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Timetable:

• 10 minutes to explain what is going on. Some sentences for each chapter.

• Chapter 1 can be entirely done in the remaining time.
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Timetable:

• Chapter 6 needs 30 minutes.
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6.1 Probabilistic Code Calls

Imagine a surveillance example, wheresurvsurvsurv : identifyidentifyidentify(((image1))) tries to identify all

objects in a given image:it is well known that this is an uncertain task.

Some objects may be identified with 100% certainty, while in other cases, it may only

be possible to say it is either a T-72 tank with 40–50% probability.

Definition 6.1 (Random Variable of Typeτ)
A random variableof type τ is a finite set RV of objects of type τ, together with a
probability distribution ℘ that assigns real numbers in the unit interval [0,1] to
members of RV such that Σo∈RV℘(o)≤ 1.
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Uncertainty can be captured as follows.

Definition 6.2 (Probabilistic Code Callaaaaaaaaa :RV fff (((d1, . . . ,dn))))

Supposeaaaaaaaaa :fff (((d1, . . . ,dn))) is a code call whose output type is τ. The probabilistic code

call associated withaaaaaaaaa :fff (((d1, . . . ,dn))), denotedaaaaaaaaa :RV fff (((d1, . . . ,dn))), returns a set of
random variables of type τ when executed.
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Example 6.1
Consider the code call survsurvsurv :RV identifyidentifyidentify(((image1))). This code call may return the
following two random variables.

〈{t72, t80},{〈t72,0.5〉,〈t80,0.4〉}〉 and 〈{t60, t84},{〈t60,0.3〉,〈t84,0.7〉}〉

This says that the image processing algorithm has identified two objects in image1:

•
The first object is either a T-72 or a T-80 tank with 50% and 40% proba-
bility, respectively, while

•
the second object is either a T-60 or a T-84 tank with 30% and 70% prob-
ability respectively.

Probabilistic cc’s and ccc’s look exactly like ordinary cc’s and ccc’s—however, as a

probabilistic code call returns a set ofrandom variables, probabilistic code call
atoms are true or false with some probability.
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Example 6.2
Consider the probabilistic code call condition

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((image1))))))))))))& in(((((((((a1,survsurvsurv :RV turretturretturret(((X)))))))))))).

This ccc attempts to find all vehicles in “image1” with a gun turret of type a1. Let us
suppose that the first cc is as on the previous page, but gives back only the first
random variable.

When this result (X) is passed to the second code call, it returns one random variable
with two values—a1 with probability 30% and a2 with probability 65%.

What is the probability that the code call condition above is satisfied by a
particular assignment to X?

Let’s suppose X is assigned T72. If all T72’s have a2-type turrets, then the answer is
“0”.

Let’s suppose X is assigned T80. If the vehicule and turret identification is
independent, then the answer is “0.4× 0.3 = 0.12”.
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Example 6.3
Suppose we consider a code call cc returning the following two random variables.

RV1 = 〈{a,b},℘1〉

RV2 = 〈{b,c},℘2〉

Suppose ℘1(a) = 0.9,℘1(b) = 0.1,℘2(b) = 0.8,℘2(c) = 0.1.

What is the probability that b is in the result of the code call cc?

Answering this question is problematic.
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Definition 6.3 (Probabilistic State of an Agent)
The probabilistic state of an agent aaa at any given point t in time, denoted O pO pO p(t),
consists of the set of all instantiated data objects and random variables of types
contained in TTTTTTTTT aaa.

Definition 6.4 (Satisfying a Code Call Atom)
Supposeaaaaaaaaa :RV fff (((d1, . . . ,dn))) is a ground probabilistic code call and o is an object of the
output type of this code call w.r.t. probabilistic agent state O pO pO p. Suppose [`,u] is a
closed, nonempty subinterval of the unit interval [0,1].

• o |=[`,u]
O pO pO p in(((((((((X,aaaaaaaaa :RV fff (((d1, . . . ,dn))))))))))))

if there is a (Y,℘) in the answer returned by evaluatingaaaaaaaaa :RV fff (((d1, . . . ,dn)))
w.r.t. O pO pO p such that o∈Y and `≤℘(o)≤ u.

• o |=[`,u]
O pO pO p not in(((((((((X,aaaaaaaaa :RV fff (((d1, . . . ,dn))))))))))))

if for all random variables (Y,℘) returned by evaluatingaaaaaaaaa :RV fff (((d1, . . . ,dn)))
w.r.t. O pO pO p, either o /∈Y or ℘(o) /∈ [`,u].
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Probabilistic code call conditions are defined in exactly the same way as code call

conditions. However, extending the above definition of “satisfaction” to probabilistic

code call conditions is highly problematic because (as shown in Examples 6.2, 6.3)

the probability that a conjunction is true depends not only on the probabilities

of the individual conjuncts, but also on the dependencies between the events

denoted by these conjuncts.

We allow the user to specify certain strategies.
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Definition 6.5 (Probabilistic Conjunction Strategy⊗)

A probabilistic conjunction strategyis a mapping ⊗ which maps a pair of probability
intervals to a single probability interval satisfying the following axioms:

1. Bottomline: [L1,U1]⊗ [L2,U2]≤ [min(L1,L2),min(U1,U2)] where [x,y]≤ [x′,y′]
if x≤ x′ and y≤ y′.

2. Ignorance: [L1,U1]⊗ [L2,U2]⊆ [max(0,L1 +L2−1),min(U1,U2)].

3. Identity: When (e1∧e2) is consistent and [L2,U2] = [1,1],
[L1,U1]⊗ [L2,U2] = [L1,U1].

4. Annihilator: [L1,U1]⊗ [0,0] = [0,0].

5. Commutativity: [L1,U1]⊗ [L2,U2] = [L2,U2]⊗ [L1,U1].

6. Associativity: ([L1,U1]⊗ [L2,U2])⊗ [L3,U3] = [L1,U1]⊗ ([L2,U2]⊗ [L3,U3]).

7. Monotonicity: [L1,U1]⊗ [L2,U2]≤ [L1,U1]⊗ [L3,U3] if [L2,U2]≤ [L3,U3].
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The concept of a conjunction strategy is very general, and has as special cases,

the following well known ways of combining probabilities.

1. When we do not know the dependencies betweene1,e2, we may use the

conjunction strategy⊗ig defined as

([L1,U1]⊗ig[L2,U2])≡ [max(0,L1 +L2−1),min(U1,U2)].

2. Whene1,e2 have maximal overlap, use the positive correlation conjunctive

strategy⊗pc defined as([L1,U1]⊗pc[L2,U2])≡ [min(L1,L2),min(U1,U2)].

3. Whene1,e2 have minimal overlap, use the negative correlation conjunctive

strategy⊗nc defined as

([L1,U1]⊗nc[L2,U2])≡ [max(0,L1 +L2−1),max(0,U1 +U2−1)].

4. When the two events occur independently, use the independence conjunction

strategy([L1,U1]⊗in [L2,U2]) = [L1 ·L2,U1 ·U2].
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6.2 Probabilistic Agent Programs

We assume the existence of anannotation languageLann—the constant symbols of

Lann are the real numbers in the unit interval[0,1].

Definition 6.6 (Annotation Item)
We define annotation items inductively:

• Every constant and every variable of Lann is an annotation item.

• If f is an annotation function of arity n and ai1, . . . ,ain are annotation items, then
the term f (ai1, . . . ,ain) is an annotation item.

An annotation item is groundif no annotation variables occur in it.
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Definition 6.7 (Annotation [ai1,ai2])
If ai1,ai2 are annotation items, then the term [ai1,ai2] is an annotation. If ai1,ai2 are
both ground, then [ai1,ai2] is a ground annotation.

For instance,[0,0.4], [0.7,0.9], [0.1, V2], [ V4,
V
2] are all annotations. The annota-

tion [0.1, V2] denotes an interval only when a value in[0,1] is assigned to the

variableV.
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Definition 6.8 (Annotated Code Call Conditionχ : 〈[ai1,ai2],⊗〉)
If χ is a probabilistic code call condition, ⊗ is a conjunction strategy, and [ai1,ai2] is

an annotation, then χ : 〈[ai1,ai2],⊗〉 is an annotated code call condition.
χ : 〈[ai1,ai2],⊗〉 is groundif there are no variables in either χ or in [ai1,ai2].

For example, whenX is ground,

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((image1))))))))))))& in(((((((((a1,survsurvsurv :RV turretturretturret(((X)))))))))))) : 〈[0.3,0.5],⊗ig〉

is trueif and only if the probability thatX is identified by thesurvsurvsurv agent and that the

turret is identified as being of type a1 lies between 30 and 50% assuming that nothing

is known about the dependencies between turret identifications and identifications of

objects bysurvsurvsurv.
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Definition 6.9 (Probabilistic Agent ProgramsP P )
Suppose Γ is an annotated code call condition, and A,L1, . . . ,Ln are status atoms.
Then

A← Γ& L1& . . . & Ln (6.7)

is a probabilistic action rule.

A probabilistic agent program(pap for short) is a finite set of probabilistic action
rules.

It is important to note in the above definition that in a probabilistic action rule,

status atoms arenot annotated—uncertainty is present only in the state, and

on the basis of this uncertainty, the agent must determine what it is obliged to

do, forbidden from doing, etc.
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Dosendwarn(X) ← in(((((((((F,survsurvsurv :filefilefile(((imagedb))))))))))))&

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((F))))))))))))&

in(((((((((a1,survsurvsurv :RV turretturretturret(((X))))))))))))) : 〈[0.7,1.0],⊗ig〉

¬Fsendwarn(X).

Fsendwarn(X) ← in(((((((((F,survsurvsurv :filefilefile(((imagedb))))))))))))&

in(((((((((X,survsurvsurv :RV identifyidentifyidentify(((F))))))))))))&

in(((((((((L,geogeogeo :RV getplnodegetplnodegetplnode(((X.location))))))))))))&

in(((((((((L,geogeogeo :RV rangerangerange(((100,100,20)))))))))))).
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Definition 6.10 (Feasible Probabilistic Status Set)
Suppose P P is an agent program and O pO pO p is a probabilistic agent state. A probabilistic
status set PS is feasiblefor P P on O pO pO p if the following conditions hold:

(PS1): AppP P ,OOOSSS
(PS)⊆ PS(closure under the program rules);

(PS2): PS is deontically and action consistent (deontic/action consistency);

(PS3): PS is action closed and deontically closed (deontic/action closure);

(PS4): PS is state consistent (state consistency).
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Definition 6.11 (Deontic and Action Consistency)
A probabilistic status set PS is deontically consistentwith respect to a probabilistic
agent state O pO pO p if, by definition,it satisfies the following rules for any ground action α:

• If Oα ∈ PS, then Wα /∈ PS.

• If Pα ∈ PS, then Fα /∈ PS.

• If Pα ∈ PS, then O pO pO p |=[1,1] Pre(α).

A probabilistic status set PS is action consistentw.r.t. O pO pO p if, by definition,for every
action constraint of the form

{α1(~X1), . . . ,αk(~Xk)}←↩ χ (6.8)

either O pO pO p 6|=[1,1] χ or {α1(~X1), . . . ,αk(~Xk)} 6⊆ Do(PS).
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Definition 6.12
Let P P be a probabilistic agent program, PSa probabilistic status set and O pO pO p a
probabilistic agent state. Assume further that each random variable contains exactly
one object with probability 1. Then we can define the following mappings:

Red1(·), which maps every random variable of the form 〈{oRV},1〉 to o:

Red1(〈{oRV},1〉) = o.

Red2(·), which maps annotated code call conditions to code call conditions by
simply removing the annotations and the conjunction strategy:

Red2(χ : 〈[ai1,ai2],⊗〉) = χ.

We can easily extend Red2(·) to a mapping from arbitrary conjunctions of
annotated code calls to conjunctions of code calls.
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Red3(·), which maps every probabilistic agent program to a non-probabilistic agent
program: it clearly suffices to define Red3(·) on probabilistic agent rules. This is
done as follows

Red3(A← Γ& L1& . . . & Ln) = A← Red2(Γ)&& L1& . . .& Ln.
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Theorem 6.1 (Semantics of Agent Programs as an Instance ofpaps)
Suppose all random variables have the form

〈{objectRV},1〉.

Then: (χ : 〈[ai1,ai2],⊗〉 is a ground annotated ccc, O pO pO p a probabilistic agent state)

Satisfaction: the satisfaction relations coincide, i.e.

O pO pO p |=[ai1,ai2] χ : 〈[ai1,ai2],⊗〉 if and only ifO pO pO p |= Red2(χ : 〈[ai1,ai2],⊗〉).

App-Operators: the App-Operators coincide, i.e.

AppRed3(P P ),O pO pO p(PS) = AppP P ,O pO pO p(PS).

Feasibility: Feasible probabilistic status sets coincide with feasible status sets under
our reductions, i.e. PS is a feasible probabilistic status set w.r.t. P P if and only

if PS is a feasible status set w.r.t. Red3(P P ).
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6.3 Kripke Style Semantics

Up to now, we assumed:

•
An action can be executed only if its precondition is believed by the agent

to be true in the agent statewith probability 1.

•
Every action that is permitted must also have a precondition that is be-

lieved to be truewith probability 1.
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Every probabilistic state implicitly determines a set of (ordinary) states that

are “compatible” with it.

Definition 6.13 (Compatibility w.r.t. a Probabilistic State: COS(O pO pO p))

Let O pO pO p be a probabilistic agent state. An (ordinary) agent state OOO is said to be
compatiblewith O pO pO p if, by definition,for every ground code callaaaaaaaaa :fff (((d1, . . . ,dn))), it is
the case that for every object o∈ eval(aaaaaaaaa :fff (((d1, . . . ,dn))),OOO), there exists a random
variable (X,℘) ∈ eval(aaaaaaaaa :RV fff (((d1, . . . ,dn))),O pO pO p) such that o∈ X and ℘(o)> 0, and
there is no other object o′ ∈ X such that o′ ∈ eval(aaaaaaaaa :fff (((d1, . . . ,dn))),OOO).

We use the notation COS(O pO pO p).
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Example 6.4
Consider a probabilistic agent state O pO pO p with only two code calls
survsurvsurv : identifyidentifyidentify(((image1))) and survsurvsurv : locationlocationlocation(((image1))), which respectively return the
random variables

〈{t80, t72, t70},{〈t80,0.3〉,〈t72,0.7〉,〈t70,0.0〉}〉

and 〈{loc2},{〈loc2,0.8〉}〉. The agent states compatible w.r.t. O pO pO p are described in the
following table:

State Vehicle Location

1 none none

2 t80 none

3 t72 none

State Vehicle Location

4 none loc2

5 t80 loc2

6 t72 loc2
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in the real state

if Pre(α) is true

if Pre(α) is false

COS(O pO pO p)

α(COS(O pO pO p))

α(COS(O pO pO p))

in the real state

Figure 6.1: Applying an action.
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It would be nice if

• agents were able to reason about the effects of their actions even when

they are not exactly sure what the world state is.

;;; Probabilistic Kripke Structures

• actions could be applied even when the precondition is only true wrt. a

certain probabilityp< 1.

;;; p-Feasible Status Sets

6.3 Kripke Style Semantics 344
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