
Jürgen Dix Multi Agent Systems, Ushuaia (Oct. 2000)

IMPACT :
A Platform for Heterogenous Agents

Lecture Course given at
Ushuaia, Argentina

October 2000

Jürgen Dix,
University of Koblenz and Technical University of Vienna

Overview 1

Jürgen Dix Multi Agent Systems, Ushuaia (Oct. 2000)

1. IMPACT Architecture
2. The Code Call Mechanism
3. Actions and Agent Programs
4. Regular Agents
5. Meta Agent Reasoning
6. Probabilistic Agent Reasoning
7. Temporal Agent Reasoning

Based on the book

Heterogenous Active Agents
(Subrahmanian, Bonatti, Dix,

Eiter, Kraus,Özcan and Ross),

MIT Press, May 2000.

Overview 2

Timetable:

• 10 minutes to explain what is going on. Some sentences for each chapter.

• Chapter 1 can be entirely done in the remaining time.

2-1

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

7. Temporal Agent Reasoning

Overview

7.1 Timed Actions

7.2 Temporal Agent Programs

7.3 Semantics

Overview 345

Timetable:

• Chapter 7 needs 30 minutes.

7 Temporal Agent Reasoning

345-1

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

7.1 Timed Actions

• Most real-world actions have aduration. heliheliheli: fly(”BA”, ”US”).

• It might be important to specify intermediate timepoints,checkpoints
(Definition 7.1), andto update the current stateincrementally at these

prespecified points.

Thus, in order to specify atimed action, we must:

1. Specify the total amount of time it takes for the action to be “completed”.

2. Specify exactly how the state of the agent changeswhile the action is being
executed.

7.1 Duration and Checkpoints 346

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.1 (Checkpoint Expressionsrel :{rel :{rel :{X | χ}}},abs :{abs :{abs :{X | χ}}})

• If i ∈N is a positive integer, then rel :{rel :{rel :{i}}} and abs :{abs :{abs :{i}}} are checkpoint expressions.

• If χ is a code call condition involving a non-negative, integer-valued variable X,
then rel :{rel :{rel :{X | χ}}} and abs :{abs :{abs :{X | χ}}} are checkpoint expressions.

7.1 Duration and Checkpoints 347

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Example 7.1
(Rescue: Checkpoints)

• rel :{rel :{rel :{100}}}. This says that a checkpoint occurs at the time of the start of the action,
100 units later, 200 units later, and so on.

• abs :{abs :{abs :{T | in(((((((((T,clockclockclock :timetimetime((())))))))))))& in(((((((((0,mathmathmath :remainderremainderremainder(((T,100))))))))))))& T> 5000}}}. This says
that a checkpoint occurs at absolute times 5000, 5100, 5200, and so on.

• abs :{abs :{abs :{T | in(((((((((T,clockclockclock :timetimetime((())))))))))))& in(((((((((X,aaa :getMessagegetMessagegetMessage(((comc))))))))))))& X.Time−T = 5}}}. This
says that a checkpoint occurs at 5 time units after a message is received from the
comccomccomc agent.

7.1 Duration and Checkpoints 348

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.2 (Timed Effect Triple 〈{chk},Add,Del〉)
A timed effect tripleis a triple of the form 〈{chk},Add,Del〉 where {chk} is a
checkpoint expression, and Addand Del are add lists and delete lists.

Example 7.2
(Rescue: Timed Effect Triples)

• The trucktrucktruck agent may use the following timed effect triple to update its fuel at
absolute times 5000, 5100, 5200, and so on.

1st arg :

abs :{abs :{abs :{T | in(((((((((T,clockclockclock :timetimetime((())))))))))))& in(((((((((0,mathmathmath :remainderremainderremainder(((T,100))))))))))))& T> 5000}}}
2nd arg:{in(((((((((NewFuelLevel,trucktrucktruck :fuelLevelfuelLevelfuelLevel(((Xnow))))))))))))}
3rd arg :{in(((((((((OldFuelLevel,trucktrucktruck :fuelLevelfuelLevelfuelLevel(((Xnow−20))))))))))))}

7.1 Duration and Checkpoints 349

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.3 (Timed Action)
A timed actionααα consists of:

Name: A name, usually written ααα(X1, . . . ,Xn), where the Xi’s are root variables.

Schema: A schema, usually written as (τ1, . . . ,τn), of types. Intuitively, this says that
the variable Xi must be of type τi , for all 1≤ i ≤ n.

Pre: A code-call condition χ, the preconditionof the action, denoted by Pre(ααα)

Dur:
An expression of the form {i} or {X | χ}. Depending on the current object
state, this expression determines a durationduration(ααα) ∈ N of ααα.

Tet:

A set Tet(ααα) of timed effect triples such that if both 〈{chk},Add,Del〉
and 〈{chk}′,Add′,Del′〉 are in Tet(ααα), then {chk} and {chk}′ have no
common solution w.r.t. any object state. The set Tet(ααα) together with
Dur(ααα) determines the set of checkpoints checkpoints(ααα) for action ααα
(as defined below).

7.1 Duration and Checkpoints 350

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Intuitively, if ααα is an action that we start executing attα
start, then

• Dur(ααα) specifies how to compute the durationduration(ααα) of ααα, and

• Tet(ααα) specifies the checkpoints associated with actionααα.

It is important to note thatDur(ααα) andTet(ααα) may not specify the duration and

checkpoint times explicitly (even if the associated checkpoints are of the form

abs :{abs :{abs :{X | χ}}}, i.e. absolute times). There is a method to computeduration(ααα).

7.1 Duration and Checkpoints 351

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

7.2 Temporal Agent Programs

Definition 7.4 (Temporal Annotation Item tai)

1. Every integer is a temporal annotation item.

2. The distinguished integer valued variable Xnow is a temporal annotation item.

3. Every integer valued variable is a temporal annotation item.

4. If tai1, . . . , tain are temporal annotation items, and b1, . . . ,bn are integers (positive
or negative), then (b1tai1 + . . .+bntain) is a temporal annotation item.

• 1 , Xnow , Xnow +3 , Xnow +2v+4 are all temporal annotation items ifv is an

integer valued variable.

• Temporal annotation items, when ground, evaluate to time points. They are used

to specify a time interval.

7.2 Temporal Agent Programs and Status Sets 352

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.5 (Temporal Annotation [tai1,tai2])
If tai1, tai2 are annotation items, then [tai1,tai2] is a temporal annotation.

• [2,5] is a temporal annotation item describing the set of time points between 2

and 5 (inclusive).

• [2,3X+4Y] is a temporal annotation.

• WhenX := 2,Y := 3, this defines the set of time points between 2 and 18.

[Xnow,Xnow +5] is a temporal annotation.

7.2 Temporal Agent Programs and Status Sets 353

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.6 ((Temporal) Action State Condition)
Suppose χ is a (possibly empty) code call condition, L1, . . . ,Ln are action status
literals, and ta is a temporal annotation. Then:

1. (χ& L1& . . .& Ln) is called an action state condition.

2. (χ& L1& . . .& Ln) : ta is called a temporal action state conjunct(tasc).

3. If χ is empty, then (L1& . . .& Ln) : ta is called a state-independenttasc .

Intuitively, whenρ : ta is ground for some action state conditionρ, we may read this

as “ρ is true at some point inta”. The following is a simpletasc.

• (in(((((((((X,heliheliheli : inventoryinventoryinventory(((fuel))))))))))))& X.Qty< 50) : [Xnow−10,Xnow].
Intuitively, this tasc is true if at some point in timeti in the last 10 time units, the

helicopter had less than 50 gallons of fuel left.

7.2 Temporal Agent Programs and Status Sets 354

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

We are now ready to define the most important syntactic construct of this

chapter, atemporal agent rule.

Definition 7.7 (Temporal Agent Rule/ProgramT P)
A temporal agent ruleis an expression of the form

Opααα : [tai1,tai2] ← ρ1 : ta1& · · ·& ρn : tan,

where Op ∈ {P,Do,F,O,W}, and ρ1 : ta1, . . . ,ρn : tan are tascs.

A temporal agent programis a finite set of temporal agent rules.

7.2 Temporal Agent Programs and Status Sets 355

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Intuitive Reading of Temporal Agent Rule
“If for all 1≤ i ≤ n, there exists a time point ti such thatρi is true at time ti
such that either

1. ρi is state independent and ti ∈ tai , or

2. ρi is not state independent and ti ≤ tnow (i.e. ti is now or is in the past)

and ti ∈ tai ,

thenOpααα is true at some point t≥ tnow (i.e. now or in the future) such that

tai1≤ t ≤ tai2”.

Opααα : [tai1,tai2] ← ρ1 : ta1& · · ·& ρn : tan,

7.2 Temporal Agent Programs and Status Sets 356

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

“If a prediction package expects a stock to rise K% afterTK units of time and

K ≥ 25 then buy the stock at time(Xnow +TK−2).”

We assume a prediction package that given a stock uses (some stock expertise) to

predict the change in the value of the stock at future time points. This function returns

a set of pairs of the form(T,C). Intuitively, this says thatT units from now, the stock

price will change byC percent (positive or negative).

DobuybuybuyS: [Xnow +X.T−2,Xnow +X.T−2] ←
(in(((((((((X,predpredpred :destdestdest(((S))))))))))))& X.C≥ 25) : [Xnow,Xnow].

7.2 Temporal Agent Programs and Status Sets 357

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

7.3 Semantics

Definition 7.8 (Temporal Status SetT Stnow)
A temporal status setT Stnow at time tnow is a mapping from natural numbers
to ordinary status sets satisfying T Stnow(i) = /0 for all i > i0 for some i0 ∈ N.

As usual a feasible status set must satisfy

• Closure under rules,

• Deontic consistency wrt.State History (; Definition 7.9).

• Deontic closure,

• Checkpoint consistency(; Definition 7.10).

7.3 Computation 358

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

As an agent that reasons about time may need to reason about the current, as

well as past states it was/is in, a notion of state history is needed.

Definition 7.9 (State History Functionhist tnow)
A state history functionhisttnow at time tnow is a partial function from N to agent
states such that histtnow(tnow) is always defined and for all i > tnow, histtnow(i) is
undefined.

7.3 Computation 359

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

The definition of state history does notrequirethat an agent store the entire past.

1.
He may decide to store no past information at all. In this case,histtnow(i)
is definedif and only if i= tnow.

2.

He may decide to store information only about the pasti units of

time. This means that he stores the agent’s state at timestnow,(tnow−
1), . . ., (tnow − i), i. e. histtnow is defined for the following arguments:

histtnow(tnow), histtnow(tnow−1), . . ., histtnow(tnow− i) are defined.

3. He may decide to store, in addition to the current state, the history every five time

units. That is,histtnow(tnow) is defined and for each 0≤ i ≤ tnow, if i mod 5= 0,

thenhisttnow(i) is defined. Such an agent may be specified by an agent designer

when he believes that maintaining some (but not all) past snapshots is adequate

for his application’s needs.

7.3 Computation 360

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

For a temporal status set to be feasible, at each checkpoint the state needs to

be updated.

The expected future states of the agent need to satisfy the integrity constraints.

Definition 7.10 (Checkpoint Consistency)
T Stnow is said to be checkpoint consistentat time tnow if, by definition,for all
i > tnow, EO(i) (see Definition 7.11) satisfies the integrity constraints ICICIC .

7.3 Computation 361

Chapter 7: Temporal Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 7.11 (Expected States at timet: EO(t))
Suppose the current time is tnow, histtnow is the agent’s state history function and
T Stnow is a temporal status set. The agent’s expected states are defined as follows:

• EO(tnow) = histtnow(tnow).

• For all time points i > tnow, EO(i) is the result of concurrently executing

{ααα |Doααα ∈ TSnow(i−1)}∪
{β′β′β′ |Doβββ ∈ TSnow(j) f or j ≤ i−1 and i−1 is a checkpoint for βββ, and β′β′β′

denotes the action (non-timed) which has an empty precondition,

and whose add and del lists are as specified by Tet(βββ)}

in state EO(i−1).

We note that that from a certain i0 ∈N onwards, we have EO(i) = /0 for all i > i0 (this
is because of the same property for the action history and the temporal status set).

7.3 Computation 362

References
Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-

edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sources.International Journal of
Intelligent Cooperative Information Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelli-
gent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Ed.),Proceedings
of ACM SIGMOD Conference on Management of Data, Tucson, Arizona, pp.
195–206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
Reasoning.IEEE Computer 28(9), 33–39.

362-1

Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. InProceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (2001). Temporal agent reasoning.Artifi-
cial Intelligence to appear.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal
of Logic Programming 46(1-2), 1–60.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
III: Polynomially Implementable Agents.Artificial Intelligence 117(1), 107–
167.

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algo-
rithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

362-2

Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.Communications
of the ACM 37(7), 49–53.

Rogers Jr., H. (1967).Theory of Recursive Functions and Effective Computability.
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross
(2000).Heterogenous Active Agents. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. InProceedings of
ACM SIGMOD Conference on Management of Data, Washington, DC, pp.
434–437.

Wilder, F. (1993).A Guide to the TCP/IP Protocol Suite. Artech House.

362-3

