chapter was about a mechanism (; code call atoms) to abstract from given

legacy code and declaratively describe its effects.

1. In order toagentizelegacy code, we must make the most important datatypes

and functions of it available toIMPACT .

2. We call these functionsfff code calls: SSSSSSSSS :fff (((d1, . . . ,dn))).

3. We assume thatfff always returns a set.

4. To encapsulate these functions in a logical language, we usecode call atomscode call atomscode call atoms:

in(((((((((X,SSSSSSSSS :fff (((d1, . . . ,dn)))))))))))).

5. Code call atoms can be conjunctively merged together (with comparison

statements) and lead toCode Call Conditions.

6. To ensure that Code Call Conditions can be evaluated, we introduced the notion

of Safety.

6.6 Summary 226

References
Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-

edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sources.International Journal of
Intelligent Cooperative Information Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelli-
gent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Ed.),Proceedings
of ACM SIGMOD Conference on Management of Data, Tucson, Arizona, pp.
195–206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
Reasoning.IEEE Computer 28(9), 33–39.

463-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. InProceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (1999, September). Temporal agent pro-
grams. Technical Report CS-TR-4055, Dept. of CS, University of Maryland,
College Park, MD 20752. currently under submission for a Journal.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal
of Logic Programming 45(1).

Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I:
Semantics.Artificial Intelligence 108(1-2), 179–255.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
III: Polynomially Implementable Agents.Artificial Intelligence 117(1), 107–
167.

463-2

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algo-
rithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.Communications
of the ACM 37(7), 49–53.

Rogers Jr., H. (1967).Theory of Recursive Functions and Effective Computability.
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross
(2000).Heterogenous Active Agents. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. InProceedings of
ACM SIGMOD Conference on Management of Data, Washington, DC, pp.
434–437.

Wilder, F. (1993).A Guide to the TCP/IP Protocol Suite. Artech House.

463-3

