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Multi Agenten Systeme
VU SS 00, TU Wien

Teil 1 (Kapitel 1–4) basiert auf

Multi-Agent Systems (Gerhard Weiss), MIT

Press, June 1999.
Es werden allgemeine Techniken und Methoden

dargestellt (BDI-, Layered-, Logic based Architekturen,

Decision Making, Kommunikation/Interaktion, Kontrakt

Netze, Coalition Formation).

Teil 2 (Kapitel 5–9) basiert auf

Heterogenous Active Agents(Subrahmanian,

Bonatti, Dix, Eiter, Kraus,̈Ozcan and Ross), MIT

Press, May 2000.

Hier wird ein spezifischer Ansatz vorgestellt, der formale

Methoden aus dem logischen Programmieren benutzt,

aber nicht auf PROLOG aufsetzt (Code Call

Mechanismus, Aktionen, Agenten Zyklus, Status Menge,

Semantiken, Erweiterungen um Beliefs,

Implementierbarkeit).

Overview 1



Jürgen Dix Multi-Agenten Systeme (VU), SS 00

Übersicht

1. Einführung, Terminologie
2. 4 Grundlegende Architekturen
3. Distributed Decision Making
4. Contract Nets, Coalition Formation
5. IMPACT Architecture
6. Legacy Data and Code Calls
7. Actions and Agent Programs
8. Regular Agents
9. Meta Agent Programs
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Chapter 3. Distributed Decision Making
Overview

3.1 Evaluation Criteria

3.2 Voting

3.3 Auctions

3.4 Bargaining

3.5 General Market Criteria
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3 Distributed Decision Making
Two lectures: first lecture up to 3.3, second lecture 3.3 – end.
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Classical DAI: Sytem Designer fixes an Interaction-Protocol which is uniform for

all agents. The designer also fixes a strategy for each agent.

What is a the outcome, assuming that the protocol is followed and the

agents follow the strategies?

MAI: Interaction-Protocol is given. Each agent determines its own strategy

(maximizing its own good, via a utility function, without looking at the global

task).

What is the outcome, given a protocol that guarantees that each agent’s de-

sired local strategy is the best one (and is therefore chosen by the agent)?
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3.1 General Evaluation Criteria

We need tocompare negotiation protocols. Each such protocol leads to a solution.

So we determine how good these solutions are.

Social Welfare: Sum of all utilities

Pareto Efficiency: A solutionxxx is Pareto-optimal ( also called efficient), if

there is no solutionx′x′x′ with: (1)∃∃∃agentagagag : utagagag(x′x′x′)> utagagag(xxx)
(2)∀∀∀agentsag′ag′ag′ : utag′ag′ag′(x

′x′x′)≥ utag′ag′ag′(xxx).

Individual rational: if the payoff is higher than not participatingat all.
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Stability:

Case 1: Strategy of an agent depends on the others.

The profileS∗AAA = 〈S∗111,S∗222, . . . ,S∗|AAA|〉 is called a Nash-equilibrium, iff

∀∀∀iii : S∗iii is the best strategy for agentiii if all the others choose

〈S∗111,S∗222, . . . ,S∗i−1i−1i−1,S∗i+1i+1i+1, . . . ,S∗|AAA|〉.

Case 2: Strategy of an agent does not depends on the others.

Such strategies are called dominant.
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3.2 Voting

Agents give input to a mechanism and the outcome of it is taken as a solution

for the agents.

Motivation: 3 candidates, 3 voters

1 2 3

w1 A B C

w2 B C A

w3 C A B

Figure 3.1: Nonexistence of desired preference ordering.

Comparing A and B: majority for A. Comparing A and C: majority for C. Comparing

B and C: majority for B.Desired Preference ordering: A> B>C> A ????
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• LetAAA the set of agents,O the set of possible outcomes. (O could be equal toAAA,

or a set of laws).

• The voting of agentiii is described by a binary relation

≺≺≺iii ⊆O×O,

which we assume to be asymmetric, strict and transitive. We denote byOrdOrdOrd the

set of all such binary relations.

• Often, not all ofO is votable, only a subsetV ⊆ 2O\ /0. Eachv∈V represents a

possible “list”.

• Each agent votes independently of the others. Let therefore

U ⊆
|AAA|

∏
iii=1

Ord.
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• A social choice rule wrt.U,V is a function

f ∗ : U → Ord;(≺≺≺1, . . . ,≺≺≺|AAA|) 7→ ≺≺≺∗|V

Each functionf ∗ induces a choice functionC(≺≺≺1,... ,≺≺≺|AAA|) as follows:

C(≺≺≺1,... ,≺≺≺|AAA|) =def

 V −→ V

v 7→ C(≺≺≺1,... ,≺≺≺|AAA|)(v) = max≺≺≺∗|V v (⊆ v)

Each tupelu = (≺≺≺1, . . . ,≺≺≺|AAA|) determines the election for allv∈V.
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What are desirable properties forf ∗?

Pareto-Efficiency: (∀iii ∈AAA : o≺≺≺iiio′) implieso≺≺≺∗o′.

Indep. of Irrelevant Alternatives:

∀v∈V : (∀iii ∈AAA :≺≺≺iii|v =≺≺≺′iii|v) ⇒ C(≺≺≺1,... ,≺≺≺|AAA|)(v) = C(≺≺≺′111,... ,≺≺≺
′
|AAA|)

(v).
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Theorem 3.1 (Arrows Theorem)
If the choice function is (1) pareto efficient and (2) independent from irrelevant
alternatives, then there always exists a dictator:

∃iii ∈AAA : ∀o,o′ : o≺≺≺iiio′↔ o≺≺≺∗o′.

Ways out:

1. Choice function is not always satisfied.

2. Independence of alternatives is dropped.
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Binary protocol

Pairwise comparison.Not only introduction of irrelevant alternatives but also the

ordering may drastically change the outcome.

Figure 3.2: Four different orderings and four alternatives in a binary protocol.

Last ordering: d wins, but all agents preferc overd.
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Borda protocol

First gets|O| points, second|O|−1, . . . Then it is summed up, across voters.The

alternative with thehighest count wins.
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Figure 3.3: Winner turns loser and loser turns winner
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3.3 Auctions

While voting binds all agents, Auctions are always deals between 2.

Types of auctions:

first-price open cry: (English auction), as usual.

first-price sealed bid: one bids without knowing the other bids.

dutch auction: (descending auction) the seller lowers the price until it is taken.

second-price sealed bid: (Vickrey auction) Highest bidder wins, but the price is the

second highest bid!
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Three different auction settings:

private value: Value depends only on the bidder (cake).

common value: Value depends only on other bidders (treasury bills).

correlated value: Partly on own’s values, partly on others.
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What is the best strategy in Vickrey auctions?

Theorem 3.2 (Private-value Vickrey auctions)
The dominant strategy of a bidder in a Private-value Vickrey auction is to bid the
true valuation.

Therefore it is equivalent to english auctions.

Vickrey auctions are used to

• allocate computation resources in operating systems,

• allocate bandwith in computer networks,

• control building heating.
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Are first-price auctions better for the auctioneer than second-prize auc-
tions?

Theorem 3.3 (Expected Revenue)
All 4 types of protocols produce the same expected revenue to the auctioneer
(assuming (1) private value auctions, (2) values are independently distributed and (3)
bidders are risk-neutral).

Why are second price auctions not so popular among humans?

1. Lying auctioneer.

2.
When the results are published, subcontractors know the true valuations

and what they saved. So they might to share the profit.
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Inefficient Allocation and Lying at Vickrey

Auctioning heterogenous,interdependent items.

Example 3.1 (Task Allocation)
Two delivery tasks t1, t2. Two agents. ; blackboard.
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The global optimal solution is not reached by auctioning independently and

truthful bidding.

t1 goes to agent222 (for a price of222) andt2 goes to agent111 (for a price of 1.5).

Even if agent222 considers (when bidding fort2) that he already gott1 (so he bids

cost({t1, t2})−cost({t1}) = 2.5−1.5 = 1) he will get it only with a probability of

0.5.
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What about full lookahead? ; blackboard.

Therefore:

• It pays off for agent111 to bid more fort1 (up to 1.5 more than truthful bidding).

• It does not pay off for agent222, because agent222 does not make a profit att2
anyway.

•
Agent111 bids 0.5 for t1 (instead of 2), agent222 bids 1.5. Therefore agent111

gets it for 1.5. Agent111 also getst2 for 1.5.
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Does it make sense to countersperculate at private value Vickrey auctions?

Vickrey auctions were invented to avoid counterspeculation. But what if the private

value for a bidder is uncertain? The bidder might be able to determine it, but he needs

to investc.

Example 3.2 (Incentive to counterspeculate)
Suppose bidder 111 knows the (private-) value v1 of the item to be auctioned satisfies
v1 ∈ [0,1]. To determine it, he needs to invest cost.

For bidder 222, the private value v2 of the item is fixed: 0≤ v2 <
1
2 . So his dominant

strategy is to bid v2.

Should bidder 111 try to invest cost to determine his private value? How does
this depend on knowing v2?
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; blackboard.

Answer: Bidder111 should investcost if and only if

v2≥ (2cost)
1
2v2≥ (2cost)
1
2v2≥ (2cost)
1
2 .
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3.4 Bargaining

Axiomatic Bargaining

We assume two agents111,222 , each with a utility functionµiiiµiiiµiii : E→ R. If the agents do

not agree on a resulte the fallbackefallback is taken.

Example 3.3 (Sharing 1 Schilling)
How to share 1 Schilling?

Agent 111 offers ρ (0< ρ< 1). Agent 222 agrees!

Such deals are individually rational and each one is in Nash-equilibrium!

Therefore we need axioms!
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Axioms on the global solutionµ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.

Invariance: Absolute values of the utility functions do not matter, only relative

values.

Symmetry: Changing the agents does not influence the solutione∗.

Irrelevant Alternatives : If E is made smaller bute∗ still remains, thene∗ remains

the solution.

Pareto: The players can not get a higher utility thanµ∗µ∗µ∗ = 〈µ111µ111µ111(e∗),µ222µ222µ222(e∗)〉.
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Theorem 3.4 (Unique Solution)
The four axioms above uniquely determine a solution. This solution is given
by

e∗ = arg maxe{(µ111µ111µ111(e)−µ111µ111µ111(efallback))× (µ222µ222µ222(e)−µ222µ222µ222(efallback))}.
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Strategic Bargaining

No axioms: view it as a game!

Example revisited: Sharing 1 Schilling.

Protocol with finitely many steps:The last offerer just offersε. This should be

accepted, so the last offerer gets 1− ε.

This is unsatisfiable. Ways out:

1. Add a discountfactorδ: in roundn, only theδn−1th part of the original

value is available.

2. Bargaining costs: bargaining is not for free– fees have to be paid.
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Finite Games: Supposeδ = 0.9. Then the outcome depends on # rounds.

Round 1’s share 222’s share Total value Offerer

...
...

...
...

...

n−3 0.819 0.181 0.9n−4 222

n−2 0.91 0.09 0.9n−3 111

n−1 0.9 0.1 0.9n−2 222

n 1 0 0.9n−1 111
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Infinite Games: δ111 factor for agent111, δ222 factor for agent222.

Theorem 3.5 (Unique solution for infinite games)
In a discounted infinite round setting, theres exists a unique Nash equilibrium :

Agent 111 gets 1−δ222
1−δ111δ222

. Agent 222 gets the rest. Agreement is reached in the first

round.

Proof:
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Bargaining Costs

Agent111 paysc111, agent222 paysc222.

c111 = c222: Any split is in Nash-equilibrium.

c111 < c222: Agent111 gets all.

c111 > c222: Agent111 getsc222, agent222 gets 1−c222.
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3.5 General Equilibrium Mechanisms

A theory for efficiently allocating goods and resources amond agents, based

on market prices.

Goods: Givenn> 0 goodsg (coffee, mirror sites, parameters of an airplane design).

We assumeg 6= g′ but withing everything is indistinguishable.

Prices: The market has pricesp = [p1, p2, ..., pn] ∈ Rn: pi is the price of the goodi.
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Consumers: Consumeri hasµiµiµi(x) encoding its preferences over consumption

bundlesxi = [xi1, ...,xin]t , wherexig ∈ R+ is consumeri’s allocation of goodg.

Each consumer also has an initial endowmentei = [ei1, ...,ein]t ∈ R.

Producers: Use some commodities to produce others:yj = [y j1, ...,y jn]t , where

y jg ∈ R is the amount of goodg that producerj produces.

Yj is a set of such vectorsy.

Profit of producer j : p×yj , whereyj ∈Yj .

Profits: The profits are divided among the consumers (given predetermined

proportions∆i j ): ∆i j is the fraction of producerj that consumeri owns (stocks).

Profits are divided according to∆i j .
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Definition 3.1 (General Equilibrium)
(p∗,x∗,y∗) is in general equilibrium, if the following holds:

I. The markets are in equilibrium:

∑
i

x∗i = ∑
i

ei +∑
j

y∗j

II. Consumer i maximizes preferences according the prices

x∗i = arg max{xi∈Rn
+R
n
+R
n
+ | condi } µiµiµi(xi)

where condi stands for p∗×xi ≤ p∗×ei + ∑ j ∆i j p∗×yi .

III. Producer j maximizes profit wrt. the market

y∗i = arg max{yj∈Yj}p
∗×yj
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Theorem 3.6 (Pareto Efficiency)
Each general equilibrium is pareto efficient.

Theorem 3.7 (Coalition Stability)
Each general equilibrium with no producers is coalition-stable: no subgroup can
incease their utilities by deviating from the equilibrium and building their own
market.
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Theorem 3.8 (Existence of an Equilibrium)
Let the sets Yj be closed, convex and bounded above. Let µiµiµi be continous,
strictly convex and strongly monotone. Assume further that at least one bun-
dle xi is producible with only positive entries xil .
Under these assumptions a general equilibrium exists.

3.5 General Market Equilibrium 95



Chapter 3: Distributed Decision Making Multi-Agenten Systeme (VU), SS 00

3.6 Meaning of the assumptions

Formal definitions:; blackboard.

Convexity of Y j : Economies of scale in production do not satisfy it.

Continuity of the µiµiµi : Not satisfied in bandwith allocation for video conferences.

Strictly convex: Not satisfied if preference increases when he gets more of this good

(drugs, alcohol).
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In general, there exist more than one equilibrium.

Theorem 3.9 (Uniqueness)
If the society-wide demand for each good is non-decreasing in the prices of the other
goods, then a unique equilibrium exists.

Positive example: increasing price of meat forces people to eat potatoes

(pasta).

Negative example: increasing price of bread implies that the butter consump-

tion decreases.
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