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• We define (in Section 4.1), a class of agents calledweak regular agentsthat

serve as a stepping stone to later defining regular agents.

• We derive (in Section 4.2) various theoretical properties of weak regular agents

that make the design of acomputation procedureto compute regular agents

polynomial .

• We extend (in Section 4.3) the definition of weak regular agents to define

regular agents—the central contribution of this Section.
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4.1 Weakly Regular Agents

WRAPs are characterized by three basic properties:

Strong Safety: In addition to the safety requirement on rules introduced in Section 2

(Definition 2.8), code call conditions are required to satisfy some additional

conditions which ensure that theyalways return finite answers.

Conflict-Freedom: The set of rules in a WRAP should not lead to conflicts—for

example, the rules must not force an agent to do something it is forbidden to do.

Deontic Stratifiability: This is a property in the spirit of stratification in logic

programs (Apt, Blair, and Walker 1988), which

prevents problems with negationin rule bodies. However, deontic stratification

is more complex than ordinary stratification (due to deontic modalities).

4.1 Weakly Regular Agents 208



Chapter 4: Implementing Agents Multi Agent Systems, Ushuaia (Oct. 2000)

4.1.1 Strong Safety

Safety is acompile-timecheck that ensures that all code calls generated atrun-time

have instantiated parameters. However, executability of a code call condition does not

depend solely on safety. For example, consider the simple code call condition

in(((((((((X,mathmathmath :geqgeqgeq(((25)))))))))))).

Though this code call condition is safe, it leads to an infinite set of possi-

ble answers, leading to non-termination.
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Consider, for instance, the code call condition

in(((((((((X,mathmathmath :geqgeqgeq(((25))))))))))))& in(((((((((Y,mathmathmath :squaresquaresquare(((X))))))))))))& Y≤ 2000.

Clearly, over the integers there are only finitely many ground substitutions that cause

this code call condition to be true. Furthermore, this code call condition is safe.

However, its evaluation may never terminate. The reason for this is that safety

requires that we first compute the set of all integers that are greater than 25, leading to

an infinite computation.

This means that in general, we must impose some restrictions on code call

conditions to ensure that they are finitely evaluable.
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As is well known, determining whether a function is finite or not is undecid-

able (Rogers Jr. 1967), and hence, input from the agent developer is impera-

tive.

Definition 4.1 (Binding Pattern)
Suppose we consider a code call SSSSSSSSS :fff (((a1, . . . ,an))) where each ai is of type τi . A
binding patternfor SSSSSSSSS :fff (((a1, . . . ,an))) is an n-tuple (bt1, . . . ,btn) where each bti (called a
binding term) is either:

1. A value of type τi , or

2. The expression [ denoting that this argument is bound to an unknown value.
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We require that the agent developer must specify afinitenesspredicate that

may be defined via afiniteness tablehaving two columns—the first column

is the name of the code call, while the second column is a binding pattern for

the function in question.

Intuitively, suppose we have a row of the form

〈SSSSSSSSS :fff (((a1,a2,a3))),([,5, [)〉

in the finiteness table. Then this row says that the answer returned by any code call of

the formSSSSSSSSS :fff (((−,5,−))) is finite.
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Example 4.1 (Finiteness Table for AutoPilot Agent inCFIT Example)
An example of a finiteness table is given below.

Code Call Binding Pattern

autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((SensorId))) ([)

autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation(((Location,FlightRoute,Speed))) ([, [, [)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,1)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,2)

autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N))) ([, [,3)

This indicates that autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData((())) and autoPilotautoPilotautoPilot :calculateLocationcalculateLocationcalculateLocation((()))
always return a finite number of answers.
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The code call autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((CurrentLocation,No go,N)))
returns up to N flight routes when N 6= 0. If N = 0, then an infinite number of flight
routes (which start at CurrentLocation and avoid the given No go areas) may be
returned. Our finiteness table above indicates that when 1≤ N≤ 3,
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes((())) will only return a finite number of answers.
Notice that this table is incomplete since it does not indicate that a finite number of
answers will be returned when N> 3.
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From the fact that any code call of the formSSSSSSSSS :fff (((−,5,−))) has a finite answer, we

should certainly be able to infer that the code callSSSSSSSSS :fff (((20,5,17))) has a finite answer.

In order to make this kind of inference, we need to associate anordering on binding

patterns. We say that[≤ val for all values, and take the reflexive closure. We may

now extend this≤ ordering to binding patterns.
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Definition 4.2 (Ordering on Binding Patterns)
We say a binding pattern (bt1, . . . ,btn) is equally or less informativethan another
binding pattern (bt′1, . . . ,bt′n) if, by definition,for all 1≤ i ≤ n, bti ≤ bt′i .

We will say(bt1, . . . ,btn) is less informativethan(bt′1, . . . ,bt′n) if and only if it is

equally or less informative than(bt′1, . . . ,bt′n) and(bt′1, . . . ,bt′n) is not equally or less

informative than(bt1, . . . ,btn). If (bt′1, . . . ,bt′n) is less informative than(bt1, . . . ,btn),
then we will say that(bt1, . . . ,btn) is more informativethan(bt′1, . . . ,bt′n).
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Suppose now that the developer of an agent specifies a finiteness tableFINTAB. The

following definition specifies what it means for a specific code call atom to be

considered finite w.r.t.FINTAB.

Definition 4.3 (Finiteness)
Suppose FINTAB is a finite finiteness table , and (bt1, . . . ,btn) is a binding pattern
associated with the code call SSSSSSSSS :fff (((· · ·))). Then FINTAB is said to entail the finiteness of

SSSSSSSSS :fff (((bt1, . . . ,btn))) if, by definition,there exists an entry of the form
〈SSSSSSSSS :fff (((. . .))),(bt′1, . . . ,bt′n)〉 in FINTAB such that (bt1, . . . ,btn) is more informative than
(bt′1, . . . ,bt′n).
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Example 4.2 (Finiteness Table)
Let FINTAB be the finiteness table given in Example 4.1 on page 213. Then FINTAB

entails the finiteness of autoPilotautoPilotautoPilot :readGPSDatareadGPSDatareadGPSData(((5))) and
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,2))) but it does not entail the
finiteness of autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,0))) (since this
may have an infinite number of answers) or
autoPilotautoPilotautoPilot :calculateNFlightRoutescalculateNFlightRoutescalculateNFlightRoutes(((〈221,379,433〉, /0,5))) (since FINTAB is not
complete).
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• We have now defined a condition to ensure finiteness of a code call of the form

SSSSSSSSS :fff (((. . .))).

• Defining strong safety of a code callcondition is more complex. For instance,

even if we know thatSSSSSSSSS :fff (((t1, . . . ,tn))) is finite, the code call atom

not in(((((((((X,SSSSSSSSS :fff (((t1, . . . ,tn)))))))))))) may have an infinite answer. Likewise for comparison

conditions.
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We make two simplifying assumptions, though both of them can be easily modified to

handle other cases:

1. First, we will assume that every functionf has a complementfff . An objecto is

returned by the code callSSSSSSSSS : fffffffff (((t1, . . . ,tn))) if, by definition, ois not returned by

SSSSSSSSS :fff (((t1, . . . ,tn))). Once this occurs, all code call atomsnot in(((((((((X,SSSSSSSSS :fff (((t1, . . . ,tn))))))))))))
may be rewritten asin(((((((((X,SSSSSSSSS : fffffffff (((t1, . . . ,tn)))))))))))) thus eliminating the negation

membership predicate.

When the agent developer createsFINTAB, he must also specify the finite-

ness conditions (if any) associated with function callsfffffffff .
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2. Second, in the definition of strong safety below, we assume that all comparison

operators involve variables over types having the following property.

Downward Finiteness Property. A type τ is said to have thedownward finiteness

property if, by definition,it has an associated partial ordering≤ such that for all

objectsx of typeτ, the set{o′ | o′ is an object of typeτ ando′ ≤ o} is finite.

It is easy to see that the positive integers have this property, as do the set of all

strings ordered by the standard lexicographic ordering. (Later, we will show how

this property may be relaxed to accommodate the reals, the negative integers, and

so on.)
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Definition 4.4 (Strong Safety)
A safe code call condition χ = χ1& . . .& χn is strongly safew.r.t. a list ~X of root
variables if, by definition,there is a permutation π witnessing the safety of χ modulo
~X such that for each 1≤ i ≤ n, χπ(i) is strongly safe modulo ~X, where strong safety of
χπ(i) is defined as follows:

1. χπ(i) is a code call atom.
Here, let the code call of χπ(i) be SSSSSSSSS :fff (((t1, . . . ,tn))) and let the binding pattern
〈bt1, . . . ,btn〉 be defined as follows:

(a) If ti is a value, then bti =def ti .

(b) Otherwise ti must be a variable whose root occurs either in ~X or in χπ( j) for
some j < i. In this case, bti =def [.

Then, χπ(i) is strongly safe if, by definition,FINTAB entails the finiteness
of SSSSSSSSS :fff (((bt1, . . . ,btn))).
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2. χπ(i) is s 6= t.
In this case, χπ(i) is strongly safe if, by definition,each of s and t is either a
constant or a variable whose root occurs either in ~X or in χπ( j) for some j < i.

3. χπ(i) is s< t or s≤ t.
In this case, χπ(i) is strongly safe if, by definition,t is either a constant or a
variable whose root occurs either in ~X or somewhere in χπ( j) for some j < i.

4. χπ(i) is s> t or s≥ t.
In this case, χπ(i) is strongly safe if, by definition,t< s or t≤ s, respectively,
are strongly safe.
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Algorithm safecccdefined in Section 2 may easily be modified to handle a strong

safety check, by replacing the test “select allχi1, . . . ,χim from L such thatχi j is safe

modulo~X” in step (4) of that algorithm by the test “select allχi1, . . . ,χim from L such

thatχi j is stronglysafe modulo~X.”

Definition 4.5 (Strongly Safe Agent Program)
A rule r is strongly safeif, by definition,it is safe, and Bcc(r) is a strongly safe code
call condition. An agent program is strongly safeif, by definition,all rules in it are
strongly safe.
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4.1.2 Conflict-Freedom

The deontic consistency requirement associated with a feasible status set mandates

that all feasible status sets (and hence all rational and reasonable status sets) be

deontically consistent.Therefore, we need some way of

ensuring that agent programs are conflict-free.
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Definition 4.6 (Conflicting Modalities)
Given two action modalities Op ,Op ′ ∈ {P,F,O,Do,W} we say that Op conflicts

with Op ′ if, by definition,there is an entry “×” in the following table at row Op and
column Op ′:

Op \ Op ′ P F O W Do

P ×
F × × ×
O × ×
W ×
Do ×

Observe that the conflicts-with relation is symmetric, i.e. if Op conflicts-with
Op ′, then Op ′ conflicts-with Op .
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Definition 4.7 (Conflicting Action Status Literals)
Suppose Li ,L j are two action status literals. Li is said to conflict withL j if, by

definition,

• Li ,L j are unifiable and their modalities conflict, or

• Li ,L j are of the form Li = Op(ααα(~t)) and L j = ¬Op ′(ααα(~t ′)), and
Op(ααα(~t)),Op ′(ααα(~t ′)) are unifiable, and the entry “×” is in the following table at
row Op and column ¬Op ′:

Op \ ¬Op ′ ¬P ¬F ¬O ¬W ¬Do

P ×
F ×
O × × ×
W ×
Do × ×
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• the action status atomsFααα(a,b,X) andPααα(Z,b,c) conflict. However,Fααα(a,b,X)
and¬Pααα(Z,b,c) do not conflict.

• ¬Pααα(Z,b,c) andDoααα(Z,b,c) conflict, while the literalsPααα(Z,b,c) and

¬Doααα(Z,b,c) do not conflict.

The conflicts-with relation isnot symmetric when applied to action status literals.
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A definition expressing that an agent program does not conflict, not must ap-

ply just to the current state, but rather to all possible states the agent can be

in.

Definition 4.8 (Conflicting Rules w.r.t. a State)
Consider two rules r i , r j (whose variables are standardized apart) having the form

r i : Opi(ααα(~t)) ← B(r i)

r j : Op j(βββ(~t ′)) ← B(r j)

We say that r i and r j conflict w.r.t. an agent state OOOSSS if, by definition,Opi conflicts
with Op j , and there is a substitution θ such that:

• ααα(~tθ) = βββ(~t ′θ) and

• (Bcc(r i) ∧ Bcc(r j))θγ is true in OOOSSS for some substitution γ that causes
(Bcc(r i) ∧ Bcc(r j))θ to become ground and
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• If Opi ∈ {P,Do,O} (resp., Op j ∈ {P, Do, O}) then ααα(~tθ) (resp., βββ(~t ′θ)) is
executable in OOOSSS , and

• (Bas(r i)∪Bas(r j))θ contains no pair of conflicting action status literals.

Intuitively, the above definition says that for two rules to conflict in a given

state, they must have a unifiable head and conflicting head-modalities, and

furthermore, their bodies must be deontically consistent (under the unifying

substitution) and their bodies’ code call components must have a solution.
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Definition 4.9 (Conflict Free)
An agent program, PPP , is said to be conflict freeif and only ifit satisfies two
conditions:

1. For every possible agent state OOOSSS , there is no pair r i , r j of conflicting rules in PPP .

2. For any rule Opi(ααα(~t))← . . . ,(¬)Op j(~t ′), . . . in PPP , Opi(ααα(~t)) and (¬)Op j(ααα(~t ′))
do not conflict.

4.1 Weakly Regular Agents 231



Chapter 4: Implementing Agents Multi Agent Systems, Ushuaia (Oct. 2000)

Unfortunately, as the following theorem shows, the problem of determining whether

an agent program is conflict-free in the above definition is undecidable, because

checking the first condition is undecidable.

Theorem 4.1 (Undecidability of Conflict Freedom Checking)
The problem of deciding whether an input agent program PPP satisfies the first
condition of conflict-freedom is undecidable. Hence, the problem of deciding
whether an input agent program PPP is conflict free is undecidable.
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However, there are many possible ways to definesufficientconditions on agent

programs that guarantee conflict freedom.

If an agent developer encodes his agent program in a way that satisfies these sufficient

conditions, then he is guaranteed that his agent is going to be conflict free.

Definition 4.10 (Conflict-Freedom Test)
A conflict-freedom testis a function cftcftcft that takes as input any two rules r1, r2, and
provides a boolean output such that: if cftcftcft(r1, r2) = true, then the pair r1, r2 satisfies
the first condition of conflict freedom.
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Definition 4.11 (Conflict-Free Agent Program w.r.t.cftcftcft )
An agent program PPP is conflict free w.r.t.cftcftcft if and only if for all pairs of distinct
rules r i , r j ∈PPP , cftcftcft(r i , r j) = true, and all rules in PPP satisfy the second condition in the
definition of conflict free programs.

Intuitively, different choices of the functioncftcftcft may be made, depending upon the

complexity of such choices, and the accuracy of such choices (i.e. how often does a

specific functioncftcftcft return “false” on arguments(r i , r j) when in factr i , r j do not

conflict?).

In IADE , the agent developer can choose one of several conflict-freedom tests

to be used for his application (and he can add new ones to his list).

Some instances of this test are given below.
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Example 4.3 (Head-CFT,cftcftcft h)
Let r i ,r j be two rules of the form

r i : Opi(ααα(~t)) ← B(i)

r j : Op j(βββ(~t ′)) ← B( j).

Now let the head conflict-freedom test cftcftcfth be as follows,

cftcftcfth(r i , r j) =


true, if either Opi ,Op j do not conflict, or

ααα(~t) and βββ(~t ′) are not unifiable;

false, otherwise.
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Example 4.4 (Body Code Call CFT,cftcftcft bcc)
Let the body-code conflict-freedom test cftcftcftbcc be as follows:

cftcftcftbcc(r i , r j) =



true, if either Opi ,Op j do not conflict, or

ααα(~t) and βββ(~t ′) are not unifiable, or

Opi ,Op j conflict and ααα(~t),βββ(~t ′) are unifiable via mgu θ and

there is a pair of contradictory code call atoms in Bcc(r1θ), Bcc(r2θ);

false otherwise.

The expression “∃ a pair of contradictory code call atoms in Bcc(r1θ),Bcc(r2θ)”

means that there exist code call atoms of form in(((((((((X,cc))))))))) and not in(((((((((X,cc))))))))) which
occur in Bcc(r1θ) ∪Bcc(r2θ), or comparison atoms of the form s1 = s2 and s1 6= s2;
s1 < s2 and s1 ≥ s2 etc.
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Example 4.5 (Body-Modality-CFT,cftcftcft bm)
The body-modality conflict-freedom test is similar to the previous one, except that
action status atoms are considered instead. Now let cftcftcftbm be as follows,

cftcftcftbcc(r i , r j) =



true if Opi ,Op j do not conflict or

ααα(~t),βββ(~t ′) are not unifiable or

Opi ,Op j conflict, and ααα(~t),βββ(~t ′) are unifiable via mgu θ and

literals (¬)Opiααα(~t ′′) in Bas(r iθ) for i = 1,2 exist

such that (¬)Op1 and (¬)Op2 conflict;

false otherwise.
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Example 4.6 (Precondition-CFT,cftcftcft pr)

Often, we might have action status atoms of the form Pααα,Doααα,Oααα in a rule. For a
rule r i as shown in Example 4.3 on page 235, denote by r?i the new rule obtained by
appending to B(i) the precondition of any action status atom of the form Pααα,Doααα,Oααα
(appropriately standardized apart) from the head or body of r i . Thus, suppose r is

Doααα(X,Y) ← in(((((((((X,ddd :fff (((Y))))))))))))& Pβββ& Fγγγ(Y).

Suppose pre(ααα(X,Y)) = in(((((((((Y,d1d1d1 :f1f1f1(((X)))))))))))) and pre(βββ) = in(((((((((3,d2d2d2 :f2f2f2((()))))))))))). Then r? is the
rule

Doααα(X,Y) ← in(((((((((X,ddd :fff (((Y))))))))))))& in(((((((((Y,d1d1d1 :f1f1f1(((X))))))))))))& in(((((((((3,d2d2d2 :f2f2f2((())))))))))))&

Pβββ& F γγγ(Y).

We now define cftcftcftpr(r i , r j) =

 true if cftcftcftbcc(r?i , r
?
j ) = true

false otherwise.
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Theorem 4.2
Suppose r is a rule, and ααα(~X) is an action such that some atom Opααα(~t) appears in r’s
body where Op ∈ {P,O,Do}. Then:

1. If r is safe and ααα(~X) has a safe precondition modulo the variables in ~X, then r? is
safe.

2. If r is strongly safe and ααα(~X) has a strongly safe precondition modulo ~X, then r?

is strongly safe.
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4.1.3 Deontic Stratification

Definition 4.12 (Layering Function)
Let PPP be an agent program. A layering functioǹ̀̀ is a function `̀̀ : PPP →N .

A layering function assigns a nonnegative integer to each rule in the program, and in

doing so, it groups rules into layers as defined below.

Definition 4.13 (Layers of an Agent Program)
If PPP is an agent program, and `̀̀ is a layering function over PPP , then the i-th layer of PPP
w.r.t. `̀̀, denoted PPP `̀̀

i , is defined as:

PPP `̀̀
i = {r ∈PPP | `̀̀(r) = i}.

When `̀̀ is clear from context, we will drop the superscript and write PPP i instead of PPP `̀̀
i .
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Example 4.7 (Layering Functions)
Consider the agent program PPP given below.

r1: Do executeflight planexecuteflight planexecuteflight plan(Flight route)←
in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message)))))))))))),
Do createflight plancreateflight plancreateflight plan(No go, Flight route, Current location)

If the plane is on autopilot and a flight plan has been created, then execute it.

r2: O createflight plancreateflight plancreateflight plan(No go, Flight route, Current location)←
O adjust courseadjust courseadjust course(No go, Flight route, Current location)

If our agent is required to adjust the plane’s course, then it is also required to
create a flight plan.

r3: O maintaincoursemaintaincoursemaintaincourse(no go, flight route, current location)←
in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message)))))))))))),
¬ O adjust courseadjust courseadjust course(no go, flight route, current location)

If the plane is on autopilot and our agent is not obliged to adjust the plane’s
course, then our agent must ensure that the plane maintains its current course.
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r4: O adjust courseadjust courseadjust course(no go, flight route, current location)←
O adjustAltitudeadjustAltitudeadjustAltitude(Altitude)

If our agent must adjust the plane’s altitude, this it is obliged to also adjust the
plane’s flight route as well.

Note that for simplicity, these rules use constant valued parameters for
maintaincoursemaintaincoursemaintaincourseand adjust courseadjust courseadjust course.

Let function `̀̀1 assign 0 to rule r4, 1 to rules r2, r3, and 2 to rule r1. Then `̀̀1 is a
layering function which induces the program layers PPP `̀̀1

0 = {r4}, PPP `̀̀1
1 = {r2, r3}, and

PPP `̀̀1
2 = {r1}. Likewise, the function `̀̀2 which assigns 0 to rule r4 and 1 to the

remaining rules is also a layering function. In fact, the function `̀̀3 which assigns 0 to
all rules in PPP is also a layering function.
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Using the concept of a layering function, we would like to define what adeontically

stratifiableagent program is. Before doing so, we introduce a simple ordering on

modalities.

Definition 4.14 (Modality Ordering)
The partial ordering “≤” on the set of deontic modalities M = {P, O, Do, W, F} is
defined as follows (see Figure 6.1 on page 343): O≤ Do, O≤ P, Do ≤ P, and
Op ≤ Op , for each Op ∈M. Furthermore, for ground action status atoms A and B, we
define that A≤ B if, by definition, A= Opααα, B = Op ′ααα, and Op ′ ≤ Op all hold.

Do

O

W

P

F

Figure 4.1: Modality ordering

4.1 Weakly Regular Agents 243



Chapter 4: Implementing Agents Multi Agent Systems, Ushuaia (Oct. 2000)

Definition 4.15 (Deontically Stratifiable Agent Program)
An agent program PPP is deontically stratifiableif, by definition,there exists a layering
function `̀̀ such that:

1. For every rule r i : Opi(ααα(~t))← . . . ,Op j(βββ(~t ′)), . . . in PPP `̀̀
i , if r : Op(βββ(~t ′′))← . . .

is a rule in PPP such that βββ(~t ′) and βββ(~t ′′) are unifiable and Op ≤ Op j , then

`̀̀(r) ≤≤≤ `̀̀(r i).

2. For every rule r i : Opi(ααα(~t))← . . . ,¬Op j(βββ(~t ′)), . . . in PPP `̀̀
i , if r : Op(βββ(~t ′′))← . . .

is a rule in PPP such that βββ(~t ′) and βββ(~t ′′) are unifiable and Op ≤ Op j , then
`̀̀(r) <<< `̀̀(r i).

Any such layering function `̀̀ is called a witnessto the stratifiability of PPP .
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Example 4.8 (Deontic Stratifiability)
Consider the agent program and layer functions given in Example 4.7 on page 241.
Then the first condition of deontic stratifiability requires `̀̀(r2)≤ `̀̀(r1) and
`̀̀(r4)≤ `̀̀(r2). Also, the second condition of deontic stratifiability requires
`̀̀(r4)< `̀̀(r3). Thus, `̀̀1 and `̀̀2 (but not `̀̀3) are witnesses to the stratifiability of PPP .

Note that some agent programs are not deontically stratifiable. For instance, let PPP ′

contain the following rule:

r ′1: Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)←
¬ Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)

Here, the author is trying to ensure that a plane’s current location is always computed.
The problem is that the second condition of deontic stratifiability requires
`̀̀(r ′1)< `̀̀(r ′1) which is not possible so PPP ′ is not deontically stratifiable. Note that if we
replace r ′1 with “Do computecurrentLocationcomputecurrentLocationcomputecurrentLocation(report)← ”, then PPP ′ would be
deontically stratifiable.
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4.1.4 Definition of Weakly Regularity

Definition 4.16 (Strongly Safe Action)
An action ααα(~X) is said to be strongly safew.r.t. FINTAB if its precondition is strongly

safe modulo ~X, and each code call from the add list and delete list is strongly safe
modulo~Y where~Y includes all root variables in ~X as well as in the precondition of ααα.

The intuition underlying strong safety is that we should be able to check

whether a (ground) action is safe by evaluating its precondition. If so, we

should be able to evaluate the effects of executing the action.
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Definition 4.17 (Weak Regular Agent Program)
Let PPP be an agent program, FINTAB a finiteness table, and cftcftcft a conflict-freedom test.
Then, PPP is called a weak regular agent program(WRAP for short) w.r.t. FINTAB and
cftcftcft, if, by definition,the following three conditions all hold:

Strong Safety: All rules in PPP and actions ααα in the agent’s action base are strongly
safe w.r.t. FINTAB.

Conflict-Freedom: PPP is conflict free under cftcftcft.

Deontic Stratifiability: PPP is deontically stratifiable.
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Example 4.9 (SampleWRAP )
Let PPP be the agent program given in Example 4.7 on page 241 and suppose that all
actions in PPP are strongly safe w.r.t. a finiteness table FINTAB. Consider the conflict
freedom test cftcftcfth. Then PPP is a WRAP as it is conflict free under cftcftcfth and as it is
deontically stratified according to Example 4.8 on page 245. Now, suppose we add
the following rule to PPP :

r5: W createflight plancreateflight plancreateflight plan(no go, flight route, current location)←
not in(((((((((automated,autoPilotautoPilotautoPilot :pilotStatuspilotStatuspilotStatus(((pilot message))))))))))))

This rule indicates that our agent is not obligated to adjust the plane’s course if the
plane is not on autopilot. Note that as cftcftcfth(r2, r5) = false, our new version of PPP is not
conflict free and so PPP would no longer be a WRAP.
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Definition 4.18 (Weakly Regular Agent)
An agent aaa is weakly regularif, by definition,its associated agent program is weakly
regular and the action constraints, integrity constraints, and the notion of concurrency
in the background are all strongly safe.
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It remains to define strongly safeness for constraints and the concurrency notion.

Definition 4.19 (Strongly Safe Integrity and Action Constraints)
An integrity constraint of the form ψ⇒ χ is strongly safeif, by definition,ψ is
strongly safe and χ is strongly safe modulo the root variables in ψ. An action
constraint {ααα1(~X1), . . . ,αααk(~Xk)}←↩ χ is strongly safeif and only if χ is strongly safe.

Definition 4.20 (Strongly Safe Notion of Concurrency)
A notion of concurrency, conc, is said to be strongly safeif, by definition,for every
set AAA of actions, if all members of A are strongly safe, then so is conc(A).
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4.2 Properties of Weakly Regular Agents

• Every deontically stratifiable agent program (and hence everyWRAP ) has a

so-called “canonical layering”.

• EveryWRAP has an associated fixpoint computation method—the fixpoint

computed by this method is the only possible reasonable status set theWRAP
may have.

• Given an agent programPPP , we denote bywtn(PPP ) the set of all witnesses to the

deontic stratifiability ofPPP . Thecanonical layeringof PPP , denotedcancancanPPP is defined

as follows.

cancancanPPP (r) = min{`̀̀i(r) | `̀̀i ∈ wtn(PPP )}.
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4.3 Regular Agent Programs

• A regular agent program then is a program which is weakly regular andbounded
(to be defined below).

•
Boundedness means that by repeatedly unfolding the positive parts of the

rules in the program, we will eventually get rid of all positive action status

atoms.

• Thus, in this section, we will associate with any agent programPPP an operator

UnfoldPPP which is used for this purpose.
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Definition 4.21 (Regular Agent)
An agent is said to be regularw.r.t. a layering `̀̀ and a selection of pf-constraint

equivalence tests eqi(i), if it is weakly regular and its associated agent program is
b-regular w.r.t. `̀̀ and the eqi(i), for some b≥ 0.
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4.4 Compile-Time Algorithms

Algorithm 4.1
Check WRAP(PPP )

(? input is an agent program PPP , a conflict-freedom test cftcftcft, and a finiteness table FINTAB ?)
(? output is a layering `̀̀ ∈ wtn(PPP ), if PPP is regular and “no” otherwise ?)

1. If some action ααα or rule r in PPP is not strongly safe then return “no” and halt.

2. If some rules r : Op(ααα(~X)) and r ′ : Op ′(ααα(~Y)) in PPP exist such that
cftcftcft(r, r ′) = false, then return “no” and halt.

3. If a rule r : Opi(ααα(~X))← . . . ,(¬)Op j(ααα(~Y)), . . . is in PPP such that Opi(ααα(~X)) and
Op j((~Y)) conflict, then return “no” and halt.
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4. Build the graph G = (V,E), where V = PPP and an edge r i → r is in E for each pair
of rules r i and r as in the two Stratifiability conditions.

5. Compute, using Tarjan’s algorithm, the supergraph S(G) = (V∗,E∗) of G.

6. If some rules r i , r as in the second stratifiability condition exists such that
r i , r ∈C for some C∈V∗, then return “no” and halt else set i := 0.

7. For each C∈V∗ having out-degree 0 (i.e. no outgoing edge) in S(G), and each
rule r ∈C, define `̀̀(r) := i.

8. Remove each of the above C’s from S(G), and remove all incoming edges
associated with such nodes in S(G) and set i := i +1;

9. If S(G) is empty, i.e., V∗ = /0, then return `̀̀ and halt else continue at 7.
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Theorem 4.3
For any agent program PPP , Check WRAP(PPP ) returns w.r.t. a conflict-freedom test cftcftcft

and a finiteness table FINTAB, a layering `̀̀ ∈ wtn(PPP ) if PPP is a WRAP, and returns “no”
if PPP is not regular.
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Check WRAP can be modified to compute the canonical layeringcancancanPPP as follows.

For each nodeC∈V∗, use two countersout(C) andblock(C), and initialize them in

step 5 to the number of outgoing edges fromC in E∗. Steps 7 and 8 ofCheck WRAP
are replaced by the following steps:

7′. SetU := /0;

while someC∈V∗ exists such thatblock(C) = 0 do
U := U ∪{C};
Setout(C′) := out(C′)−1 for eachC′ ∈V∗ such thatC′→C;

Setblock(C′) := block(C′)−1 for eachC′ ∈V∗ such thatC′→C due to the

first stratification condition but not the second stratification condition.

for each ruler in
⋃

U do `̀̀(r) := i;

8′. Seti := i +1;

Remove each nodeC∈U from S(G), and setblock(C) := out(C) for each

retained nodeC.
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When properly implemented, steps 7′ and 8′ can be executed in linear time in

the size ofS(G), and thus ofG.

Thus, the upper bounds on the time complexity ofCheck Regular discussed above

also apply to the variant which computes the canonical layering.
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Algorithm 4.2
Reasonable-SS(PPP , `̀̀,ICICIC ,ACACAC ,OOOSSS )

(? input is a regular agent consisting of a RAP PPP , a layering `̀̀ ∈ wtn(PPP ), ?)
(? a strongly safe set ICICIC of integrity constraints, ?)
(? a strongly safe set ACACAC of action constraints, and an agent state OOOSSS ?)
(? output is a reasonable status set Sof PPP on OOOSSS , if one exists, and “no” otherwise. ?)

1. S:=Γl
PPP ,OOOSSS
↑ω;

2. Do(S):={ααα | Do(ααα) ∈ S};

3. while ACACAC 6= /0 do
select and remove some ac∈ACACAC ;
if ac is not satisfied w.r.t. Do(S) then return “no” and halt;

4. OOO ′SSS := apply conc(Do(S),OOOSSS ); (? resulting successor state ?)
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5. while ICICIC 6= /0 do
select and remove some ic ∈ ICICIC ;
if OOO ′SSS 6|= ic then return “no” and halt.

6. return Sand halt.

4.4 Compile-Time Algorithms 260



Chapter 4: Implementing Agents Multi Agent Systems, Ushuaia (Oct. 2000)

Even though AlgorithmReasonableSScan be executed on weakly regular

agent programs, rather thanRAPs, there is no guarantee of termination in that

case.

The following theorem states the result that for a regular agent, its reasonable status

set on an agent state is effectively computable.

Theorem 4.4 (Termination of ReasonableSS for Regular Agents)
If aaa is a regular agent, then algorithm Reasonable SS terminates. The result is either
“No” or a reasonable status set is computed.
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Theorem 4.5
Suppose aaa is a fixed regular agent. Assume that the following holds:

(1) Every ground code call SSSSSSSSS :fff (((d1, . . . ,dn))), has a polynomial set of solutions, which
is computed in polynomial time; and

(2) no occurrence of a variable in aaa’s description loose.

Furthermore, assume that assembling and executing conc(Do(S),OOOSSS ) is possible in
polynomial time in the size of Do(S) and OOOSSS . Then the following holds:

The algorithm Reasonable SS computes a reasonable status set (if one exists)
on a given agent state OOOSSS in polynomial time (in the size of OOOSSS ).
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4.5 IADE

Our implementation of the regular agent program paradigm consists of two major

parts. The first part is theIMPACT Agent Development Environment (IADE for

short), which is used by the developer to build and compile agents. The second part is

the run-time part that allows the agent to autonomously update its reasonable status

set and execute actions as its state changes. Below, we describe each of these two

parts.IADE supports their tasks as follows.
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• First, it provides an easy to use,network accessible graphical user interface

through which an agent developer can specify the data types, functions, actions,

integrity constraints, action constraints, notion of concurrency and agent program

associated with his/her agent.

• Second, it provides support for compilation and testing. In particular,IADE
allows the agent developer tospecify various parameters(e.g., conflict freedom

test, finiteness table) he wants to use for compilation. It allows the agent

developer to view the reasonable status set associated with his agent program

w.r.t the current state of the agent.
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Figure 4.2: MainIADE Screen
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Figure 4.3:IADE Test Dialog Screen Prior to Program Testing
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TheIADE includes the safety, strong safety, conflict freedom algorithms, and the

Check WRAP algorithms (the last is slightly modified). The unfold algorithm

currently works on positive agent programs—this is being extended to the full fledged

case.

Figure 4.2 on page 265 shows a screendump ofIADE ’s top-level screen.

Figure 4.3 on the page before specifies what happens when the agent developer

presses the “Test Program” button in the Figure 4.2 on page 265 screen.
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Figure 4.4:IADE Test Execution Screen
4.5 TheIMPACT Agent Development Environment (IADE ) 268



Chapter 4: Implementing Agents Multi Agent Systems, Ushuaia (Oct. 2000)

Once the status sets have been generated after the test execution phase is completed,

the user can press the “Unfold Info” tab (to see the unfolded program) or the “Layer

Info” tab (to see the layers of the agent program) or the “Status Set Info” tab (to see

status information). Figure 4.5 on the next page shows the results of viewing the

unfold information.
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Figure 4.5:IADE Unfold Information Screen
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When the user selects the “Status set Info” tab, he sees the screen shown in Figure 4.6

on the following page. Note that this screen has tabs on the right, corresponding to

the various deontic modalities. By selecting a modality, the agent developer can see

what action status atoms associated with that modality are true in the status set.

Figure 4.6 on the next page shows what happens when the user wishes to see all

action status atoms of the formDo(. . .) in the status set.
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Figure 4.6:IADE Status Set Screen
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Figure 4.7 on page 275 shows the interface used to specify the “finiteness” table. As

mentioned earlier on in this chapter, in theIMPACT implementation, we actually

represent code calls that are infinite in this table, using some extra syntax.

Specifically, the first row of the table shown in Figure 4.7 on page 275 says that when

Q> 3 andR> 4, all code calls of the formdomain1domain1domain1 :function1function1function1(((Q,R))) are infinite.
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Figure 4.8 on page 276 shows the interface used by the agent developer to specify

what notion of concurrency he wishes to use, what conflict freedom implementation

he wishes to use and what semantics he wishes to use. Each of the items in the figure

have associated drop-down menus (not visible in the picture). The last item titled

“Calculation Method” enables us (as developers ofIMPACT ) to test different

computation algorithms. It will be removed from the finalIMPACT release.
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Figure 4.7:IADE (In-)Finiteness Table Screen
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Figure 4.8:IADE Option Selection Screen
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4.6 Experimental Results

4.6.1 Performance of Safety

Figure 4.9 on page 279 shows the performance of our implemented safety check

algorithm. In this experiment, we varied the number of conjuncts in a code call

condition from 1 to 20 in steps of 1. This is shown on thex-axis of Figure 4.9 on

page 279.

For each 1≤ x≤ 20, we executed thesafecccalgorithm 1000 times, varying the

number of arguments of each code call from 1 to 10 in steps of 1, and the number of

root variables occurring in the code call conditions from 1 to twice the number of

conjuncts (i.e., 1 to 2x).
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The actual conjuncts were generated randomly once the number of conjuncts, number

of arguments, and number of root variables was fixed. For each fixed number

1≤ i ≤ 20 of conjuncts, the execution time shown on they-axis represents the

average over 1000 runs with varying values for number of arguments and number of

variables. Times are given in milliseconds.
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Figure 4.9: Safety Experiment Graphs
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The reader can easily see that algorithmsafeccc is extremely fast, taking be-

tween 0.02 milliseconds and 0.04 milliseconds. Thus, checking safety for an

agent program with a 1000 rules can probably be done in 20-40 milliseconds.
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4.6.2 Performance of Conflict Freedom

In IADE , we have implemented the Head-CFT and Body-Modality-CFT—

several other CFTs are being implemented to form a library of CFTs that may

be used by agent developers. Figures 4.10 on the next page, 4.11 on page 283

shows the time taken to execute the Head-CFT and Body-Modality-CFTs.

Note that Head-CFT is clearly much faster than Body-Modality-CFT when returning

“false”—however, this is so because Head-CFT returns “false” on many cases when

Body-Modality-CFT does not do so. However, on returns of “true,” both mechanisms

are very fast, usually taking time on the order of1
100 to 1

10 of a millisecond, with some

exceptions.
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(a) HeadCFT returning “true” (b) HeadCFT returning “false”

Figure 4.10: Performance of Conflict Freedom Tests
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(c) BodyModalityCFT returning “true” (d) BodyModalityCFT returning “false”

Figure 4.11: Performance of Conflict Freedom Tests
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These very small times also explain the “zigzag” nature of the graphs—even small

discrepancies (on the order of1100 of a second) appear as large fluctuations in the

graph.

Even if an agent program contains a 1000 rules (which we expect to be an

exceptional case), one would expect the Body-Modality-CFT to only take a

matter of seconds to conduct the one-time, compile-time test—a factor that is

well worth paying for in our opinion.
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4.6.3 Performance of Deontic stratification

Our experiments generated graphs randomly (as described below) and the programs

associated with those graphs can be reconstructed from the graphs.

In our experiments, we randomly varied the number of rules from 0 to 200

in steps of 20, and ensured the there were betweenV and 2V edges in the

resulting graph, whereV is the number of rules (vertices).

The precise number was randomly generated. For each such selection, we performed

twenty runs of the algorithm. The time taken to generate the graphs was included in

these experimental timings. Figures 287 on page 287 (a) and (b) show the results of

our experiments.
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Figure 287 on the following page(a) shows the time taken to execute all but the safety

and conflict freedom tests of theCheck WRAP algorithm.

The reader will note that the algorithm is very fast, taking only about 260

milliseconds on an agent program with 200 rules.

Figure 287 on the next page(b) shows the relationship between the number of SCCs

in a graph, and the time taken to compute whether the agent program in question is

deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-

quirement seems to be very efficiently computable.
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(a) Varying Rules (b) Varying SCC’s

Figure 4.12: Performance of Deontic Stratification
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Figure 287 on the preceding page(a) shows the time taken to execute all but the safety

and conflict freedom tests of theCheck WRAP algorithm.

The reader will note that the algorithm is very fast, taking only about 260

milliseconds on an agent program with 200 rules.

Figure 287 on the page before(b) shows the relationship between the number of SCCs

in a graph, and the time taken to compute whether the agent program in question is

deontically stratified.

In this case, we note that as the number of SCCs increases to 200, the time

taken goes to about 320 milliseconds. Again, the deontic stratifiability re-

quirement seems to be very efficiently computable.
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4.6.4 Performance of Unfolding Algorithm

We were unable to conduct detailed experiments on the time taken for unfolding and

the time taken to compute status sets as there are no good benchmark agent programs

to test against, and no easy way to vary the very large number of parameters

associated with an agent.

In a sample application shown in Figures 4.5 on page 270 and 4.6 on page 272,

we noticed that it took about 1 second to unfold a program containing 11 rules,

and to evaluate the status set took about 30 seconds.

However, in this application, massive amounts of Army War reserves data resident in

Oracle as well as in a multi-record, nested, unindexed flat file were accessed, and the

time reported (30 seconds) includes times taken for Oracle and the flat file to do their

work, plus network times. Network cost alone is about 25 seconds. We did not yet

implement any optimizations, like caching etc.
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4.7 Summary

This chapter was about anefficiently implementableclass of agents:

Regular Agents.
What are suitable syntactic conditions on agent programs, to ensure polyno-

mial implementability?

1. Weakly regular agents:

(a) Strong Safety: To ensure that code calls returnfinitely many answers

(; Finiteness Table).

(b) Conflict-Freedom: The program should be conflict-free (; cftcftcft-tests).

(c) Deontic Stratifiability : Problems with negation are ruled out.

2. Regular Agents: weakly regular +Unfolding.
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