
Jürgen Dix Multi Agent Systems, Ushuaia (Oct. 2000)

IMPACT :
A Platform for Heterogenous Agents

Lecture Course given at
Ushuaia, Argentina

October 2000

Jürgen Dix,
University of Koblenz and Technical University of Vienna

Overview 1



Jürgen Dix Multi Agent Systems, Ushuaia (Oct. 2000)

1. IMPACT Architecture
2. The Code Call Mechanism
3. Actions and Agent Programs
4. Regular Agents
5. Meta Agent Reasoning
6. Probabilistic Agent Reasoning
7. Temporal Agent Reasoning

Based on the book

Heterogenous Active Agents
(Subrahmanian, Bonatti, Dix,

Eiter, Kraus,Özcan and Ross),

MIT Press, May 2000.

Overview 2



Timetable:

• 10 minutes to explain what is going on. Some sentences for each chapter.

• Chapter 1 can be entirely done in the remaining time.

2-1



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

6. Probabilistic Agent Reasoning

Overview

6.1 Probabilistic Code Calls

6.2 Probabilistic Agent Programs

6.3 Kripke Style Semantics

Overview 320



Timetable:

• Chapter 6 needs 30 minutes.

6 Probabilistic Agent Reasoning

320-1



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

6.1 Probabilistic Code Calls

Imagine a surveillance example, wheresurvsurvsurv : identifyidentifyidentify(((image1))) tries to identify all

objects in a given image:it is well known that this is an uncertain task.

Some objects may be identified with 100% certainty, while in other cases, it may only

be possible to say it is either a T-72 tank with 40–50% probability.

Definition 6.1 (Random Variable of Typeτ)
A random variableof type τ is a finite set RV of objects of type τ, together with a
probability distribution ℘ that assigns real numbers in the unit interval [0,1] to
members of RV such that Σo∈RV℘(o)≤ 1.

6.1 Probabilistic Code Calls 321



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Uncertainty can be captured as follows.

Definition 6.2 (Probabilistic Code Callaaaaaaaaa :RV fff (((d1, . . . ,dn))))

Supposeaaaaaaaaa :fff (((d1, . . . ,dn))) is a code call whose output type is τ. The probabilistic code

call associated withaaaaaaaaa :fff (((d1, . . . ,dn))), denotedaaaaaaaaa :RV fff (((d1, . . . ,dn))), returns a set of
random variables of type τ when executed.

6.1 Probabilistic Code Calls 322



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Example 6.1
Consider the code call survsurvsurv :RV identifyidentifyidentify(((image1))). This code call may return the
following two random variables.

〈{t72, t80},{〈t72,0.5〉,〈t80,0.4〉}〉 and 〈{t60, t84},{〈t60,0.3〉,〈t84,0.7〉}〉

This says that the image processing algorithm has identified two objects in image1:

•
The first object is either a T-72 or a T-80 tank with 50% and 40% proba-
bility, respectively, while

•
the second object is either a T-60 or a T-84 tank with 30% and 70% prob-
ability respectively.

Probabilistic cc’s and ccc’s look exactly like ordinary cc’s and ccc’s—however, as a

probabilistic code call returns a set ofrandom variables, probabilistic code call
atoms are true or false with some probability.

6.1 Probabilistic Code Calls 323



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Example 6.2
Consider the probabilistic code call condition

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((image1))))))))))))& in(((((((((a1,survsurvsurv :RV turretturretturret(((X)))))))))))).

This ccc attempts to find all vehicles in “image1” with a gun turret of type a1. Let us
suppose that the first cc is as on the previous page, but gives back only the first
random variable.

When this result (X) is passed to the second code call, it returns one random variable
with two values—a1 with probability 30% and a2 with probability 65%.

What is the probability that the code call condition above is satisfied by a
particular assignment to X?

Let’s suppose X is assigned T72. If all T72’s have a2-type turrets, then the answer is
“0”.

Let’s suppose X is assigned T80. If the vehicule and turret identification is
independent, then the answer is “0.4× 0.3 = 0.12”.

6.1 Probabilistic Code Calls 324



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Example 6.3
Suppose we consider a code call cc returning the following two random variables.

RV1 = 〈{a,b},℘1〉

RV2 = 〈{b,c},℘2〉

Suppose ℘1(a) = 0.9,℘1(b) = 0.1,℘2(b) = 0.8,℘2(c) = 0.1.

What is the probability that b is in the result of the code call cc?

Answering this question is problematic.

6.1 Probabilistic Code Calls 325



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.3 (Probabilistic State of an Agent)
The probabilistic state of an agent aaa at any given point t in time, denoted O pO pO p(t),
consists of the set of all instantiated data objects and random variables of types
contained in TTTTTTTTT aaa.

Definition 6.4 (Satisfying a Code Call Atom)
Supposeaaaaaaaaa :RV fff (((d1, . . . ,dn))) is a ground probabilistic code call and o is an object of the
output type of this code call w.r.t. probabilistic agent state O pO pO p. Suppose [`,u] is a
closed, nonempty subinterval of the unit interval [0,1].

• o |=[`,u]
O pO pO p in(((((((((X,aaaaaaaaa :RV fff (((d1, . . . ,dn))))))))))))

if there is a (Y,℘) in the answer returned by evaluatingaaaaaaaaa :RV fff (((d1, . . . ,dn)))
w.r.t. O pO pO p such that o∈Y and `≤℘(o)≤ u.

• o |=[`,u]
O pO pO p not in(((((((((X,aaaaaaaaa :RV fff (((d1, . . . ,dn))))))))))))

if for all random variables (Y,℘) returned by evaluatingaaaaaaaaa :RV fff (((d1, . . . ,dn)))
w.r.t. O pO pO p, either o /∈Y or ℘(o) /∈ [`,u].

6.1 Probabilistic Code Calls 326



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Probabilistic code call conditions are defined in exactly the same way as code call

conditions. However, extending the above definition of “satisfaction” to probabilistic

code call conditions is highly problematic because (as shown in Examples 6.2, 6.3)

the probability that a conjunction is true depends not only on the probabilities

of the individual conjuncts, but also on the dependencies between the events

denoted by these conjuncts.

We allow the user to specify certain strategies.

6.1 Probabilistic Code Calls 327



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.5 (Probabilistic Conjunction Strategy⊗)

A probabilistic conjunction strategyis a mapping ⊗ which maps a pair of probability
intervals to a single probability interval satisfying the following axioms:

1. Bottomline: [L1,U1]⊗ [L2,U2]≤ [min(L1,L2),min(U1,U2)] where [x,y]≤ [x′,y′]
if x≤ x′ and y≤ y′.

2. Ignorance: [L1,U1]⊗ [L2,U2]⊆ [max(0,L1 +L2−1),min(U1,U2)].

3. Identity: When (e1∧e2) is consistent and [L2,U2] = [1,1],
[L1,U1]⊗ [L2,U2] = [L1,U1].

4. Annihilator: [L1,U1]⊗ [0,0] = [0,0].

5. Commutativity: [L1,U1]⊗ [L2,U2] = [L2,U2]⊗ [L1,U1].

6. Associativity: ([L1,U1]⊗ [L2,U2])⊗ [L3,U3] = [L1,U1]⊗ ([L2,U2]⊗ [L3,U3]).

7. Monotonicity: [L1,U1]⊗ [L2,U2]≤ [L1,U1]⊗ [L3,U3] if [L2,U2]≤ [L3,U3].

6.1 Probabilistic Code Calls 328



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

The concept of a conjunction strategy is very general, and has as special cases,

the following well known ways of combining probabilities.

1. When we do not know the dependencies betweene1,e2, we may use the

conjunction strategy⊗ig defined as

([L1,U1]⊗ig[L2,U2])≡ [max(0,L1 +L2−1),min(U1,U2)].

2. Whene1,e2 have maximal overlap, use the positive correlation conjunctive

strategy⊗pc defined as([L1,U1]⊗pc[L2,U2])≡ [min(L1,L2),min(U1,U2)].

3. Whene1,e2 have minimal overlap, use the negative correlation conjunctive

strategy⊗nc defined as

([L1,U1]⊗nc[L2,U2])≡ [max(0,L1 +L2−1),max(0,U1 +U2−1)].

4. When the two events occur independently, use the independence conjunction

strategy([L1,U1]⊗in [L2,U2]) = [L1 ·L2,U1 ·U2].

6.1 Probabilistic Code Calls 329



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

6.2 Probabilistic Agent Programs

We assume the existence of anannotation languageLann—the constant symbols of

Lann are the real numbers in the unit interval[0,1].

Definition 6.6 (Annotation Item)
We define annotation items inductively:

• Every constant and every variable of Lann is an annotation item.

• If f is an annotation function of arity n and ai1, . . . ,ain are annotation items, then
the term f (ai1, . . . ,ain) is an annotation item.

An annotation item is groundif no annotation variables occur in it.

6.2 Probabilistic Agent Programs 330



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.7 (Annotation [ai1,ai2])
If ai1,ai2 are annotation items, then the term [ai1,ai2] is an annotation. If ai1,ai2 are
both ground, then [ai1,ai2] is a ground annotation.

For instance,[0,0.4], [0.7,0.9], [0.1, V2], [ V4,
V
2] are all annotations. The annota-

tion [0.1, V2] denotes an interval only when a value in[0,1] is assigned to the

variableV.

6.2 Probabilistic Agent Programs 331



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.8 (Annotated Code Call Conditionχ : 〈[ai1,ai2],⊗〉)
If χ is a probabilistic code call condition, ⊗ is a conjunction strategy, and [ai1,ai2] is

an annotation, then χ : 〈[ai1,ai2],⊗〉 is an annotated code call condition.
χ : 〈[ai1,ai2],⊗〉 is groundif there are no variables in either χ or in [ai1,ai2].

For example, whenX is ground,

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((image1))))))))))))& in(((((((((a1,survsurvsurv :RV turretturretturret(((X)))))))))))) : 〈[0.3,0.5],⊗ig〉

is trueif and only if the probability thatX is identified by thesurvsurvsurv agent and that the

turret is identified as being of type a1 lies between 30 and 50% assuming that nothing

is known about the dependencies between turret identifications and identifications of

objects bysurvsurvsurv.

6.2 Probabilistic Agent Programs 332



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.9 (Probabilistic Agent ProgramsP P )
Suppose Γ is an annotated code call condition, and A,L1, . . . ,Ln are status atoms.
Then

A← Γ& L1& . . . & Ln (6.7)

is a probabilistic action rule.

A probabilistic agent program(pap for short) is a finite set of probabilistic action
rules.

It is important to note in the above definition that in a probabilistic action rule,

status atoms arenot annotated—uncertainty is present only in the state, and

on the basis of this uncertainty, the agent must determine what it is obliged to

do, forbidden from doing, etc.

6.2 Probabilistic Agent Programs 333



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Dosendwarn(X) ← in(((((((((F,survsurvsurv :filefilefile(((imagedb))))))))))))&

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((F))))))))))))&

in(((((((((a1,survsurvsurv :RV turretturretturret(((X))))))))))))) : 〈[0.7,1.0],⊗ig〉

¬Fsendwarn(X).

Fsendwarn(X) ← in(((((((((F,survsurvsurv :filefilefile(((imagedb))))))))))))&

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((F))))))))))))&

in(((((((((L,geogeogeo :RV getplnodegetplnodegetplnode(((X.location))))))))))))&

in(((((((((L,geogeogeo :RV rangerangerange(((100,100,20)))))))))))).

6.2 Probabilistic Agent Programs 334



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.10 (Feasible Probabilistic Status Set)
Suppose P P is an agent program and O pO pO p is a probabilistic agent state. A probabilistic
status set PS is feasiblefor P P on O pO pO p if the following conditions hold:

(PS1): AppP P ,OOOSSS
(PS)⊆ PS(closure under the program rules);

(PS2): PS is deontically and action consistent (deontic/action consistency);

(PS3): PS is action closed and deontically closed (deontic/action closure);

(PS4): PS is state consistent (state consistency).

6.2 Probabilistic Agent Programs 335



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.11 (Deontic and Action Consistency)
A probabilistic status set PS is deontically consistentwith respect to a probabilistic
agent state O pO pO p if, by definition,it satisfies the following rules for any ground action α:

• If Oα ∈ PS, then Wα /∈ PS.

• If Pα ∈ PS, then Fα /∈ PS.

• If Pα ∈ PS, then O pO pO p |=[1,1] Pre(α).

A probabilistic status set PS is action consistentw.r.t. O pO pO p if, by definition,for every
action constraint of the form

{α1(~X1), . . . ,αk(~Xk)}←↩ χ (6.8)

either O pO pO p 6|=[1,1] χ or {α1(~X1), . . . ,αk(~Xk)} 6⊆ Do(PS).

6.2 Probabilistic Agent Programs 336



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 6.12
Let P P be a probabilistic agent program, PSa probabilistic status set and O pO pO p a
probabilistic agent state. Assume further that each random variable contains exactly
one object with probability 1. Then we can define the following mappings:

Red1(·), which maps every random variable of the form 〈{oRV},1〉 to o:

Red1(〈{oRV},1〉) = o.

Red2(·), which maps annotated code call conditions to code call conditions by
simply removing the annotations and the conjunction strategy:

Red2(χ : 〈[ai1,ai2],⊗〉) = χ.

We can easily extend Red2(·) to a mapping from arbitrary conjunctions of
annotated code calls to conjunctions of code calls.

6.2 Probabilistic Agent Programs 337



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Red3(·), which maps every probabilistic agent program to a non-probabilistic agent
program: it clearly suffices to define Red3(·) on probabilistic agent rules. This is
done as follows

Red3(A← Γ& L1& . . . & Ln) = A← Red2(Γ)&& L1& . . .& Ln.

6.2 Probabilistic Agent Programs 338



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Theorem 6.1 (Semantics of Agent Programs as an Instance ofpaps)
Suppose all random variables have the form

〈{objectRV},1〉.

Then: (χ : 〈[ai1,ai2],⊗〉 is a ground annotated ccc, O pO pO p a probabilistic agent state)

Satisfaction: the satisfaction relations coincide, i.e.

O pO pO p |=[ai1,ai2] χ : 〈[ai1,ai2],⊗〉 if and only ifO pO pO p |= Red2(χ : 〈[ai1,ai2],⊗〉).

App-Operators: the App-Operators coincide, i.e.

AppRed3(P P ),O pO pO p(PS) = AppP P ,O pO pO p(PS).

Feasibility: Feasible probabilistic status sets coincide with feasible status sets under
our reductions, i.e. PS is a feasible probabilistic status set w.r.t. P P if and only

if PS is a feasible status set w.r.t. Red3(P P ).

6.2 Probabilistic Agent Programs 339



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

6.3 Kripke Style Semantics

Up to now, we assumed:

•
An action can be executed only if its precondition is believed by the agent

to be true in the agent statewith probability 1.

•
Every action that is permitted must also have a precondition that is be-

lieved to be truewith probability 1.

6.3 Kripke Style Semantics 340



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Every probabilistic state implicitly determines a set of (ordinary) states that

are “compatible” with it.

Definition 6.13 (Compatibility w.r.t. a Probabilistic State: COS(O pO pO p))

Let O pO pO p be a probabilistic agent state. An (ordinary) agent state OOO is said to be
compatiblewith O pO pO p if, by definition,for every ground code callaaaaaaaaa :fff (((d1, . . . ,dn))), it is
the case that for every object o∈ eval(aaaaaaaaa :fff (((d1, . . . ,dn))),OOO), there exists a random
variable (X,℘) ∈ eval(aaaaaaaaa :RV fff (((d1, . . . ,dn))),O pO pO p) such that o∈ X and ℘(o)> 0, and
there is no other object o′ ∈ X such that o′ ∈ eval(aaaaaaaaa :fff (((d1, . . . ,dn))),OOO).

We use the notation COS(O pO pO p).

6.3 Kripke Style Semantics 341



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

Example 6.4
Consider a probabilistic agent state O pO pO p with only two code calls
survsurvsurv : identifyidentifyidentify(((image1))) and survsurvsurv : locationlocationlocation(((image1))), which respectively return the
random variables

〈{t80, t72, t70},{〈t80,0.3〉,〈t72,0.7〉,〈t70,0.0〉}〉

and 〈{loc2},{〈loc2,0.8〉}〉. The agent states compatible w.r.t. O pO pO p are described in the
following table:

State Vehicle Location

1 none none

2 t80 none

3 t72 none

State Vehicle Location

4 none loc2

5 t80 loc2

6 t72 loc2

6.3 Kripke Style Semantics 342



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

in the real state

if Pre(α) is true

if Pre(α) is false

COS(O pO pO p)

α(COS(O pO pO p))

α(COS(O pO pO p))

in the real state

Figure 6.1: Applying an action.

6.3 Kripke Style Semantics 343



Chapter 6: Probabilistic Agent Reasoning Multi Agent Systems, Ushuaia (Oct. 2000)

It would be nice if

• agents were able to reason about the effects of their actions even when

they are not exactly sure what the world state is.

;;; Probabilistic Kripke Structures

• actions could be applied even when the precondition is only true wrt. a

certain probabilityp< 1.

;;; p-Feasible Status Sets

6.3 Kripke Style Semantics 344



References
Apt, K., H. Blair, and A. Walker (1988). Towards a Theory of Declarative Knowl-

edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Washington DC: Morgan Kaufmann.

Arens, Y., C. Y. Chee, C.-N. Hsu, and C. Knoblock (1993). Retrieving and In-
tegrating Data From Multiple Information Sources.International Journal of
Intelligent Cooperative Information Systems 2(2), 127–158.

Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999,
March/April). IMPACT: A Platform for Collaborating Agents.IEEE Intelli-
gent Systems 14, 64–72.

Bayardo, R., et al. (1997). Infosleuth: Agent-based Semantic Integration of Infor-
mation in Open and Dynamic Environments. In J. Peckham (Ed.),Proceedings
of ACM SIGMOD Conference on Management of Data, Tucson, Arizona, pp.
195–206.

Brink, A., S. Marcus, and V. Subrahmanian (1995). Heterogeneous Multimedia
Reasoning.IEEE Computer 28(9), 33–39.

362-1



Chawathe, S., et al. (1994, October). The TSIMMIS Project: Integration of Het-
erogeneous Information Sources. InProceedings of the 10th Meeting of the
Information Processing Society of Japan, Tokyo, Japan. Also available via
anonymous FTP from host db.stanford.edu, file /pub/chawathe/1994/tsimmis-
overview.ps.

Dix, J., S. Kraus, and V. Subrahmanian (2001). Temporal agent reasoning.Artifi-
cial Intelligence to appear.

Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning.
Transactions of Computational Logic 1(2).

Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs.Journal
of Logic Programming 46(1-2), 1–60.

Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents,
III: Polynomially Implementable Agents.Artificial Intelligence 117(1), 107–
167.

Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algo-
rithms and Complexity.Artificial Intelligence 108(1-2), 257–307.

362-2



Genesereth, M. R. and S. P. Ketchpel (1994). Software Agents.Communications
of the ACM 37(7), 49–53.

Rogers Jr., H. (1967).Theory of Recursive Functions and Effective Computability.
New York: McGraw-Hill.

Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F.Özcan, and R. Ross
(2000).Heterogenous Active Agents. MIT-Press.

Wiederhold, G. (1993). Intelligent Integration of Information. InProceedings of
ACM SIGMOD Conference on Management of Data, Washington, DC, pp.
434–437.

Wilder, F. (1993).A Guide to the TCP/IP Protocol Suite. Artech House.

362-3


