1

Multi-Agent Systems

Sept. 2000, Bahia Blanca University Nacional del Sur

- Last two weeks in September.
- Tentative Dates: Tuesday, Sept. 19th, Thursday, Sept. 21st, Friday, Sept. 22nd, Tuesday, Sept. 26th, Thursday, Sept. 28th, Friday, Sept. 29th.
- **Time:** From 4–6 pm, unless otherwise indicated.

• Lecture Course is on theoretical issues, emphasis on mathematical-logical foundations.

Overview

2

Overview

- 1. Introduction, Terminology
- **2. Three Basic Architectures**
- **3. Logic Based Architectures**
- **4. Distributed Decision Making**
- **5.** Contract Nets, Coalition Formation

Overview

Chapter 3. Logic Based Architectures

3.1 Sentential Logic

3.2 Situation Calculus

3.3 Problems

3.4 A Solution to the Frame Problem?

Overview

3 Logic Based Architectures

51-1

- **Symbolic AI:** Symbolic representation, e.g. sentential or first order logic. Using deduction. **Agent as a theorem prover**.
- **Traditional:** Theory about agents. Implementation as stepwise process (Software Engineering) over many abstractions.
- **Symbolic AI:** View the theory itself as **executable specification**. Internal state: *Knowledge Base* (KB), often simply called **D** (**database**).
 - see : $S \longrightarrow P$
 - **next** : $\mathbf{D} \times \mathbf{P} \longrightarrow \mathbf{D}$,

Overview

Chapter 3: Logic Based Architectures Multi-Agent Systems (6 Lectures), Sept. 2000, Bahia Blanca

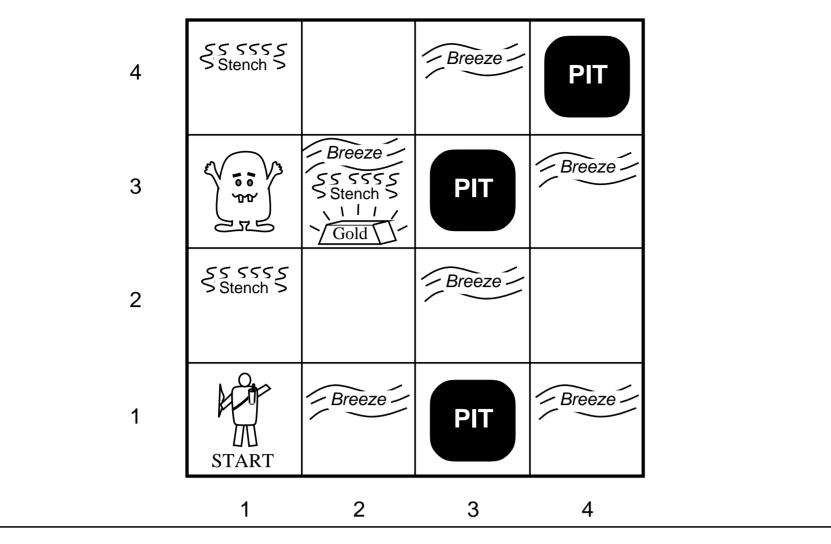
1. function $action(\Delta : D) : A$ 2. begin 3. for each $a \in A$ do 4. if $\Delta \vdash_a Do(a)$ then

4.	$\prod \Delta \Gamma_{\rho} D O(a)$ then
5.	return a
6.	end-if
7.	end-for
8.	for each $a \in A$ do
9.	if $\Delta \not\vdash_{\rho} \neg Do(a)$ then
10.	return a
11.	end-if
12.	end-for
13.	return null
14.	end function action

Overview

3.1 Sentential Logic SL

The Wumpus-World in SL



3.1 Sentential Logic

1,4	2,4	3,4	4,4		1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	1,3	2,3	3,3	4,3
1,2 ОК	2,2	3,2	4,2		1,2 OK	^{2,2} P?	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1		1,1 V OK	2,1 A B OK	^{3,1} P?	4,1
	((a)				(b)	

3.1 Sentential Logic

1,4	2,4	3,4	4,4	$ \begin{array}{l} \hline \mathbf{A} &= Agent \\ \mathbf{B} &= Breeze \\ \mathbf{G} &= Glitter, \ Gold \\ \mathbf{OK} &= Safe \ square \end{array} $	1,4	^{2,4} P?	3,4	4,4
^{1,3} w!	2,3	3,3	4,3	P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$	^{1,3} w!	2,3 A S G B	^{3,3} P?	4,3
1,2 A S OK	2,2 OK	3,2	4,2		^{1,2} S V OK	2,2 V OK	3,2	4,2
1,1 V OK	^{2,1} B V OK	^{3,1} P!	4,1		1,1 V OK	2,1 B V OK	^{3,1} P!	4,1
	•	(a)	•	-		•	(b)	

3.1 Sentential Logic

Defining the language:

- $S_{i,j}$ stinks
- $B_{i,j}$ is cold
- $Pit_{i,j}$ is a pit
- $Gl_{i,j}$ glitters
- $W_{i,j}$ contains Wumpus

General Knowledge:

$$\neg S_{1,1} \longrightarrow (\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1})$$

$$\neg S_{2,1} \longrightarrow (\neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1})$$

$$\neg S_{1,2} \longrightarrow (\neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3})$$

$$S_{1,2} \longrightarrow (W_{1,3} \wedge W_{1,2} \wedge W_{2,2} \wedge W_{1,1})$$

3.1 Sentential Logic

Knowledge after the 3rd move:

 $\neg S_{1,1} \land \neg S_{2,1} \land S_{1,2} \land \neg B_{1,1} \land \neg B_{2,1} \land \neg B_{1,2}$

Can we deduce that the Wumpus is in (1,3)?

Yes, with any reasonable calculus.

3.1 Sentential Logic

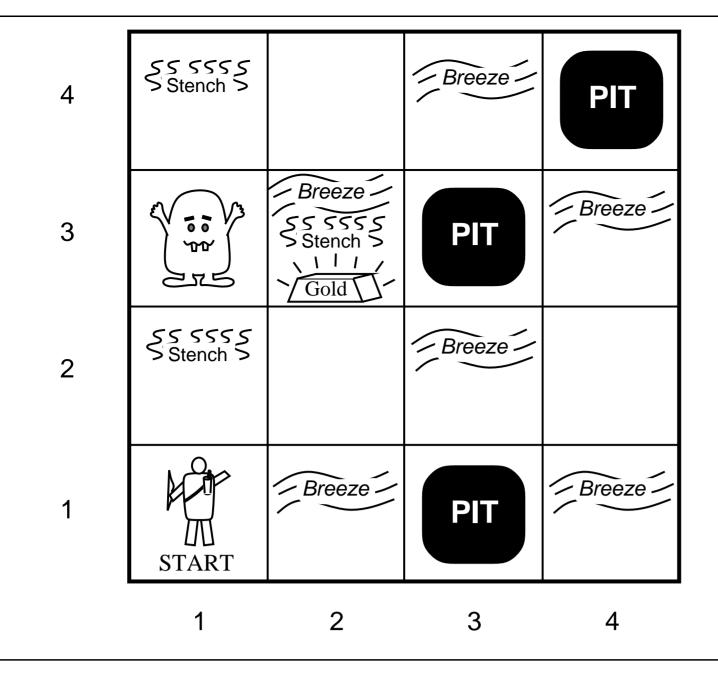
But we want much more: for a given situation find the **best suited action**.

That does not work in SL. We can only check for each action, whether it should be executed or not. Even for this we need additional axioms:

Additional axioms:

$A_{1,1} \wedge East \wedge W_{2,1}$	\longrightarrow	\neg <i>Forward</i>
$A_{1,1} \wedge East \wedge Grube_{2,1}$	\longrightarrow	\neg <i>Forward</i>
$A_{i,j} \wedge Gl_{i,j}$	\longrightarrow	Take _{Gold}

3.1 Sentential Logic



3.1 Sentential Logic

3.2 The Situation Calculus

How can we represent a dynamic, changing world? How can we formalize the wumpus world in it?

function KB-AGENT(percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*)) *action* \leftarrow ASK(*KB*, MAKE-ACTION-QUERY(*t*)) TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*)) *t* \leftarrow *t* + 1 **return** *action*

3.2 Situation Calculus

Idea: To describe actions and their effects consistently, we represent the world as a sequence of situations (snapshots of the world).

To do this, we have to extend each predicate by an additional argument (representing the situation we are in).

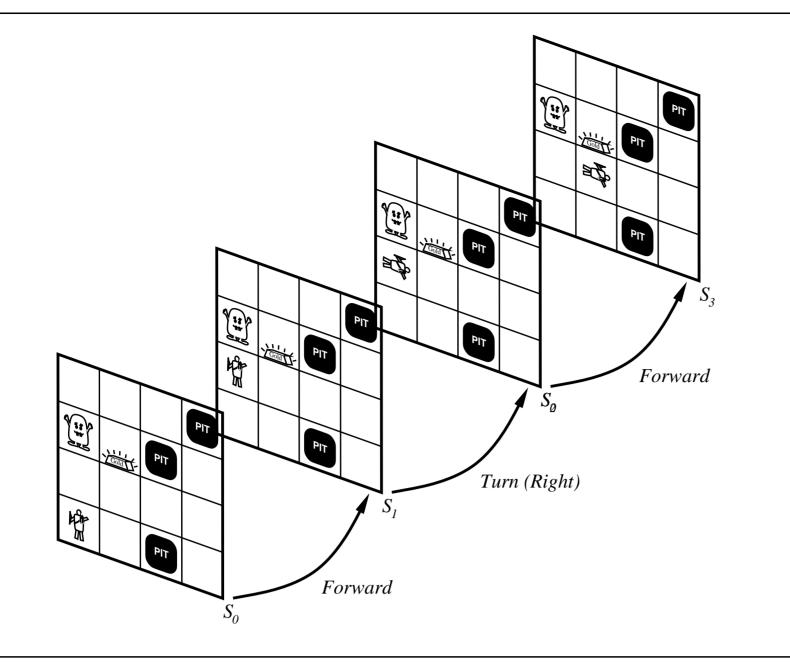
We use a function symbol

result(action, situation)

which represents a term for the situation wich occurs when in situation situation the action action is executed (History).

actions: turn_right, turn_left, forward, shoot, grab, release, climb.

3.2 Situation Calculus



3.2 Situation Calculus

We also need a memory: this is a ternary predicate

At(*person*, *location*, **situation**)

where *person* can be *wumpus* or *agent* and *location* stands for the current location, coded as a pair [i, j].

3.2 Situation Calculus

Important axioms are the

"Successor-state Axioms".

They describe the effects of actions to the situations. Their general form is

true afterwards \iff an **action** made it true or it is already true and no action made it false

3.2 Situation Calculus

Axioms for At(p, l, s):

 $\begin{array}{ll} \mathbf{At}(p,l,\mathbf{result}(\mathbf{a},\mathbf{s})) &\leftrightarrow & ((l = location_ahead(p,\mathbf{s}) \land \neg Wall(l) \land \mathbf{a} = \mathbf{forward}) \\ & \lor (\mathbf{At}(p,l,\mathbf{s}) \land \neg \mathbf{a} = \mathbf{forward})) \end{array}$

$\mathbf{At}(p, l, \mathbf{s})$	\rightarrow	$location_ahead(p, \mathbf{s}) = location_toward(l, orient.(p, \mathbf{s}))$
Wall([x,y])	\leftrightarrow	$(x = 0 \lor x = 5 \lor y = 0 \lor y = 5)$

3.2 Situation Calculus

$$location_toward([x,y],0) = [x+1,y]$$
$$location_toward([x,y],90) = [x,y+1]$$
$$location_toward([x,y],180) = [x-1,y]$$
$$location_toward([x,y],270) = [x,y-1]$$

$$orient.(agent, s_0) = 90$$

$$orient.(p, \mathbf{result}(\mathbf{a}, \mathbf{s})) = d \quad \leftrightarrow \quad ((\mathbf{a} = \mathbf{turn_right} \land d = mod(orient.(p, \mathbf{s}) - 90, 360)))$$

$$\lor (\mathbf{a} = \mathbf{turn_left} \land d = mod(orient.(p, \mathbf{s}) + 90, 360))$$

$$\lor (orient.(p, \mathbf{s}) = d \land \neg(\mathbf{a} = \mathbf{turn_right} \lor \mathbf{a} = \mathbf{turn_left}))$$

Here mod(x, y) is a built-in "modulo"-function: each x is reduced to a unique value between 0 and y.

3.2 Situation Calculus

Axioms for observations, extension by definition:

$$\begin{aligned} & Percept([stench, b, g, u, c], \mathbf{s}) & \to & Stench(\mathbf{s}) \\ & Percept([a, breeze, g, u, c], \mathbf{s}) & \to & Breeze(\mathbf{s}) \\ & Percept([a, b, glitter, u, c], \mathbf{s}) & \to & \mathbf{At_gold(s)} \\ & Percept([a, b, g, bump, c], \mathbf{s}) & \to & \mathbf{At_wall(s)} \\ & Percept([a, b, g, u, scream], \mathbf{s}) & \to & Wumpus_dead(\mathbf{s}) \end{aligned}$$

$At(agent, l, s) \land Breeze(s)$	\rightarrow	Breezy(l)
$\mathbf{At}(agent, l, \mathbf{s}) \wedge Stench(\mathbf{s})$	\rightarrow	Smelly(l)

3.2 Situation Calculus

$$\begin{aligned} Adjacent(l_1, l_2) &\leftrightarrow \exists d \ l_1 = location_toward(l_2, d) \\ Smelly(l_1) &\to \exists l_2 \ \mathbf{At}(wumpus, l_2, \mathbf{s}) \land (l_2 = l_1 \lor Adjacent(l_1, l_2)) \end{aligned}$$

 $\begin{aligned} & Percept([none, none, g, u, c], \mathbf{s}) \land \mathbf{At}(agent, x, \mathbf{s}) \land Adjacent(x, y) & \to & OK(y) \\ & (\neg \mathbf{At}(wumpus, x, t) \land \neg Pit(x)) & \to & OK(y) \end{aligned}$

$$\begin{array}{lll} \mathbf{At}(wumpus, l_1, \mathbf{s}) \land Ad \, jacent(l_1, l_2) & \longrightarrow & Smelly(l_2) \\ \mathbf{At}(Pit, l_1, \mathbf{s}) \land Ad \, jacent(l_1, l_2) & \longrightarrow & Breezy(l_2) \end{array}$$

3.2 Situation Calculus

Axioms to describe actions:

j	<i>Holding</i> (<i>gold</i> , result (grab , s))	\leftrightarrow	$(At_gold(s) \lor Holding(gold, s))$
	<i>Holding</i> (<i>gold</i> , result (release , s))	\leftrightarrow	
	<i>Holding</i> (<i>gold</i> , result (turn_right , s))	\leftrightarrow	Holding(gold, s)
	<i>Holding</i> (<i>gold</i> , result (turn_left , s))	\leftrightarrow	Holding(gold, s)
	<i>Holding</i> (<i>gold</i> , result (forward , s))	\leftrightarrow	Holding(gold, s)
	<i>Holding</i> (<i>gold</i> , result (climb , s))	\leftrightarrow	Holding(gold, s)

All effects have to be carefully described.

3.2 Situation Calculus

Axioms to describe preferences between actions:

$Great(\mathbf{a}, \mathbf{s})$	\rightarrow	$Action(\mathbf{a}, \mathbf{s})$
$(Good(\mathbf{a}, \mathbf{s}) \land \neg \exists \mathbf{b} Great(\mathbf{b}, \mathbf{s}))$	\rightarrow	$Action(\mathbf{a}, \mathbf{s})$
$(Medium(\mathbf{a}, \mathbf{s}) \land \neg \exists \mathbf{b} (Great(\mathbf{b}, \mathbf{s}) \lor Good(\mathbf{b}, \mathbf{s})))$	\rightarrow	$Action(\mathbf{a}, \mathbf{s})$

- $\mathbf{At}(agent, [1, 1], \mathbf{s}) \land Holding(gold, \mathbf{s}) \qquad \rightarrow \quad Great(\mathbf{climb}, \mathbf{s})$
- $At_gold(s) \land \neg Holding(gold,s) \qquad \qquad \rightarrow \quad Great(grab,s)$

 $At(agent, l, s) \land \neg Visited(location_ahead(agent, s)) \land$

 $\land OK(location_ahead(agent, s)) \longrightarrow Good(forward, s)$

Visited(l)

 $\leftrightarrow \exists s \operatorname{At}(agent, l, s)$

We do not just want to find the gold, we also want to come back alive! Therefore one needs axioms like $Holding(gold, s) \rightarrow Go_back(s)$.

3.2 Situation Calculus

3.3 Problems

There are three very important problems in axiomatizing a dynamically changing world:

Frame problem: actions usually change very little. But one needs a huge

number of actions to describe invariant properties.

It would be much better to **axiomatize only what does not persist** and assume that **nothing else changes**.

3.3 Problems

Qualification problem: We need to enumerate all conditions under which an action is successful. E.g.

It would be much better to simply assume **birds normally fly**.

Ramification problem: How to deal with implicit consequences of actions?

E.g. grab(gold). gold could be radioactive after this action is executed. Then the action grab(gold) is not optimal.

3.3 Problems

Programming versus Knowledge Engineering.

Programming	Knowledge Engineering		
Choose programming language.	Choose Logic.		
Write program.	Define Knowledge Base.		
Write compiler.	Implement Calculus.		
Execute program.	Deduce new facts .		

3.3 Problems

3.4 A Solution to the Frame Problem?

Successor State Axioms

Where do the successor state axioms come from?

• We have to ask: Which fluents stay invariant?

We distinguish between two sorts of fluents:

relational fluent:

 \neg **broken**(*x*,**s**) \land (*x* \neq *y* $\lor \neg$ *fragile*(*x*,*z*)) $\longrightarrow \neg$ **broken**(*x*,**result**(**drop**(*r*,*y*),**s**))

functional fluent:

 $color(x, s) = c \longrightarrow color(x, result(drop(r, y), s)) = c$

How many of such axioms do we need?

3.4 A Solution to the Frame Problem?

We need exactly

 $2 \times \#actions \times \#fluents$

Suppose we are given axioms of the form

 $\dots \longrightarrow \text{fluent}(x, \text{result}(\text{action}, \mathbf{s}))$ $\dots \longrightarrow \neg \text{fluent}(x, \text{result}(\text{action}, \mathbf{s})),$

how can we compute the successor state axioms **automatically**?

Note, that the above set assumes implicitly that all actions can be applied: this is an overly optimistic assumption according to the Qualification Problem.

^{3.4} A Solution to the Frame Problem?

Qualification Problem Revisited

We assume a predicate **Poss** to describe the possibility to apply an action.

 $\mathbf{Poss}(\mathbf{pickup}(r, x), \mathbf{s}) \rightarrow \forall z (\neg holding(r, z, \mathbf{s})).$

But \rightarrow is too weak. Can we replace it by \leftrightarrow ?

3.4 A Solution to the Frame Problem?

What about

 $\mathbf{Poss}(\mathbf{pickup}(r, x), \mathbf{s}) \rightarrow \forall z (\neg holding(r, z, \mathbf{s}) \land \neg heavy(x) \land nextto(r, x, \mathbf{s})).$

We suppose we are given a list of axioms of the form

 $\mathbf{Poss}(\mathbf{action}(\underline{x}), \mathbf{s}) \longleftrightarrow \phi_{\mathbf{action}}(\underline{x}, \mathbf{s})$

where $\phi_{action}(\underline{x}, \mathbf{s})$ does not contain any **result**-terms.

3.4 A Solution to the Frame Problem?

(1):
$$fragile(x, \mathbf{s}) \longrightarrow broken(x, \mathbf{result}(\mathbf{drop}(r, x), \mathbf{s}))$$

(1'): $nextto(b, x, \mathbf{s}) \longrightarrow broken(x, \mathbf{result}(\mathbf{explode}(b), \mathbf{s}))$
(2): $\longrightarrow \neg broken(x, \mathbf{result}(\mathbf{repair}(r, x), \mathbf{s}))$

We assume these are **all** possibilities for *broken*, \neg *broken*. Then (1), (1') are equivalent to

$$\exists r (a = \operatorname{drop}(r, x) \land fragile(x, \mathbf{s})) \lor$$
$$\exists b (a = \operatorname{explode}(b) \land nextto(b, x, \mathbf{s}))$$
$$\longrightarrow$$
$$broken(x, \operatorname{result}(\mathbf{a}, \mathbf{s})).$$

(2) is equivalent to

 $\exists r \mathbf{a} = \mathbf{repair}(r, x) \longrightarrow \neg broken(x, \mathbf{result}(\mathbf{a}, \mathbf{s}))$

3.4 A Solution to the Frame Problem?

Under which conditions could $\neg broken(x, \mathbf{s})$ and $broken(x, \mathbf{result}(\mathbf{a}, \mathbf{s}))$ be both true?

$$(1''): \neg broken(x, \mathbf{s}) \land broken(x, \mathbf{result}(\mathbf{a}, \mathbf{s})) \longrightarrow \exists r (\mathbf{a} = \mathbf{drop}(r, x) \land fragile(x, \mathbf{s}) \lor \exists b (\mathbf{a} = \mathbf{explode}(b) \land nextto(b, x, \mathbf{s}))$$
$$\exists b (\mathbf{a} = \mathbf{explode}(b) \land nextto(b, x, \mathbf{s})) \land \exists r \mathbf{a} = \mathbf{repair}(r, x)$$

3.4 A Solution to the Frame Problem?

(1), (1'), (2), (1''), (2') are equivalent to the successor state axiom

$$broken(x, \mathbf{result}(\mathbf{a}, \mathbf{s})) \iff \exists r (\mathbf{a} = \mathbf{drop}(r, x) \land fragile(x, \mathbf{s})) \lor \\ \exists b (\mathbf{b} = \mathbf{explode}(b) \land nextto(b, x, \mathbf{s})) \lor \\ broken(x, \mathbf{s}) \land \neg \exists r \mathbf{a} = \mathbf{repair}(r, x) \end{cases}$$

This can be generalized, also for functional fluents!

3.4 A Solution to the Frame Problem?

Thus the $2 \times \#actions \times \#fluents$ many axioms can be rewritten into only

#fluents

many axioms ($2 \times \#$ fluents if we count each equivalence twice). But we also need the **Poss** axioms: another #actions many.

Altogether, the $2 \times \#actions \times \#fluents$ are compiled into (modulo a constant factor)

#actions+#fluents.

Some people call this a solution to the frame problem.

3.4 A Solution to the Frame Problem?

145

References

- Arisha, K., F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus (1999, March/April). IMPACT: A Platform for Collaborating Agents. *IEEE Intelligent Systems 14*, 64–72.
- Bratman, M., D. Israel, and M. Pollack (1988). Plans and Resource-Bounded Practical Reasoning. *Computational Intelligence 4*(4), 349–355.
- Dix, J., S. Kraus, and V. Subrahmanian (2001). Temporal agent reasoning. *Artificial Intelligence to appear*.
- Dix, J., M. Nanni, and V. S. Subrahmanian (2000). Probabilistic agent reasoning. *Transactions of Computational Logic 1*(2).
- Dix, J., V. S. Subrahmanian, and G. Pick (2000). Meta Agent Programs. *Journal of Logic Programming* 46(1-2), 1–60.

- Eiter, T., V. Subrahmanian, and G. Pick (1999). Heterogeneous Active Agents, I: Semantics. *Artificial Intelligence 108*(1-2), 179–255.
- Eiter, T., V. Subrahmanian, and T. J. Rogers (2000). Heterogeneous Active Agents, III: Polynomially Implementable Agents. *Artificial Intelligence 117*(1), 107–167.
- Eiter, T. and V. S. Subrahmanian (1999). Heterogeneous Active Agents, II: Algorithms and Complexity. *Artificial Intelligence 108*(1-2), 257–307.
- Georgeff, M. and A. Lansky (1987). Reactive Reasoning and Planning. In *Proceedings of the Conference of the American Association of Artificial Intelligence*, Seattle, WA, pp. 677–682.
- Rao, A. S. (1995). Decision Procedures for Propositional Linear-Time
 Belief-Desire-Intention Logics. In M. Wooldridge, J. Müller, and M. Tambe
 (Eds.), *Intelligent Agents II Proceedings of the 1995 Workshop on Agent Theories, Architectures and Languages (ATAL-95)*, Volume 890 of *LNAI*, pp. 1–39. Berlin, Germany: Springer-Verlag.

- Rao, A. S. and M. Georgeff (1991). Modeling Rational Agents within a BDI-Architecture. In J. F. Allen, R. Fikes, and E. Sandewall (Eds.), *Proceedings of the International Conference on Knowledge Representation and Reasoning*, Cambridge, MA, pp. 473–484. Morgan Kaufmann.
- Rao, A. S. and M. Georgeff (1995, June). Formal models and decision procedures for multi-agent systems. Technical Report 61, Australian Artificial Intelligence Institute, Melbourne.
- Subrahmanian, V., P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and R. Ross (2000). *Heterogenous Active Agents*. MIT-Press.
- Weiss, G. (Ed.) (1999). Multiagent Systems. MIT-Press.

