
1

Integrity Constraint Management

CS2312

The correctness and consistency of the
data and its information
� Implicit

� of the data model
� specified and represented in schema

� Explicit
� additional constraints of world
� can’t directly represent in data model

� Inherent
� assumed to hold by the definition of the data

model
� don’t have to be specified
� e.g. attribute is atomic

Classification of constraints
� State constraints

� Constraints on the database state
� State is consistent if it satisfies all the state

constraints

� Transition constraints
� Constraint on the transition from one state to

another, not an individual state
� e.g. labmark of a student can only be increased
� ∴ need to know the new value of labmark and the

old value of labmark
newlabmark >= oldlabmark

Explicit Integrity Constraints on EER Model

roomno

faculty

DEPARTMENTdept

hons

slot
labmark

exammark

studno name

given family

STUDENT

SCHOOL

YEAR
ENROL

YEARREG

REG

TUTOR

YEARTUTOR

STAFFCOURSE

courseno

subject equip

name

year

appraiser appraisee

APPRAISAL

TEACH
m n

1 m

1

11m

n m
m

1

m

1

num of
students

OFFER

m

1

WORKSFOR

m

1

1

m

MANAGES

m

1

APPROP
RIATE

2

REGWITH

m

Explicit Integrity Constraints on EER Model
1.Student’s tutor must be employed by a department that the student is
registered with

2. A student can only be enrolled for a course which is appropriate to the
year that the student is in

3. Only staff who are employed by a department can teach a course offered
by the department

4. Staff can only be appraised by a member of staff in the same department

5. Staff who don’t lecture must tutor

6. Average mark for a course > 30

7. Labmarks can only increase

REGWITH can be represented by either

a) STUDENT(studno, familyname, givenname, hons, tutor, slot, dept1,
dept2) or

b) REGWITH(studno, dept)

Classification of state integrity constraints
� Uniqueness: no two values of the same attribute can be

equal
� Entity Integrity: no part of the key of a relation can be

null
� Non-Null: all values of an attribute must be non-null
� Domains (value sets): all values of an attribute must lie

within a defined domain, e.g. 0 < x < 100
� Inter-domain matches: would not be sensible to match

disparate domains
� Domain cardinality: the number of values for an attribute

must lie in a defined range , e.g. number of natural
parents living: 0, 1 or 2

Revision … Revision … Revision …

2

Classification of state integrity constraints
� Relationship cardinality : the number of times an entity

instance can participate in a relationship instance
e.g. a student can take many courses and a course can be

taken by many students; students can only enrol for up
to 5 courses.

� Relationship participation: entity instances can optionally
or mandatorally participate with a relationship instance

e.g. A child must mandatorally be related through a mother
relationship to a person but a person can be optionally
related to a child

Revision … Revision … Revision …

Classification of state integrity constraints
� Inclusion: all values of one attribute are also values of

another
e.g. set of appraisers ⊂ set of staff

set of undergraduates ⊂ set of students
� Covering: all values of one attribute are also values of

one of a set of attributes
e.g. cars ∪ boats ∪ planes = vehicles

undergraduates ∪ postgraduates = students
� Disjointedness: the value of an attribute cannot be at the

same time for a particular entity more than one value
e.g. male and female

� Referential: a value under one attribute is guaranteed to
exist if there is a corresponding value under another
attribute;

e.g. every student’s tutor attribute must match a staff entity
Revision … Revision … Revision …

General
� More general constraints consisting of a predicate over

values under an attribute or across attributes.
� Sometimes known as business rules
� Inter-attribute constraints

� date of birth < date of entry
� quantity ordered = quantity delivered

� Domain set functions
� average mark of students > 30

� Derived attributes
� number of students enrolled on a course =

studno ƒ COUNT courseno (ENROL)
� total mark for a course = exammark + labmark

Specifying Constraints in the Relational
Model
� Inherent

� already in model
e.g. atomic domain values

� Implicit
� in the Data Definition Language
e.g. referential integrity

� Explicit
� Declaratively assertions or triggers
� Procedurally transactions
e.g. year tutors supervise two fewer students than

other staff

Domain integrity in SQL2
Create domain name_type as char(20);
create table student

(studentno number(8) primary key,
givenname name_type,
surname name_type,
hons char(30) check (hons in
('cis','cs','ca','pc','cm','mcs')),
tutorid number(4),
yearno number(1) not null, etc.....

create table staff
(staffid number(4) primary key,
givenname name_type,
surname name_type,
title char(4)
check (title in ('mrs','mr','ms','prof','rdr','dr')),
roomno char(6),
appraiserid number(4), etc....

Extensions to Referential Integrity in SQL2
create table YEAR

(yearno number(8),
yeartutorid number(4) constraint fk_tut

references STAFF(staffid)
on delete set null on update cascade),

constraint year_pk1 primary key (yearno));

create table STAFF
(staffid number(4) primary key,
givenname char(20),
surname char(20),
title char(4)
check (title in ('mrs','mr','ms','prof','rdr','dr')),
roomno char(6),
appraiserid number(4) not null default ‘22’,
constraint app_fk

foreign key (appraiserid)
references STAFF(staffid) disable
on delete set default on update cascade);

3

Controlled redundancy in Transactions
� An atomic (all or nothing) program unit that performs

database accesses or updates, taking a consistent (&
correct) database state into another consistent (&
correct) database state

� A collection of actions that make consistent
transformations of system states while preserving
system consistency

� An indivisible unit of processing

database in a
consistent state

database in a
consistent state

database may be
temporarily in an
inconsistent state
during execution

end Transaction T
execution of Transaction Ti

Controlled redundancy in Transactions
� STUDENT(studno, name, numofcourses)

COURSE(courseno,subject,numofstudents)
ENROL(studno,courseno)

� Students can only enrol for up to 5 Courses.
� Add student S to course C

1. select course C
2. select student S
3. count number of courses S already enrolled for

if < 5 then step 4 if = 5 then halt
END

4. select enrol for student S
5. check whether S already enrolled on C

if no then step 6 if yes then halt
END

6. Insert enrol instance (S,C)
7. Increment numofcourses in student for S
8. Increment numofstudents in course for C
END

Constraints Managed Procedurally
� Problems:

� load on programmer
� changing constraints
� no centralised enforcement
� no central record

� In Oracle, transactions written in host programming
languages (e.g. C) or PL/SQL

� PL/SQL programs can be saved in the Data Dictionary
as
� Functions
� Procedures
� Packages

Database Triggers
� Centralized actions can be defined using a non

declarative approach (writing PL/SQL code) with
database triggers.

� A database trigger is a stored procedure that is fired
(implicitly executed) when an INSERT, UPDATE, or
DELETE statement is issued against the associated
table.

� Database triggers can be used to customize a
database management system:
� value-based auditing
� automated data generation
� the enforcement of complex security checks
� enforce integrity rules
� enforce complex business rules

Trigger Structure
A trigger has three basic parts:
� Event

� a triggering event or statement
� the SQL statement that causes a trigger to be fired

� Condition
� a trigger restriction or condition

� specifies a Boolean expression that must be TRUE for
the trigger to fire. The trigger action is not executed if the
trigger restriction evaluates to FALSE or UNKNOWN.

� Action
� a trigger action

� the procedure (PL/SQL block) that contains the SQL
statements and PL/SQL code to be executed when a
triggering statement is issued and the trigger restriction
evaluates to TRUE.

Example : maintaining derived values

CREATE OR REPLACE TRIGGER increment_courses

AFTER INSERT ON enrol

FOR EACH ROW
BEGIN
update students
set numofcourses = numofcourses + 1
where students.studno = :new.studno

END;

Event

Condition

Action
row trigger

column values for current row
and new/old correlation names

SQL statements

4

Example Integrity Trigger in Oracle
CREATE TRIGGER labmark_check
BEFORE INSERT OR UPDATE OF labmark ON enrol

DECLARE

bad_value exception;

WHEN (old.labmark IS NOT NULL OR new.labmark IS
NOT NULL)

FOR EACH ROW

BEGIN

IF :new.labmark < :old.labmark

THEN raise bad_value ;

END IF;
EXCEPTION

WHEN bad_value THEN

raise_application_error(-20221,‘New
labmark lower than old labmark’);

END;

Event

Condition

Action
row trigger

column values for current row
and new/old correlation names

SQL and PL/SQL statements,
PL/SQL language constructs (variables,
constants, cursors, exceptions etc), and
call stored procedures.

Example Reorder Trigger in Oracle
CREATE TRIGGER reorder

AFTER UPDATE OF parts_on_hand ON inventory

WHEN (new.parts_on_hand < new.reorder_point)

FOR EACH ROW
DECLARE

NUMBER X;
BEGIN

SELECT COUNT(*) INTO X
FROM pending_orders
WHERE part_no = :new.part_no
IF X=0
THEN

INSERT INTO pending_orders
VALUES (new.part_no, new.reorder_quantity, sysdate);

END IF;
END;

When the triggering event is an
UPDATE statement, you can include a
column list to identify which columns
must be updated to fire the trigger.

You cannot specify a column list for
INSERT and DELETE statements,
because they affect entire rows of
information.

Row and Statement Triggers/ Before and After

For Each Row option
BEFORE
option

BEFORE statement
trigger:
Oracle fires the
trigger once before
executing the
triggering statement

BEFORE row trigger:
Oracle fires the
trigger before
modifying each row
affected by the
triggering statement

AFTER
option

AFTER statement
trigger:
Oracle fires the
trigger once after
executing the
triggering statement

AFTER row trigger:
Oracle fires the
trigger after modifying
each row affected by
the triggering
statement

� For a single table you can create 3 of each type, one for each of
the commands DELETE, INSERT and UPDATE making 12
triggers. (There is also an INSTEAD_OF trigger)

� You can also create triggers that fire for more than one
command

� Multiple triggers of the same type for the same
statement for any given table.
� two BEFORE statement triggers for UPDATE

statements on the ENROL table.
� Multiple types of DML statements can fire a trigger,

� can use conditional predicates to detect the type of
triggering statement, hence

� can create a single trigger that executes different
code based on the type of statement that fires the
trigger.

CREATE TRIGGER at AFTER UPDATE OR DELETE OR INSERT ON student

DECLARE typeofupdate CHAR(8); BEGIN

IF updating THEN typeofupdate := 'update'; …..END IF;

IF deleting THEN typeofupdate := 'delete'; ……END IF;

IF inserting THEN typeofupdate := 'insert'; ……END IF;

…..

Multiple triggers

Some Cautionary Notes about Triggers

� Triggers are useful for
customizing a database.

� But the excessive use of triggers
can result in complex
interdependencies, which may be
difficult to maintain in a large
application.

� E.g., when a trigger is fired, a
SQL statement within its trigger
action potentially can fire other
triggers. When a statement in a
trigger body causes another
trigger to be fired, the triggers are
said to be cascading.

SQL statement
UPDATE T1 SET …;

UPDATE_T1 Trigger
BEFORE UPDATE ON T1
FOR EACH ROW
BEGIN
...
INSERT INTO t2 VALUES (...);
...

END;

INSERT_T2 Trigger
BEFORE UPDATE ON T2
FOR EACH ROW
BEGIN
...
INSERT INTO ... VALUES (...);
...

END;

Fires the UPDATE-T1 Trigger

Fires the INSERT-T2 Trigger

The Execution Model for Triggers
� A single SQL statement can potentially fire up to four

types of triggers: BEFORE row triggers, BEFORE
statement triggers, AFTER row triggers, and AFTER
statement triggers.

� A triggering statement or a statement within a trigger
can cause one or more integrity constraints to be
checked.

� Triggers can contain statements that cause other
triggers to fire (cascading triggers).

� Oracle uses an execution model to maintain the proper
firing sequence of multiple triggers and constraint
checking

5

How Triggers Are Used
� Could restrict DML operations against a table to

those issued during regular business hours.
� Could restrict DML operations to occur only at certain

times during weekdays.
� Other uses:

� automatically generate derived column values
� prevent invalid transactions
� enforce referential integrity across nodes in a

distributed database
� provide transparent event logging
� provide sophisticated auditing
� maintain synchronous table replicates
� gather statistics on table access

� Triggers allow you to define and enforce integrity rules,
but is not the same as an integrity constraint.

� A trigger defined to enforce an integrity rule does not
check data already loaded into a table.

� You use database triggers only

� when a required referential integrity rule cannot be
enforced using the following integrity constraints:
NOT NULL, UNIQUE key, PRIMARY KEY, FOREIGN
KEY, CHECK, update CASCADE, update and delete
SET NULL, update and delete SET DEFAULT

� to enforce referential integrity when child and parent
tables are on different nodes of a distributed database

� to enforce complex business rules not definable
using integrity constraints

Triggers vs. Declarative Integrity Constraints

Modifying Views
� Modifying views has inherent problems of ambiguity.

� Deleting a row in a view could either mean
� deleting it from the base table or
� updating some column values so that it will no longer be

selected by the view.

� Inserting a row in a view could either mean
� inserting a new row into the base table or
� updating an existing row so that it will be projected by the

view.

� Updating a column in a view that involves joins
might change the semantics of other columns that
are not projected by the view.

Triggers and Views
� Triggers can be defined only on tables, not on views but triggers on

the base table(s) of a view are fired if an INSERT, UPDATE, or
DELETE statement is issued against a view.

� INSTEAD OF triggers provide a transparent way of modifying views
that cannot be modified directly through SQL DML statements
(INSERT, UPDATE, and DELETE).

� Oracle fires the INSTEAD OF trigger instead of executing the
triggering statement. The trigger performs update, insert, or delete
operations directly on the underlying tables.

� Users write normal INSERT, DELETE, and UPDATE statements
against the view and the INSTEAD OF trigger works invisibly in the
background to make the right actions take place.

� By default, INSTEAD OF triggers are activated for each row.
CREATE VIEW tutor_info AS
SELECT s.name,s.studno,s.tutor,t.roomno

FROM student s, staff t

WHERE s.tutor = t.lecturer;

Additional material

The Execution Model for Triggers
1. Execute all BEFORE statement triggers that apply to

the statement.
2. Loop for each row affected by the SQL statement.

a. Execute all BEFORE row triggers that apply to
the statement.

b. Lock and change row, and perform integrity
constraint checking. (The lock is not released until
the transaction is committed.)

c. Execute all AFTER row triggers that apply to the
statement.

3. Complete deferred integrity constraint checking.
4. Execute all AFTER statement triggers that apply to

the statement.

6

Example of an INSTEAD OF Trigger

CREATE TRIGGER tutor_info_insert

INSTEAD OF INSERT ON tutor_info

REFERENCING NEW AS n -- new tutor

FOR EACH ROW

BEGIN

IF NOT EXISTS SELECT * FROM student WHERE student.studno = :n.studno

THEN INSERT INTO student(studentno,name,tutor)

VALUES(:n.studno, :n.name, :n.tutor);

ELSE UPDATE student SET student.tutor = :n.tutor

WHERE student.studno = :n.studno;

END IF;

IF NOT EXISTS SELECT * FROM staff WHERE staff.lecturer = :n.tutor

THEN INSERT INTO staff VALUES(:n. staff.tutor, :n.roomno);

ELSE UPDATE staff SET staff.roomno = :n.roomno WHERE staff.lecturer =
:n.tutor;

END IF;

END;

The actions shown for rows being inserted into
the TUTOR_INFO view first test to see if
appropriate rows already exist in the base tables
from which TUTOR_INFO is derived. The
actions then insert new rows or update existing
rows, as appropriate. Similar triggers can specify
appropriate actions for UPDATE and DELETE.

