Ontology Languages
for the
Semantic Web

Ontology Languages

* Wide variety of languages for “Explicit Specification”
— Graphical notations
+ Semantic networks




Ontology Languages

Wide variety of languages for “Explicit Specification”
— Graphical notations
* Topic Maps

ot Map

Ontology Languages

Wide variety of languages for “Explicit Specification”
— Graphical notations
+ UML

[Grow |
FieldSet MS’Q"::
& DisplayOrder <l&jeToolbar] |
&lsMandatory | » i
= 1
i e
Label GroupSet
& Text Bty |
1.1 Y
SoLinkType FreeFomm & Results
| &DisplayOnly
11 &Datatype
S Minwidth
Linked Fields ——
IR &Format —
Swidth
NonLabel |
DisplayOnl
o
S Nullable
(]
e

[
RadioGroup
e S - (B




Ontology Languages

*  Wide variety of languages for “Explicit Specification”
— Graphical notations
* RDF

nnnnnn

nnnnnn

Fasa
NotJava

Ontology Languages

*  Wide variety of languages for “Explicit Specification”
— Logic based
» Description Logics (e.g., OIL, DAML+OIL, OWL)
* Rules (e.g., RuleML, LP/Prolog)
+ First Order Logic (e.g., KIF)

Every gardener likes the sun.

(&) gardener(x) == likes(x,Sun)
Youcan fool some of the people all of the time.

(Ex)(AL) (person(x) ™ tirae(t)) == can-fool(x,t)
Youcan fool all of the people some of the time.

(&x)(Et) (person{x) " tire(t) == can-fool(x,f)
Allpurp le mushrooms are poisonous.

() (raushroor(x) ™ purple(x)) == poisonous(x)
No purp le mushroom is poisonous.

~{Ex) purple(x) " mushroora{x) * poisonous(x)

(&) (raushroor(x) ~ purple(x)) == ~poisonous(x)
There are exactly two p urple mushrooms.

(Ex)(Ey) mushroora(x) "Emple(x)

{rushroomiz) ™ purple(z)) == {(x=z) v (y=z))

Clinton is not tall

~tall{Clinton)

* mushroor(y) ~ purple(y) ~~(x=y) " (4z)




Ontology Languages

* Wide variety of languages for
“Explicit Specification”
— Logic based
+ Conceptual graphs

o)
G

Ontology Languages

*  Wide variety of languages for “Explicit Specification”
— Logic based
+ Conceptual graphs
* (Syntactically) higher order logics (e.g., LBase)
* Non-classical logics (e.g., Flogic, Non-Mon, modalities)
— Bayesian/probabilistic/fuzzy

* Degree of formality varies widely

— Increased formality makes languages more amenable to
machine processing (e.g., automated reasoning)




Many languages use “object oriented” model based on:

* Objects/Instances/Individuals
— Elements of the domain of discourse
— Equivalent to constants in FOL
* Types/Classes/Concepts
— Sets of objects sharing certain characteristics
— Equivalent to unary predicates in FOL
* Relations/Properties/Roles
— Sets of pairs (tuples) of objects
— Equivalent to binary predicates in FOL

* Such languages are/can be:
— Well understood
— Formally specified
— (Relatively) easy to use
— Amenable to machine processing

Web “Schema” Languages

« Existing Web languages extended to facilitate content
description
— XML — XML Schema (XMLS)
— RDF — RDF Schema (RDFS)
+  XMLS not an ontology language
— Changes format of DTDs (document schemas) to be XML
— Adds an extensible type hierarchy
* Integers, Strings, etc.
« Can define sub-types, e.g., positive integers
* RDFS is recognisable as an ontology language
— Classes and properties
— Subl/super-classes (and properties)
— Range and domain (of properties)




RDF and RDFS

RDF stands for Resource Description Framework

It is a W3C candidate recommendation
(http://www.w3.0org/RDF)

RDF is graphical formalism ( + XML syntax + semantics)

— for representing metadata

— for describing the semantics of information in a machine-
accessible way

RDFS extends RDF with “schema vocabulary”, e.g.:
— Class, Property

— type, subClassOf, subPropertyOf

— range, domain

The RDF Data Model

Statements are <subject, predicate, object> triples:

hasColleague
lan > Ui

Can be represented using XML serialisation, e.g.:
<Ian,hasColleague,Uli>

Statements describe properties of resources

A resource is a URI representing a (class of) object(s):
— adocument, a picture, a paragraph on the Web;

http://www.cs.man.ac.uk/index.html

— abook in the library, a real person (?)

isbn://5031-4444-3333

Properties themselves are also resources (URIs)




URIs

URI = Uniform Resource Identifier
"The generic set of all names/addresses that are short
strings that refer to resources
URIs may or may not be dereferencable
— URLSs (Uniform Resource Locators) are a particular type of
URI, used for resources that can be accessed on the WWW
(e.g., web pages)
In RDF, URIs typically look like “normal” URLs, often with
fragment identifiers to point at specific parts of a
document:
— http://www.somedomain.com/some/path/to/file#fragmentiD

|

-

Linking Statements

The subject of one statement can be the object of another

Such collections of statements form a directed, labeled
graph

hasColleague
lan > Uli

hasHomePage
hasColleague

Carole http://www.cs.mam.ac.uk/~sattler

Note that the object of a triple can also be a “literal” (a
string)

|




RDF Syntax

RDF has an XML syntax that has a specific meaning:

Every pescription element describes a resource

Every attribute or nested element inside a bescription isa property
of that Resource with an associated object resource

Resources are referred to using URIs

<Description about="some.uri/person/ian_horrocks">
<hasColleague resource="some.uri/person/uli_sattler"/>

</Description>

<Description about="some.uri/person/uli_sattler">
<hasHomePage>http://www.cs.mam.ac.uk/~sattler</hasHomePage>

</Description>

<Description about="some.uri/person/carole_goble">
<hasColleague resource="some.uri/person/uli_sattler"/>

</Description>

RDF Schema (RDFS)

RDF gives a formalism for meta data annotation, and a way
to write it down in XML, but it does not give any special
meaning to vocabulary such as subClassOf or type

— Interpretation is an arbitrary binary relation

— l.e., <Person,subClassOf,Animal> has no special meaning

RDF Schema defines “schema vocabulary” that supports
definition of ontologies
— gives “extra meaning” to particular RDF predicates and
resources (such as subClasOf)

— this “extra meaning”, or semantics, specifies how a term
should be interpreted




RDFS Examples

* RDF Schema terms (just a few examples):
— Class
— Property
— type
— subClassOf
— range
— domain
* These terms are the RDF Schema building blocks
(constructors) used to create vocabularies:
<Person, type,Class>
<hasColleague, type, Property>
<Professor,subClassOf, Person>
<Carole, type,Professor>
<hasColleague, range, Person>
<hasColleague,domain, Person>

RDF/RDFS “Liberality”

* No distinction between classes and instances (individuals)
<Species, type,Class>
<Lion, type, Species>
<Leo, type,Lion>

* Properties can themselves have properties
<hasDaughter, subPropertyOf,hasChild>
<hasDaughter, type, familyProperty>

* No distinction between language constructors and
ontology vocabulary, so constructors can be applied to
themselves/each other
<type, range,Class>
<Property, type,Class>
<type, subPropertyOf, subClassOf>




r RDF/RDFS Semantics

*  RDF has “Non-standard” semantics in order to deal with this
« Semantics given by RDF Model Theory (MT)

I Aside: Semantics and Model Theories

* Ontology/KR languages aim to model (part of) world
* Terms in language correspond to entities in world
* Meaning given by, e.g.:
— Mapping to another formalism, such as FOL, with own well
defined semantics
— or a bespoke Model Theory (MT)
* MT defines relationship between syntax and interpretations
— Can be many interpretations (models) of one piece of syntax
— Models supposed to be analogue of (part of) world
* E.g., elements of model correspond to objects in world
Formal relationship between syntax and models
 Structure of models reflect relationships specified in syntax
— Inference (e.g., subsumption) defined in terms of MT
« E.g., TE A C B iff in every model of 7, ext(A) C ext(B)




Aside: Set Based Model Theory

* Many logics (including standard First Order Logic) use a
model theory based on Zermelo-Frankel set theory
* The domain of discourse (i.e., the part of the world being
modelled) is represented as a set (often refered as A)
* Objects in the world are interpreted as elements of A
— Classes/concepts (unary predicates) are subsets of A
— Properties/roles (binary predicates) are subsets of A x A (i.e., A?)
— Ternary predicates are subsets of A3 etc.
*  The sub-class relationship between classes can be
interpreted as set inclusion
» Doesn’t work for RDF, because in RDF a class (set) can be a
member (element) of another class (set)
— In Z-F set theory, elements of classes are atomic (no structure)

Aside: Set Based Model Theory Example

Model Interpretation

Daisy isA Cow
Cow kindOf Animal

%‘ ﬁ ( Person kindOf Animal

LN Z123ABC isA Car

Mary drives Z123ABC




rAside: Set Based Model Theory Example

* Formally, the vocabulary is the set of names we use in our
model of (part of) the world
— {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...}
+ An interpretation Z is a tuple ( A, )
- Ais the domain (a set)
- I is a mapping that maps
+ Names of objects to elements of A
+ Names of unary predicates (classes/concepts) to subsets
of A
+ Names of binary predicates (properties/roles) to subsets of
AxA
» And so on for higher arity predicates (if any)

|

r RDF Semantics

* RDF has “Non-standard” semantics in order to deal with this
* Semantics given by RDF Model Theory (MT)
* In RDF MT, an interpretation Z of a vocabulary V consists of:
— IR, a non-empty set of resources (corresponds to A)
— IS, a mapping from V into IR (corresponds to .7 )
IP, a distinguished subset of IR (the properties)
« Avocabulary element v € V is a property iff IS(v) € IP
IEXT, a mapping from IP into the powerset of IRxIR
* l.e., property elements mapped to subsets of IRxIR

— IL, a mapping from typed literals into IR




Example RDF Simple Interpretation

IS assigns one thing to
each name in the
vocabulary

1 is the only property
in the set IP

IEXT maps 1to a ‘
property extension

The property extension IEXT(1) maps
1to2and2to 1

RDF Semantic Conditions

- RDF Imposes semantic conditions on interpretations, e.g.:
— x is in IP if and only if <x, IS(rdf:Property)> is in IEXT(I(rdf:type))
» All RDF interpretations must satisfy certain axiomatic triples,
e.g.:
— rdf:type rdf:type rdf:Property
— rdf:subject rdf:type rdf:Property
— rdf:predicate rdf:type rdf:Property
— rdf:object rdf:type rdf:Property
— rdf:first rdf:type rdf:Property
— rdf:rest rdf:type rdf:Property
— rdf:value rdf:type rdf:Property




Example RDF Interpretation

rdftype rdf:Property rdfinil rdf:List ¢ rdf-Statement
b e S0

i rdf:subject

RDFS Semantics

RDFS simply adds semantic conditions and axiomatic triples
that give meaning to schema vocabulary
Class interpretation ICEXT simply induced by rdf:type, i.e.:
— xis in ICEXT(y) if and only if <x,y> is in IEXT(IS(rdf:type))
Other semantic conditions include:
— If <x,y> is in IEXT(IS(rdfs:domain)) and <u,v> is in IEXT(x) then u
is in ICEXT(y)
— If <x,y> is in IEXT(IS(rdfs:subClassOf)) then x and y are in IC and
ICEXT(x) is a subset of ICEXT(y)
— IEXT(IS(rdfs:subClassOf)) is transitive and reflexive on IC
Axiomatic triples include:
— rdf:type rdfs:domain rdfs:Resource
— rdfs:domain rdfs:domain rdf:Property




RDFS Interpretation Example

« If RDFS graph includes triples

<Species, type,Class>
<Lion, type, Species>

<Leo, type,Lion>
<Lion,subClassOf,Mamal>
<Mamal, subClassOf,Animal>

* Interpretation conditions imply existence of triples

<Lion,subClassOf,Animal>
<Leo, type ,Mamal>
<Leo, type,Animal>

Problems with RDFS

 RDFS too weak to describe resources in sufficient detail

No localised range and domain constraints

+ Can’t say that the range of hasChild is person when
applied to persons and elephant when applied to elephants

No existence/cardinality constraints

« Can’t say that all instances of person have a mother that is
also a person, or that persons have exactly 2 parents

No transitive, inverse or symmetrical properties

+ Can’t say that isPartOf is a transitive property, that hasPart
is the inverse of isPartOf or that touches is symmetrical

 Difficult to provide reasoning support

No “native” reasoners for non-standard semantics
May be possible to reason via FO axiomatisation




Web Ontology Language Requirements

Desirable features identified for Web Ontology Language:

* Extends existing Web standards
— Such as XML, RDF, RDFS
« [Easy to understand and use
— Should be based on familiar KR idioms
* Formally specified
- Of “adequate” expressive power
* Possible to provide automated reasoning support

From RDF to OWL

Two languages developed to satisfy above requirements

— OIL: developed by group of (largely) European researchers (several
from EU OntoKnowledge project)

— DAML-ONT: developed by group of (largely) US researchers (in
DARPA DAML programme)

Efforts merged to produce DAML+OIL

— Development was carried out by “Joint EU/US Committee on Agent
Markup Languages”

— Extends (“DL subset” of) RDF

DAML+OIL submitted to W3C as basis for standardisation
— Web-Ontology (WebOnt) Working Group formed
— WebOnt group developed OWL language based on DAML+OIL

— OWL language now a W3C Recommendation (i.e., a standard like
HTML and XML)




OWL Language

* Three species of OWL

— OWL full is union of OWL syntax and RDF

— OWL DL restricted to FOL fragment (== DAML+OIL)

— OWL Lite is “easier to implement” subset of OWL DL
* Semantic layering

— OWL DL ~ OWL full within DL fragment

— DL semantics officially definitive
* OWL DL based on SHZQ Description Logic

— In fact it is equivalent to SHOZM(D,) DL
*  OWL DL Benefits from many years of DL research
Well defined semantics
Formal properties well understood (complexity, decidability)
Known reasoning algorithms
Implemented systems (highly optimised)

(In)famous “Layer Cake”

-

Rules Trust

I proof |
2

[ e | &
f_ (2]

- :::c t Ontology vocabulary g
o0

[~ Relational Data : DOF + rdfschema | &

Unicode

* Relationship between layers is not clear
* OWL DL extends “DL subset” of RDF




