Qualitative Spatial Representation Languages
with Convexity *

Ian Pratt

1 Introduction

In recent years, there has been considerable interest within the AI community
in qualitative descriptions of space. The idea is roughly this. Suppose we have
a language in which we can say such things as “region a is convex” or “region
b is a part of region ¢” and so on; then maybe such a language would enable
us to characterize the spatial properties of everyday objects to an extent that
suffices for—say—object recognition or route planning or commonsense mechan-
ical reasoning. And maybe—so the thought goes—the use of merely qualitative
descriptions might enable us to do all this while avoiding the computational
complexity and error-sensitivity of numerical (coordinate) descriptions. Thus,
the hope is that, by choosing an appropriate qualitative spatial description lan-
guage, we might increase the effectiveness of an artificially intelligent agent
operating in or reasoning about space.

However, such qualitative spatial representation languages are inevitably
balanced on a semantic knife-edge: too little expressivity, and they are useless
for the everyday tasks we want them for; too much, and they exhibit the over-
precision which motivated qualitative representation languages in the first place.
The aim of this paper is to demonstrate how sharp that knife-edge is, and thus
to establish some limits on what such qualitative spatial description languages
might be like. Specifically, we show that, once we can represent the property of
convexity and the part-whole relation—modest assumptions by any standards—
n-tuples of real polygons are completely determined by the sets of formulas they
satisfy upto the fixing of three reference points. To be sure, we are not the first
to express skepticism about the possibility of such languages, but this is, as
far as we are aware, the first time such skepticism has been put on so firm a
mathematical footing.

*With thanks to Dominik Schoop, Oliver Lemon, Tony Cohn and Ernest Davis for their
comments. The author gratefully acknowledges the support of the Leverhulme Trust (Grant
number F/120/AQ) and the European Commission’s TMR Programme (contract number
ERBFMBICT972035).
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2 Background

Many systems of qualitative spatial reasoning have been proposed (for a re-
cent survey, see [32]), and we certainly do not propose to review them all here.
Of particular interest, however, is the language proposed by Randell, Cui and
Cohn [25], whose primitives are the binary predicate symbol C(z,y) and the
function-symbol conv(z). The exact interpretation of this language is deliber-
ately left open, partly, it seems, so as to allow for non-standard interpretations.
But for definiteness, Randell, Cui and Cohn invite us to suppose that variables
range over some unspecified set of well-behaved subsets of R? (called regions),
that C(z,y) is satisfied by a pair of regions just in case their topological closures
have some points in common, and that conv(z) is taken to denote the convex
hull of its argument.

The original language envisaged by by Randell, Cui and Cohn incorporates
the full power of first-order logic. Thus, despite the limited range of primitives,
there is no restriction on the complexity of the formulas employing them. How-
ever, not all systems of qualitative spatial representaion allow such arbitrary
logical combinations. In particular, Davis, Gotts and Cohn [12] have recently
analysed a constraint language with two primitive binary predicates, EC(z,y)
and PP(z,y), together with the unary predicate conv(z) and a stock of constant
symbols a, b, c,.... Here, the regions over which the names are interpreted are
the regular closed sets of the Euclidean plane (i.e., those equal to the closure
of their interior). The predicate EC(z,y) (“external contact”) is satisfied by a
pair of regions if and only if they have some boundary points but no interior
points in common; PP(z,y) (“proper part”) is satisfied by a pair of regions if
and only if the first is a proper subset of the second; and conv(x) is satisfied
by a region if and only if it is convex. In this context, a constraint is an atomic
formula—e.g. EC(a, b) or conv(c)—and assertions in the language, or constraint
networks, as they are called, are simply conjunctions of constraints. Thus, this
language lacks the full power of first-order logic, because there is no general
quantification over regions. Nevertheless, Davis, Gotts and Cohn are able to
prove a strong expressivity result. Specifically, they show that any two arrange-
ments of bounded regions that are not related by an affine transformation can
be distinguished by a constraint network.

In this paper, we study the first-order language whose signature consists of
the two predicates z < y and conv(z). We again take the variables of £ to
range over some set of regions in the plane, though we consider various choices
for this set. The predicate x < y is satisfied by a pair of regions if and only if
the first is a subset of the second (the symbol < is natural because we deal with
Boolean algebras of regions); and conv(z) is satisfied by a region if and only
if it is convex. We choose £ because of its spartan set of primitives (smaller
even than that studied by Davis, Gotts and Cohn) and great expressive power.
We prove three main results. The first, similar to that of Davis, Gotts and
Cohn, concerns the ability of £-formulas to distinguish between collections of
regions, given certain choices as to the set of regions over which the variables of
L range. More precisely, we show that, by identifying regions with polygons, any
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two n-tuples of regions not related by an affine transformation satisfy different
L-formulas; moreover, by identifying regions with rational polygons, every n-
tuple of regions satisfies a single L-formula which determines it upto an affine
transformation. Our second result concerns the ability of £ formulas to define
useful relations not specifically associated with affine geometry. More precisely,
we show that the various topological relations are L-definable, depending on
which subsets of the plane we count as regions. Our third result concerns the
ability of £ to distinguish different choices for the set of regions over which
quantification ranges. More precisely, we examine L-interpretations based on
the rational polygons, the polygons, the definable regular open sets, and the
entire set of regular open sets; we show that all these interpretations make
different sets of L-sentences true.

More controversially, we claim that the language £—and hence any first-
order language in which its primitives are definable—does not deserve the label
‘qualitative’ at all. Coordinate position (upto the fixing of any three noncollinear
reference points) has not disappeared from £ at all: it has simply been made
hopelessly and needlessly cumbersome. The point is a deeper one than the
simiplicity of our proofs suggest, for it is intimately related to to fundamen-
tal results on the coordinatizability of axiomatically presented geometries. We
argue that these results indicate that the some of the current interest in qual-
itative (understood: monquantitative) spatial representation languages may be
misplaced.

A note on accessibility. This paper uses various results from model theory
and affine geometry. Since some readers may be unfamiliar with these fields,
we have explained standard concepts and notation throughout; we have also
been more explicit with some of the proofs than is usual in purely mathematical
treatments.

3 Defining the ontology

Let £ be the first-order language whose signature consists of the two predicates
z < y and conv(z). We assume the variables of £ range over some set A of
subsets of R?. We define A in various ways below. Interpreting the primitives
< and conv as indicated above, we obtain, in the sense of model theory, an
L-structure 2A. 2A determines, for any formula ¢(Z) with free variables Z =
Z1,---Zn, and any n-tuple of regions @ = ay, - .., a, from A, whether a satisfies
the property expressed by ¢(Z); if so, we write 2 |= ¢[a]. (Note: the square
brackets indicate that the a are elements of the set A, rather than names in the
language L. In fact, £ has no names.) An L-formula ¢ with no free variables
is called an L-sentence. Given an L-structure 2 and an L-sentence ¢, 2 will
determine a truth value for ¢; if ¢ is true according to A, we write A |= ¢. We
shall ask the following questions concerning the expressivity of £. First: for
given choices of A, to what extent is a given n-tuple a of A characterized by the
L-formulas it satisfies? Second: for given choices of A, what general properties
(other than those expressed by the primitives) can be captured by L-formulas?
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Third: if we vary the choice of A, what difference does this variation make to
the set of £-sentences which turn out true? To answer these questions, we must
examine the possible choices for A, and it is to this question we now turn.

It is fairly standard in treatments of qualitative spatial reasoning to confine
attention to regular sets.

Definition 3.1 Let X be a topological space and x C X. Then the set |J{y C
Xy open, yNx = O} is an open set in X called the pseudocomplement of z,
written ='. We say that z C X is regular if x = z".

It can easily be shown that a set if regular if and only if it is equal to the interior
of its closure. Basically, we can think of regular sets in R? as open sets with
no internal cracks or point-holes. (Note that our use of regular coincides with
the more usual term regular open. We could of course have used regular closed
sets instead of regular open sets; nothing in the resulting account would have
changed.) The following well-known theorem underlies the importance of the
regular sets to qualitative spatial reasoning. We state it here without proof.
(See, e.g. Koppelberg [18], pp. 26 and 60.)

Theorem 3.1 Let X be a topological space. Then the set of reqular sets in X
forms a Boolean algebra RO(X) with top and bottom defined by 1 = X and
0 = 0, and Boolean operations defined by z.y = Ny, z +y = (x Uy)" and
—r=2x.

Thus the product of two regular sets is simply their intersection. The sum of
two regular sets z and y is a little more complicated; very roughly, it is the union
of £ Uy with internal cracks filled in. Finally, the pseudocomplement, —z, of a
regular set x is simply that part of the plane not occupied by z or its boundary.
Let R? denote the real plane with the usual Euclidean topology. Our domain
of discourse will form a Boolean sub-algebra of RO(R?). Clearly, the Boolean
functions +, - and —, as well as the constants 0 and 1, will all be £-definable,
and so we shall use these symbols in £-formulas without further ado.

However, concentrating on regular sets by no means eliminates all strangely
behaved spatial entities from the domain of quantification. For it is well-known
that regular sets exist which could not possibly correspond to the space taken
up on surfaces by ordinary objects and geographical abstractions. (See Pratt
and Lemon [24] p. 232 for discussion of an example.) In order to rule out such
pathalogical regular regions, and to simplify the technical discussion, we assume
for most of this paper that all regions are regular polygons. We shall relax this
assumption later.

Formally, any line in R? cuts R? into two residual domains, which we shall
call half-planes. Tt is easy to see that these sets are regular, with each being the
pseudocomplement of the other. Hence, we can speak about the sums, products
and complements of half-planes in RO(R?).

Definition 3.2 A (real) polygon is a Boolean combination of finitely many
half-planes in R2.
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We denote the set of polygons by H, and will sometimes refer to it as the
polygonal domain.

Of course, H is not the only well-behaved spatial domain we might choose.
If a line is defined by an equation ax + by + ¢ = 0, where a, b and ¢ are rational
numbers, we call it a rational line; and if a half-plane is bounded by a rational
line, we call it a rational half-plane. Now we define:

Definition 3.3 A rational polygon is a Boolean combination of finitely many
rational half-planes in RZ.

We denote the set of rational polygons by G, and will sometimes refer to it as
the rational polygonal domain.

Clearly, G and H are Boolean sub-algebras of RO(R?). We note that, in
computer systems designed to manipulate plane spatial data, approximation by
polygons is nearly universal. And since H—or perhaps, more modestly, G—is
arguably the spatial ontology recognized by such systems, it follows that these
polygonal ontologies are adequate to model planar arrangements in nearly all
practical situations. (Remember, there is no limit to the number of straight
edges in the boundaries of polygons.) We shall return later to the question of
liberalizing this ontology; however, for the moment, we shall take either G or
H to be the set of regions over which the variables of £ range.

Having defined two suitable domains of discourse, it is straightforward to set
up the L-structures they give rise to.

Definition 3.4 A nonempty set X C R? is said to be convex if, for all (£1,&),
(&1,8) € X and for all a € [0,1], we have (@.&1 + (1 —a).&],a.bo+(1—a).&) €
X. The empty set 0 is taken to be nonconver.

Thus, X # 0 is convex if the line segment connecting any two points in X lies
within X.

Definition 3.5 We define the (real) polygonal model § to have the domain H
and the following interpretations of the predicates in L:

1. <%={(a,b) € H?*|a C b}
2. conv? = {a € H| a is convez}

We define the rational polygonal model & ezactly as for § but with $ and H
replaced throughout by & and G respectively.

Clearly, G is countable, whereas H is uncountable, so & and $) are different
structures; just how different we will discover anon. For the moment, however,
many of our observations will apply to both & and $; therefore we use § to
refer indeterminately to either. Note that we take the domain of § to be F'.

Having defined our domains of discourse, we can immediately establish some
limitations on the expressive power of £ over these domains.
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Definition 3.6 Let 7 be a 1-1, onto mapping from R? to itself. If 7 maps lines
in R? to lines in R? then we say that T is a collineation (of the plane). If T
maps rational lines in R? to rational lines in R? then we say that T is a rational
collineation (of the plane).

Collineations and rational collineations of the plane have a simple characteriza-
tion.

Definition 3.7 A mapping 7 : R> = R? is an affine transformation if it is of
the form

T((£1;£2)) = (&1552)M+ (aa/@)a

where M is a nonsingular matriz and (o, 8) € R2. If, in addition, a, 3 and the
elements of M are all rational, we say that T is rational affine.

Affine transformations are continuous with continuous inverses, whence:

Lemma 3.1 Let 7 be an affine transformation and a and b regular sets. Then
7(—a) = —7(a), 7(a-b) = 7(a) - 7(b) and 7(a + b) = 7(a) + 7(b).

The following result is standard (see, e.g. Neumann et al. [20]).

Theorem 3.2 Let 7 be a 1-1 onto mapping from R to itself. Then T is a
collineation if and only if it is an affine transformation; moreover, T is a rational
collineation if and only if it is a rational affine transformation.

Given any two triples py, p2, p3 and ¢i, g2, g3 of noncollinear points in the plane,
there is a (unique) affine transformation 7 mapping p; to ¢; (1 < i < 3). If the
p; and g; have rational coordinates, then 7 is rational. The importance of affine
transformations for our purposes can be seen immediately:

Lemma 3.2 Let 7 be an affine transformation. Then T induces an $)-automorphism.
If in addition T is rational, then T induces a G-automorphism.

Proof: Clearly, affine transformations map half-planes to half-planes, and ra-
tional affine transformations map rational half-planes to rational half-planes.
Hence, by lemma 3.1, any affine transformation maps H 1-1 onto itself, and
any rational affine transformation maps G 1-1 onto itself. Moreover, by the
definition of convexity, affine transformations must map convex elements of F'
to convex elements of F' and nonconvex elements of F' to nonconvex elements
of F. m|

We can now establish an upper bound on the expressivity of L.

Definition 3.8 Two n-tuples of regions @ and bin H (orin G) are said to be
affine equivalent, written @ ~ b, if there is a (rational) affine transformation T
taking @ to b.



4 EXPRESSIVITY IN THE POLYGONAL MODELS 7

Theorem 3.3 Let a and b be n-tuples of F with @ ~ b. Then @ and b satisfy
the same formulas in §.

Proof: Immediate by lemma 3.2. m|

Thus, £-formulas cannot distinguish between affine-equivalent arrangements.
However, as we shall show in the next section, theorem 3.3 has a converse: £-
formulas can always distinguish between non-affine-equivalent arrangements. As
we shall see, this converse has serious consequence for the proposal to use £ as
a qualitative spatial representation language.

4 Expressivity in the polygonal models

Our next task is to establish the definability of various useful concepts in §.
Most of these results are so obvious that we state them without proof. The
formula

x>0A—z>0Aconv(z) A conv(—z) (1)

is satisfied in § by a if and only if a is a half-plane. We can informally identify
such a region with the line bounding it, and we will sometimes refer a as a line.
If, in addition, a € G, then we refer to a as a rational line. (Hence, all rational
lines are lines, but not vice versa.) To clarify proofs, we shall use letters Iy, l2,
m, m' etc. to denote half-planes when we want to think of them as lines. In
addition, as a shorthand, we will often use the variables uy, us, v, v' etc. as a
shorthand for variables z,y, constrained to satisfy the formula (1).

Various relations involving lines are definable in §. Two lines | and I’ are
coincident (the same undirected line) if and only if /,1' satisfies the formula
concident(u,u') given by

u=u'Vu=—-u".

Likewise, ! and !' are parallel if and only if [,]" satisfies the formula II(u,u')
given by

—concident(u,u’) A (u.v' =0V u. —u' =0V —uu' =0V —u. —u' =0).

Let the lines Iy, I» and I3 be pairwise nonparallel and noncoincident. By
inspection, l1, l2 and I3 can divide the plane into either 6 or 7 residual domains,
as shown in figure 1 a) and b). Since each residual domain corresponds to
a nonzero product of the form =+l. &+ l5. + I3 (remembering that the I; are
really half-planes), it is clear that we can write L-formulas I'(uq,u2,u3) and
A(ug,us,u3) such that, for any lines Iy, I and I3, § = T'(l1,1s,13) if and only if
I, ls and I3, all meet at a single point as in figure 1 a), and § = A(ly, 1o, 13) if
and only if Iy, I and I3 meet pairwise at three points as in figure 1 b).
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Figure 1: Intersection of three lines: a) ly.ls.l3 = —ly. —ls. — I3 = 0; b) only
—li.=1ly. =13 =0.

Lemma 4.1 Let Apouna(u1,us2,us) be the formula
Aug,uz,uz) A —uy - —us - —uz = 0.
Then a € F satisfies
Fuq Jug Fuz (Abound (U1, U2, uz) AT = uy - Us - u3)

if and only if a is a triangle. Hence, the property of being a bounded region is
definable in L.

Proof: If § = A(li,ls,13) then [y - 15 - I3 is the central triangular region (rather
than one of the unbounded regions) in figure 1 b) if and only if the product
=1y - =l - =l3 is zero. O

The following simple result contains the main idea in the following proofs.

Lemma 4.2 Let the lines Iy, s, I3 satisfy A, and let my, ma, ms3 be parallel to
l1, la, 13, respectively, intersecting at points O, P, Q, R, S as shown in figure 2.
Then OP = PQ.

Proof: Triangles OPR and SRP are congruent (2 angles and side); triangles
SRP and PQS are congruent (2 angles and side). O

Lemma 4.3 Let the lines Iy, 1o, I3 satisfy A, and let n be any integer. Suppose
that Iy and l3 intersect Iy at (distinct) points O and P respectively (figure 3).
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Figure 2: Copying a triangle formed by [, l2, I3. The labels “l;” and “m;” are
written next to the lines to indicate that it does not matter which half-planes
they denote.

Then there exists a formula ¢y, 1y 15,0 (U1, u2,us,v) of L such that, for any line
m intersecting l; at a point @ (where Q may coincide with either O or P),
§ E O ta,ds,nl1,12,13,m] if and only if OQ = nOP.

Proof: Immediate by repeating the construction of lemma 4.2 a number of
times (in either direction along /) and using the formulas T'(uq,u2,u3) and
H(Ul,UQ). O

We can generalize this lemma to cover rational multipliers:
Lemma 4.4 Lemma 4.8 holds when n is replaced by a rational number q.

Proof: By two applications of lemma 4.3 and by use of the formula I'(u1, u2,u3).
O

We now have the main lemma on which all the other results depend.

Lemma 4.5 (Rational fixing lemma) Let the rational lines li, 1y, l3 sat-
isfy A, and let m be any other rational line. Then there exists a formula
¢l1,l2,l3,m(u17 U2, us, U) of‘c such th(lt, fOT any line m’7 S ': ¢l1,12,l3,m [lla l27 l37 ml]
if and only if m =m/'.

Proof: If m is coincident with any of the /;, then the result follows immediately.
If m passes through the point of intersection of two of the [; and is parallel to
the third, then again the result follows immediately. Let us assume that neither
of these conditions obtains.
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A

I

Figure 3: Fixing the intersection of Iy and m.

By permuting the [; if necessary, we can suppose that m intersects both /; and
I in two distinct points. (Otherwise, we would have one of the two special cases
above.) Let ls, I3 and m intersect at l; at points O, P, and @, respectively, as
in figure 3. Since all lines are rational, OP = ¢OQ for some rational number,
so that by lemma 4.4 there is a formula fixing point @) given I, l> and [3. By
switching [; and [, we fix a second point on m and the result follows. O

We call ¢y, 15 ,15,m (U1, w2, u3,v) a fizing formula and say that ¢, 1,.15,m fizes
m with reference to Iy, la, Is. Notice that if I, I3, I3 satisfy A and m* is a
line such that & |= ¢y 1,.05,m[l1, 05,15, m*], then ¢, 1,.15,m also fixes m* with
reference to 17, 15, I5.

Definition 4.1 A formula ¢(T) is said to be affine complete in § if any two
n-tuples in F' satisfying ¢ in § are affine-equivalent. Similarly, a set of formulas
®(T) is said to be affine complete in F if any two n-tuples in F satisfying every
formula in ® in § are affine-equivalent.

Notation: If 7 is an affine transformation, then we will denote the induced
automorphism (of either & or §)) by 7.

The following result establishes the descriptive power of the language £ over
the model &.

Theorem 4.1 FEvery n-tuple in G satisfies an affine-complete formula in &.

Proof: Let @ = ay,...,a, be an n-tuple in G. Choose an N-tuple of lines (half-
planes) I = [y, ...Ix such that every a; is expressible as a Boolean combination
of the I; (1 <i<n,1<j<N). Without loss of generality, assume N > 3
and that Iy, 1,13 satisfy Apouna (as defined in lemma 4.1). Let ¢;(uy, ..., un)



4 EXPRESSIVITY IN THE POLYGONAL MODELS 11

be the formula:

A(ug,ug,uz) A /\ Bty 1o 3,15 (U1, U2, uz, uj)
4<iEN

where the ¢, 1,.,,, are fixing-formulas as defined in lemma 4.5. Let 7' be any
N-tuple of rational lines. We show that & |= 1/)7[7’] only if T ~ 1. Suppose that
6= wz[il]. Then for each j (4 < j < N)

é ': ¢l1,127l3,lj [lll’léaléal;'] >

and, in addition, 1, 1}, l§ satisfy Apound- It is a standard result of affine
geometry that there is a (unique) rational affine transformation 7 such that
7(l;) =1; (1 <j < 3). By lemma 3.2, we have, for each j (4 < j < N),

6 b= iy 1,050 11, 15, 13, T(15)] -

Since these are all fixing formulas, we have 7(I;) = I}, so that [ ~ 7. Hence

YP;(u1,...,un) is affine complete in &. Thus, @ satisfies a formula ¢(z) of the
form
Jug, ..., un(Wp(ur, ... un) A /\ x; = ti(u1,...,un))
1<i<n
in &, where the t;(u1,...,un) are Boolean combinations of the uy,...,un, and
this formula is visibly affine complete in &. a

We now turn to the descriptive power of the language £ over the model $.
Let us say that [ is a bounding half-plane of a region a € A if the boundary of [
coincides with some finite line segment on the boundary of a. Then we have

Lemma 4.6 If a € H then a is expressible as a Boolean combination of its
bounding half-planes.

Proof: Extend to infinity in both directions all the line segments in the bound-
ary of a. Then a is obviously expressible as a sum in RO(R?) of the residual
domains of the resulting lines. m|

Lemma 4.7 Let a € H and let |l be a half-plane. Then there is a L-formula
bhp(u, z) satisfied by I, a if and only if l is a bounding half-plane of a.

Proof: Let bhp(u,z) be
Jy(y-z > 0Aconv(y)A((y < utzAy-u > 0Ay-u-z = 0)V(y < —utzAy-—u > 0Ay-u-z = 0)))

O
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The following result establishes the descriptive power of the language £ over
the model §.

Theorem 4.2 FEvery n-tuple in H satisfies an affine-complete set of formulas

m9.

Proof: Let @, b be n-tuples of H, such that @ # b. We find a formula ¢(z)
separating a and ¥’ in 9.

Recall the abbreviation Apoynd (41, u2,us) introduced in lemma 4.1. We suppose
first that @ satisfies a formula Ja(a, ) with (@, Z) of the form

/\ \/ bhp(u;,z;) A /\ z; = t;(@) A Apouna(u1,uz2,us),

1<j<N 1<i<n 1<i<n

where @ is an N-tuple of variables and ¢;(@) (1 < i < n) are Boolean expressions
in the @. Intuitively, this formula says that the bounding half-planes involved
in the elements of @ can be ordered such that the first three of them form a
triangle in the sense of figure 1 b). We deal with the rare cases where a satisfies
no such formula below. If b does not satisfy Juv(u,z), we are done. So suppose
otherwise, and let I, m be N-tuples of half-planes in H such that

9 E vlia)
H E Y.
Now let II be the set of permutations 7 of {1,..., N} (where we write 7(m) =
My, - - -, My(N)) such that
9 Ylr@m), b

And for each 7w € TII, let a,; be an affine transformation which maps ly,l5,13
t0 Mr(1), Mr(2), Mr(3)- We know that such a exists, because both Iy,12,13 and
M (1), Mar(2), Mx(3) form triangles.

Since @ ¢ b, and since a; = t;[l], b; = t;[r(m)] for all i (1 < i < n) and all
7 € II, we must have a(l) # (), so that it is certainly possible to find a
formula (1) not satisfied b 7(m) but satisfied by a(I) and hence by 1.

Now let ¢(Z) be the formula
) A\ ¢x(@))
mell

Then it is clear that a satisfies ¢(Z). To see that b does not satisfy ¢(Z), suppose
that m', b satisfies ¥ (4, Z). Then obviously, m' = 7 () for some 7 € II, whence
m' does not satisfy ¢, (a).

For the case where neither @ nor b satisfies any formula Ju(a, Z), with 1 (a, 7)
as described above, we note that the bounding lines of the a (except possibly
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for one) must all be parallel (and similarly for b). Then @ £ b implies that the
ratios of distances between these parallel lines are not all the same, in which
case it is routine to find a distinguishing formula. O

5 Expressing topological properties in £

So far, we have analysed L’s expressivity in terms of the ability of its formulas
to characterize individual n-tuples of F. However, that does not tell us very
much about which general relations are definable by £-formulas. One particu-
larly salient class of relations are the topological relations such as the primitive
EC(z,y) of Davies, Gotts and Cohn, and the many topological relations that
can be defined in terms thereof. In this section, we show that various topological
relations are indeed L£-definable over certain choices for A.

Within the structures §, it is very easy to define the topological relations
C(z,y) and EC(z,y), where, recall, C(z, y) is satisfied by a pair of regions just in
case their topological closures have a point in common, and EC(z, y) is satisfied
by a pair of (open) regions just in case they have no point in common, but their
topological closures do.

Theorem 5.1 The relations C(z,y) EC(z,y) are L-definable in §.

Proof: If a’ and V' are convex regions, then their closures have a point in
common just in case it is impossible to separate a’ and b’ with two parallel
(noncoincident) lines. If a,b € F, then it is obvious that their closures have a
point in common just in case there exist convex polygons a' < a, b’ < b whose
closures have a point in common. |

We note that this definability result can certainly be generalized to domains
of quantification richer than the polygons. However, it is doubtful whether it
holds, for example, if the regions are taken to be all regular open sets.

Our next result has wider applicability. It is standard to take an open set
to be connected just in case it is not the union of two nonempty, disjoint, open
sets. A maximal connected subset of a set is called a component of that set.
This leads us to define:

Definition 5.1 Let A be a subset of RO(R?). We say that A is closed under
components if, for all a € A, if b is a component of a, then b € A.

Lemma 5.1 The sets G, H and RO(R?) are all closed under components.
Proof: Easy. a

For the next lemma, we introduce the abbreviation x = x; @ x5 for the formula

=21 +22A21 >0A22>0AZ1.22 =0.
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Lemma 5.2 Let a € A with G C A C RO(R?), and let A be closed under
components. Then a is connected if and only if A = conla] where con(x) is the
formula:

Ve 1Veo(z =21 @ e — Jy(y <z Ay.x1 > 0Ay.22 > 0Aconv(y))).

Proof: Suppose that a is connected. Then if a = a; ®az, we have a;Uas # a =
a1 +as. Solet p be a point in @ but not in a; Uas, and since G C A, let b € A be
a small convex region such that p € b < a. Certainly, then, p € F(a1) N F(asz),
so that b-ay and b- ay are nonzero. Hence, a satisfies con(x).

Conversely, suppose a is not connected. Let a; € A be a component of a and
az = a- —ajp so that a = a1 ® az. Moreover, suppose that b is such that b < a
with b-a; and b - a2 nonzero. Then since a1 is a component of a, b cannot be
connected (for then a; + b would be a connected subset of a strictly including
a1), so certainly b cannot be convex. Hence a does not satisfy con(z) in 2 . O

Thus, the property of being connected is £-definable over a wide range of choices
for the set A of regions.

We note in addition the following corollary concerning decidability. We call
the set of sentences true in a structure 2 the theory of 2, denoted Th(2). This
set is said to be decidable if there is an effective computational procedure for
determining whether any given sentence belongs to it—that is, whether any
given sentence is true in 2.

Corollary 1 The sets of sentences Th(®) and Th($)) are both undecidable.

Proof: Let £' be the first-order language whose primitives are bounded(zx)
and con(z), and let &' be the L'-structure with domain of quantification G
and primitives interpreted in the obvious way; similarly for §’. It follows from
Pratt and Lemon [24] (using lemma 4.14 and the proof of lemma 5.2) that
Th(&') = Th($'). Moreover, it is shown in Dornheim [13] that Th(®') is unde-
cidable. By lemmas 4.1 and 5.2, we can regard Th(®’) as, in effect, a subset of
Th(®). The result then follows. O

6 Distinguishing between models

So far, we have analysed L’s expressivity in terms of the ability of its formulas
to characterize individual n-tuples of F, and to express topological concepts. In
this section, we show how the sentences of £ (formulas with no free variables)
distinguish between various domains of quantification—that is, between various
choices as to what subsets of the plane count as bona fide regions. On the way,
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we prove a few easy corollaries of theorems 4.1 and 4.2 which are of general
mathematical interest.

The first two of these corollaries rely on the notion of atomicity (see, e.g.
Chang and Keisler [8], sec. 2.3).

Definition 6.1 A formula ¢(Z) is said to be complete in a theory T if, for all
formulae 0(Z), exactly one of T |= ¢ — 6 and T = ¢ — —6 hold. A model A is
said to be atomic if any n-tuple a in A satisfies a formula ¢(T) in A such that
¢(z) is complete in Th(A).

Intuitively, an atomic model is one in which every n-tuple of elements satisfies
some L-formula from which all of its £-definable properties can be deduced.

Corollary 2 The model & is atomic.

Proof: By lemma 3.2, every affine complete formula in & is a complete formula
in Th(®). m|

Atomicity is an important property of models, because atomic models count
as being ‘small’. If 2l and B are two L-structures, we say that & can be elemen-
tarily embedded in 9B if there is a function f: A — B such that for all n-tuples
ain A, and all £-formulas,

A |= ¢[a] if and only if B = ¢[f(a)] .

Intuitively, 2 is a copy of a substructure of 8 where any additional elements
of B make no difference to the £-definable properties of the elements of this
substructure. If % and 8 make the same sentences true, then we say that
2A and B are elementarily equivalent and write 2 = 9B. Note that if 2 can
be elementarily embedded in B, then 2 and B are elementarily equivalent;
however, the converse entailment doe not in general hold. Thus the following
result indicates the special status of &.

Corollary 3 The model & is prime: if A = & then & can be elementarily
embedded in 2.

Proof: It is a standard result of model theory (Chang and Keisler [8]: 2.3.4)
that a model is prime if it is countable and atomic. |

In other words, any alternative spatial ontology making the same L-sentences
true as ® must contain a copy of &, together with a collection of elements
making no difference to the properties satisfied by members of the copy of &.
In that sense, no alternative ontology for Th(®) is simpler than & itself.

The following result also comes for free with the above analysis. An au-
tomorphism of an L-structure 2 is simply a 1-1 map from A to itself which
preserves the interpretation of the primitive symbols of £. It is often useful to
know what the automorphisms of a structure are.



6 DISTINGUISHING BETWEEN MODELS 16

Corollary 4 The group of automorphisms of & is isomorphic to the rational
affine group. The group of automorphisms of § is isomorphic to the affine

group.

Proof: We show by a modification of the proof of theorem 4.1 that, if f : § = §
is an automorphism, then there exists an unique (rational) affine transformation
7 such that f = 7; the corollary then follows from lemma 3.2, since we can take
the mapping 7 — 7 to be the isomorphism.

Consider the case § = &. Let f be an automorphism of & and let [, l5, 13 satisfy
Abound(ul, ua, U3). Then f(ll), f(lg), f(l3) satisfies Abound(ul, ua, U3).

Let 7 be the unique rational affine transformation such that 7(I;) = f(I;)
(1 <j < 3). Let m be any half-plane in G. Since both f and 7 are automor-
phisms, we have

& IZ ¢l1,l2,ls7m[f(ll)af(l2)7f(l3)af(m)
() |: ¢l1,l2,l3,m[f(ll)7f(l2)7f(l3)77~—(m)] -

where ¢y, 1,,15,m is a fixing-formula. But then, given our above observations on
fixing formulae, f(m) = 7(m). Hence f = 7.

The case § = $ is analogous, except that we use a fixing set of formulas
@, 1,,15,m in place of the single fixing formula ¢y, 1,.15,m - O

The following theorem shows that £ distinguishes between the models & and

9.
Theorem 6.1 The L-structures & and $) are not elementarily equivalent.

Proof: If the lines k, [, m form a triangle, let us denote the intersection
points m NI and kN by O and I, respectively. (See figure 4.) If j; is any line
intersecting [ in a point B, it is easy to see that B lies on the same side of O
as I if both k and j, lie entirely outside the same quadrant created by | and
m (marked with % in the diagram). Hence there is a formula pos(up, ug, u;, Um)
satisfied by the lines j;, k, [ and m guaranteeing that k, [ and m form a triangle
with the points [ N j, and [ N k lying on the same side of the point I Nm on [.

In figure 4, the lines j,, jp and j. are shown intersecting [ at the points A, B
and C, respectively, and satisfy the conditions: j,||k, jeNm =knNm = {X},
Jvllje and jp N"m = j, Nm = {Y'}. By easy plane geometry, triangles OX I and
OY A are similar, as indeed are triangles OXC and OY B. Hence:

OV/OX = 04/01
0Y/0X = 0B/OC.

Therefore,

04/0T = OB/OC.
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Figure 4: Multiplication of points on a line

whence

ocC OB
oI oI

S(hN

Intuitively, equation (2) says that, if A, B and C are taken to denote numbers
on the line I, where O is the origin and OI the unit of measurement, then
B = A.C. Since the conditions on j,, j and j. are certainly expressible in
L, there is a formula mult(ug, up, Ue, Uk, U, ) satisfied by jq, js, je, £, I, m just
in case k, [ and m form a triangle, and j,, jp, jo intersect [ in points A, B, C
satisfying equation 2.

Now let ¢ be the sentence
VsV YV (pos(up, Uk, Ury Um) — Fumult(u, up, U, Uk, Uz, Um))-

Then it is obvious that § = ¢. For let jp, k, I, m satisfy pos(up, uk, ur, ) in
9, and let the points O, I, B be as in figure 4. Then we can find a suitable
witness for u in ¢ by taking a line j intersecting [ at a point A where OA/OI =

\/OB/OI. That & [£ ¢ is equally obvious if we choose jj intersecting [ at a
point B such that OB/OI has an irrational square root. O

The following result is not surprising.

Theorem 6.2 The model $) is not atomic.
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Proof: If h € H, then, by theorem 4.2, let the set of formulas ®,(x) fix h upto
affine equivalence. Suppose §) is atomic, and let ¢p(z) be a complete formula
satisfied by z in . Then Th($)) E ¢r — ¢ for every ¢ € ®p, so ¢y, fixes h
upto affine equivalence. But this is a contradiction given that £ is countable
and that there are certainly uncountably many non-affine-equivalent elements
of H. O

So far, we have focused exclusively on the polygonal models & and $); and
it is reasonable to insist that one’s spatial ontology should be richer than this.
For example, one could take as the set of regions the set RO(IR2) of all regular
open sets (i.e. not just polygons). Denote the resulting L-structure by Ago.
Then we have

Theorem 6.3 Aro is elementarily equivalent to neither & nor $).

Proof: Consider the sentence ¢:
dz(x > 0 A Vy—(conv(y) A conv(z.y) A conv(—z.y)))

(Recall that the empty set qualifies as being nonconvex.) That Aro |= ¢ is
obvious by taking a circle as a witness for . That § £ ¢ is equally obvious
given that every nonempty element of F' must have straight-line edges. O

Consider now the set of regular open definable sets, ROD(IRQ), where a subset
of R? is said to be definable just in case it is the set of values (£1, &) which satisfy
some formula ¢ (z,y) in the usual language of fields. Definable sets are regarded
as generally well-behaved. So we might consider the L-interpretation 2Arop
where quantification rages over all regions in ROD. The proof of theorem 6.3
shows that 2Arop is elementarily equivalent to neither & nor §), since open
circular discs are certainly in ROD. However, we also have

Theorem 6.4 Aro and Arop are not elementarily equivalent.

Proof: This proof uses results from Pratt and Lemon [24] on the first-order
language whose primitives are < and con(z), interpreted in the normal way.
It follows from standard results on definable sets ([24] lemma 6.8) that the set
ROD is closed under components in the sense of definition 5.1. Therefore, the
formula given in lemma 5.2 defines the property of being connected in both Aro
and QlROD-

Thus, we can regard the following sentence as an L-sentence, by replacing
con(z) by its definition.

\7’:1:1V:1:2V:1:3((/\1953 con(x;) A con(zy + z2 + $3)) — (con(z1 + z2) V con(z1 + ¢3))).
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This sentence states that, if the sum of three connected regions is connected,
then the first must be connected to at least one of the other two. It is observed
in [24] that this sentence is true if quantification is restricted to either G, H or
ROD(R?), but false if it is allowed to range over the whole of RO(R?). O

The main conclusion of this section is that £ is able to distinguish between
all the following choices for A in terms of the L-sentences that these choices
make true: G, H, ROD(R?) and RO(R?). We note in passing that, like Th(&)
and Th($), both Th(2rop) and Th(Aro) are undecidable. But the details are
routine and not worth rehearsing here.

7 Discussion and related work

Various logicians have sought to give deductive theories of space and space-time
(Basri [3], Carnap [7], Goldblatt [15], Henkin, Suppes and Tarski [17]), many
in terms of modal logics (Balbiani et al. [2], Rescher and Garson [26], Rescher
and Urquhart [27], Segerberg [29], Shehtman [31], von Wright [33]). Most re-
cent work on qualitative spatial reasoning has focussed on mereotopological lan-
guages, that is, those whose primitives are limited to mereological (part-whole)
and topological relations (Whitehead [34], Clarke [9], [10], Biacino and Gerla
[5], Gotts, Gooday and Cohn [16], Asher and Vieu [1], Borgo, Guarino, and
Masolo [6], Roeper [28], Pratt and Lemon [24]).

Whether qualitative spatial representation languages have any practical uses
is still unclear. For purely topological languages, which employ such primitives
as con(z) and C(z,y), the situation is at least somewhat promising. On the
one hand, it is known that many of these languages are surprisingly expres-
sive. Thus, results analogous to theorem 4.1 are available for these languages,
but with homeomorphisms taking the place of affine transformations (see Pa-
padimitriou, Suciu and Vianu [21], and, for a different approach Pratt and
Schoop [23]). On the other hand, these purely topological languages do not per-
mit the re-introduction of coordinate descriptions. In that respect, they manage
to perform the semantic balancing act mentioned at the start of this paper: not
so inexpressive as to be useless, yet inexpressive enough to remain distinctively
qualitative.

The results established in this paper suggest that, as we move away from the
a purely topological vocabulary, this balancing act becomes impossibly difficult.
They might be summarized in the informal equation:

Mereology + Convexity = Affine Geometry.

Once we can represent the property of convexity and the part-whole relation—
modest assumptions by any standards—n-tuples of real polygons are determined
upto affine equivalence by the sets of formulas they satisfy, and n-tuples of
rational polygons are so determined by a single formula. Such a language cannot
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be called qualitative in any meaningful sense. Complete characterizations of
polygonal planar arrangements in terms of the properties expressible in £ just
are coordinate descriptions modulo the fixing of three noncollinear reference
points.

Where, one is tempted to ask, have all the numbers come from? Answer:
from the fact that affine geometries can be coordinatized by means of construc-
tions describable in terms of the intersection and parallelism of lines, and hence
in terms of the expressive resources of £. Specifically, it transpires that any
system of points and lines for which the usual axioms of affine geometry hold,
together with the theorems of Desargues and Pappus, admits of a coordinatiza-
tion over a suitable field. (See, e.g. Bennett [4].) And any spatial representation
language which enables us to express basic coincidence relations involving points
and lines will give us considerable access to this coordinatization. Many of the
proofs developed in this paper are essentially a reconstruction of this coordinati-
zation in the special cases of the affine geometries based on the real and rational
planes. It is an interesting—and, as far as we are aware, unanswered—question
to what extent the properties of the coordinatizing field can be fixed using first-
order formulas ranging over various sets of regions in various affine geometries.
However, aside from this technical issue, the prospects for the practical appli-
cation of such languages appear bleak. Bearing in mind the robustness of the
phenomenon of coordinatization, it is hard to see how any spatial description
language, in which a small repertoire of apparently qualitative spatial primitives
is combined with the full power of first-order logic, could possibly avoid the fate
which befell £. Tt is all the fault of logic and geometry: a first-order spatial
description language must either lack the ability to express the part-whole re-
lationship and the property of convexity, or must permit the re-introduction
of numerical coordinates upto affine transformations. True, this observation
does not eliminate the possibility that the affine primitives of £, or any similar
set, may form a convenient language in which to formulate simple problems,
where the things we want to say often just happen to be expressible with sim-
ple, easy-to-reason-with formulas. But we see no grounds for optimism in this
regard.
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