
1

Database Procedural Programming
PL/SQL and Embedded SQL

CS2312

PL/SQL
� PL/SQL is Oracle's procedural language

extension to SQL.
� PL/SQL combines SQL with the procedural

functionality of a structured programming
language, such as IF ... THEN, WHILE, and
LOOP.

� The PL/SQL engine used to define, compile,
and execute PL/SQL program units.

� A component of many Oracle products,
including Oracle Server.

Procedures and Functions

� A set of SQL and PL/SQL statements grouped together as a
unit (block) to solve a specific problem or perform a set of
related tasks.

� An anonymous block is a PL/SQL block that appears within
your application and it is not named or stored in the
database. In many applications, PL/SQL blocks can appear
wherever SQL statements can appear.

� A stored procedure is a PL/SQL block that Oracle stores in
the database and can be called by name from an
application.

� Functions always return a single value to the caller;
procedures do not return values to the caller.

� Packages are groups of procedures and functions.

Procedure PL/SQL Example
CREATE PROCEDURE credit_labmark (sno NUMBER, cno CHAR,

credit NUMBER) AS

old_mark NUMBER;

new_mark NUMBER;

BEGIN
SELECT labmark INTO old_mark FROM enrol

WHERE studno = sno and courseno = cno FOR UPDATE OF
labmark;
new_ mark := old_ mark + credit;

UPDATE enrol SET labmark = new_mark

WHERE studno = sno and courseno = cno;

COMMIT;

EXCEPTION

WHEN NO_DATA_FOUND THEN

INSERT INTO enrol(studno, courseno, labmark, exammark)
VALUES(sno, cno, credit, null);

WHEN OTHERS THEN ROLLBACK;

END credit_labmark;

PL/SQL
statement.

SQL statement.

Locks enrol

EXECUTE
credit_labmark
(99234,’CS2312’,20)

Function
create function get_lab_mark(sno number, cno char)

return number
as f_lab_mark number;

no_mark exception;

begin
select labmark

into f_lab_mark from enrol
where studno = sno and courseno = cno;

if f_lab_mark is null

then raise no_mark;

else return(f_lab_mark);
end if

exception

when no_mark then …..return(null);
end;

Stored Procedures
Created in a user's schema and

stored, centrally, in compiled
form in the database as a
named object that can be:
� interactively executed by a user

using a tool like SQL*Plus
� called explicitly in the code of a

database application, such as an
Oracle Forms or a Pre compiler
application, or in the code of
another procedure or trigger

When PL/SQL is not stored in the
database, applications can
send blocks of PL/SQL to the
database rather than individual
SQL statements → reducing
network traffic. .

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code

Program code
.
.

Program code
.

HIRE_EMP(…);
.

Program code HIRE_EMP(…)
BEGIN
.
.
END;

Database Applications

Stored
Procedure

Database

2

Architecture

Procedure
Begin

Procedurecall
Procedurecall
SQL
Procedurecall
SQL

End;

Procedural
Statement
Executor

PL/SQL Engine

SQL Statement
Executor

SQL

Database

Program code
Program code
Procedure call
Program code
Program code

SGA

Oracle Server

Database
Application

Benefits of Stored Procedures I
� Security

� Control data access through procedures and functions.
� E.g. grant users access to a procedure that updates a

table, but not grant them access to the table itself.

� Performance
The information is sent only once between database and

application and thereafter invoked when it is used.
� Network traffic is reduced compared with issuing

individual SQL statements or sending the text of an
entire PL/SQL block

� A procedure's compiled form is readily available in the
database, so no compilation is required at execution
time.

� The procedure might be cached

Benefits of Procedures II
� Memory Allocation

� Stored procedures take advantage of the shared memory
capabilities of Oracle

� Only a single copy of the procedure needs to be loaded into
memory for execution by multiple users.

� Productivity
� By designing applications around a common set of procedures, you

can avoid redundant coding and increase your productivity.
� Procedures can be written to insert, update, or delete rows from a

table and then called by any application without rewriting the SQL
statements necessary to accomplish these tasks.

� If the methods of data management change, only the procedures
need to be modified, not all of the applications that use the
procedures.

Benefits of Procedures III

� Integrity
� Stored procedures improve the integrity and

consistency of your applications. By developing all of
your applications around a common group of
procedures, you can reduce the likelihood of committing
coding errors.

� You can test a procedure or function to guarantee that it
returns an accurate result and, once it is verified, reuse
it in any number of applications without testing it again.

� If the data structures referenced by the procedure are
altered in any way, only the procedure needs to be
recompiled; applications that call the procedure do not
necessarily require any modifications.

Packages
� A method of encapsulating and storing related

procedures, functions, variables, cursors and other
package constructs together as a unit in the database
for continued use as a unit.

� Similar to standalone procedures and functions,
packaged procedures and functions can be called
explicitly by applications or users.
� Organize routines
� Increased functionality (e.g. global package

variables can be declared and used by any
procedure in the package) and

� Increased performance (e.g. all objects of the
package are parsed, compiled, and loaded into
memory once).

Package manage tasks in database
� Database applications

explicitly call packaged
procedures as necessary.

� After being granted the
privileges for the package,
a user can explicitly
execute any of the
procedures contained in it.

� EXECUTE marks_mgmt.
credit_labmark(99234,’CS2
312’,20)

� Packages offer several
development and
performance advantages
over standalone stored
procedures;

Program code
.
EMP_MGMT.FIRE_EMP(…);
Program code
.
EMP_MGMT.HIRE_EMP(…);
.
Program code

Program code
.
EMP_MGMT.HIRE_EMP(…);
Program code
.
EMP_MGMT.SAL_RAISE(…);
.
Program code

FIRE_EMP(…)
BEGIN
.
.
END;

HIRE_EMP(…)
BEGIN
.
.
END;

SAL_RAISE(…)
BEGIN
.
.
END;

Database

3

Benefits of Packages
� Encapsulation of related procedures and variables providing:

� Better organization during the development process and for
granting privileges

� Declaration of public and private procedures, variables, constants,
and cursors

� Better performance
� An entire package is loaded into memory when a procedure

within the package is called for the first time in one operation, as
opposed to the separate loads required for standalone
procedures. When calls to related packaged procedures occur,
no disk I/O is necessary to execute the compiled code already in
memory.

� A package body can be replaced and recompiled without
affecting the specification. Objects that reference a package's
constructs (always via the specification) need not be recompiled
unless the package specification is also replaced. Unnecessary
recompilations can be minimized, so in less impact on overall
database performance.

Triggers vs Procedures and Packages

� Triggers are similar to stored procedures. A trigger
can include SQL and PL/SQL statements to execute
as a unit and can invoke stored procedures. Triggers
are stored in the database separate from their
associated tables.

� Procedures and triggers differ in the way that they
are invoked.
� A procedure is explicitly executed by a user,

application, or trigger.
� Triggers (one or more) are implicitly fired

(executed) by Oracle when a triggering INSERT,
UPDATE, or DELETE statement is issued, no
matter which user is connected or which
application is being used.

Retrieval: Impedance Mismatch
� What happens when the query returns several rows?

The host variables can only hold one value.
� Oracle will only pass the first row returned by the query

to the PL/SQL block (or host language program).
� Re-executing the SELECT operation will only run the

query again and so the first row will be selected again.
� Different type systems
� Different execution models

Cursors
� When a query returns multiple rows a cursor

must be declared to process each row
returned by the query and to keep track of
which row is currently being processed.

� The rows returned by a query are stored in an
area called the Active Set.

� A cursor can be thought of as pointing to a
row in the active set.

Cursors and RetrievalPROCEDURE apply_marks IS

CURSOR marks_cursor IS

SELECT sno, cno, kind, amount FROM marks

WHERE status = 'Pending' ORDER BY time_tag FOR UPDATE OF
marks;

BEGIN

FOR marks IN marks_cursor LOOP /* implicit open and
fetch */

new_status := ’Accepted';

IF marks.kind = ’L' THEN

credit_labmark(marks.sno, marks.cno, marks.amount);

ELSIF trans.kind = ’E' THEN

credit_exammark(marks.sno, marks.cno,
marks.amount);

ELSE new_status := 'Rejected';

END IF;
UPDATE marks SET status = new_status

WHERE CURRENT OF marks_cursor;

END LOOP; COMMIT;

END apply_marks;

Embedded SQL
� SQL statements placed within a program. The source

program is called the host program, and the language
in which it is written is called the host language

� You can execute any SQL statement using
embedded SQL statements just as if you were in
SQL*Plus.
� CREATE, ALTER and DROP database tables
� SELECT, INSERT, UPDATE and DELETE rows of

data
� COMMIT transactions (make any changes to the

database permanent)

4

Embedded SQL Statements
� Embedded SQL statements incorporate DDL, DML, and

transaction control statements within a procedural language
program. They are used with the Oracle pre-compilers, e.g.
Pro*C.

� Embedded SQL statements enable you to
� define, allocate, and release cursors (DECLARE

CURSOR, OPEN, CLOSE)
� declare a database name and connect to Oracle

(DECLARE DATABASE, CONNECT)
� assign variable names (DECLARE STATEMENT)
� initialize descriptors (DESCRIBE)
� specify how error and warning conditions are handled

(WHENEVER)
� parse and execute SQL statements (PREPARE,

EXECUTE, EXECUTE IMMEDIATE)
� retrieve data from the database (FETCH).

Executable and Declarative Statements

� Embedded SQL includes all the interactive SQL statements
plus others that allow you to transfer data between Oracle
and a host program. There are two types of embedded SQL
statements:

� Executable:
� used to connect to Oracle, to define, query and manipulate

Oracle data, to control access to Oracle data and to
process transactions. They can be placed wherever host-
language executable statements can be placed.

� Declarative:
� do not operate on SQL data. Use them to declare Oracle

objects, communication areas and SQL variables which
will be used by Oracle and your host program. They can be
placed wherever host-language declarations can be
placed.

Binding Variables
� A host variable is prefixed with a colon (:) in SQL statements

but must not be prefixed with a colon in C statements.
EXEC SQL BEGIN DECLARE SECTION;

INT sno;

VARCHAR cno[5];

INT labmark;

EXEC SQL END DECLARE SECTION;

…

EXEC SQL SELECT labmark INTO :labmark
FROM enrol

WHERE studno = :sno and courseno = :cno

� The case of the host variable is significant when referencing
them.

database attribute

host variable

SELECT

EXEC SQL SELECT courseno, subject

INTO :courseno, :subject

FROM course

WHERE courseno = :menu_selection;

Attributes in the staff table.
INTO clause specifies the host variables
which will hold the values of the
attributes returned.

Host variable used to supply the WHERE
clause with a value to base the query on.
In SQL*Plus this would be done using a literal
value. Pro*C allows variables to be used to
specify a value. Host variables used in this
way must contain a value before the SELECT
statement is used.

Example
Declare any host variables

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR studname[21];
VARCHAR cno[5];

INT labmark;

VARCHAR o_connect_uid[18];
EXEC SQL END DECLARE SECTION;
Include the error handlers

EXEC SQL INCLUDE sqlca;
EXEC SQL INCLUDE oraca;

Log on procedure
void Oracle_Connect(void) {
(void)strcpy(o_connect_uid.arr,"/@t:ora-srv:mucs7");
o_connect_uid.len = strlen(o_connect_uid.arr);
EXEC SQL CONNECT :o_connect_uid;
}

Connect to Oracle Server and Do the Query
main()
{ EXEC SQL WHENEVER SQLERROR DO sqlerror()
EXEC ORACLE OPTION (ORACA=YES);
oraca.orastxtf = 1; Oracle_Connect(); printf("Connected to
Oracle\n");

� Cursor for query
EXEC SQL DECLARE studcursor CURSOR FOR

SELECT s.name, e.courseno, e.labmark,
FROM student s, enrol e WHERE s.studno = e.studno;

� Do the query
EXEC SQL OPEN studcursor;
printf(”Name/Course/LabMark\n");

� Loop to fetch rows
while (sqlca.sqlcode == 0) {

EXEC SQL FETCH studcursor
INTO :studname, :cno, :labmark

printf("%s,%s,%d", studname, cno, labmark);
}

printf("%ld rows selected.\n",sqlca.sqlerrd[2]);
EXEC SQL CLOSE studcursor;
EXEC SQL COMMIT WORK RELEASE;
exit(1);}

5

Examples of Packages and Procedures

Create Package Specification
create package marks_mgmt (null) as

max_mark CONSTANT NUMBER := 100.00;

PROCEDURE apply_marks;

PROCEDURE enter_marks(sno number,cno
char, kind char, credit number);

end marks_mgmt;

Create Package Body
CREATE PACKAGE BODY marks_mgmt AS
new_status CHAR(20); /* Global variable to record status of

transaction being applied. Used for update in enter_marks. */

PROCEDURE do_journal_entry (sno NUMBER, cno CHAR, kind
CHAR) IS

/* Records a journal entry for each marks credit applied by the
enter_marks procedure. */

BEGIN

INSERT INTO journal

VALUES (sno, cno, kind, sysdate);
IF kind = ’L' THEN new_status := ’Lab credit';

ELSIF kind = ’E' THEN new_status := ’Exam credit';

ELSE new_status := 'New enrolment';

END IF;

END do_journal_entry;

Create Package Body I
CREATE PROCEDURE credit_labmark (sno NUMBER, cno CHAR,

credit NUMBER) AS

old_mark NUMBER; new_mark NUMBER;
mark_overflow EXCEPTION;
BEGIN

SELECT labmark INTO old_mark FROM enrol
WHERE studno = sno and courseno = cno
FOR UPDATE OF labmark;

new_ mark := old_ mark + credit;

IF new_mark <= max_mark THEN
UPDATE enrol SET labmark = new_mark
WHERE studno = sno and courseno = cno ;
do_journal_entry(sno, cno, L);

ELSE RAISE mark_overflow
ENDIF;

Create Package Body II
EXCEPTION

WHEN NO_DATA_FOUND THEN
/* Create new enrolment if not found */

INSERT INTO enrol (studno, courseno, labmark, exammark)

VALUES(sno, cno, credit, null);

do_journal_entry(sno, cno, 'N');

WHEN mark_overflow THEN

new_status := ’Mark Overflow’;

WHEN OTHERS THEN
/* Return other errors to application */

new_status := 'Error: ' || SQLERRM(SQLCODE);

END credit_labmark;

CREATE PROCEDURE credit_exammark (sno NUMBER, cno CHAR,
credit NUMBER) AS…

END credit_exammark;

PROCEDURE apply_marks IS …. complete shortly...

END apply_marks;

PROCEDURE enter_marks(sno NUMBER, cno CHAR, kind
CHAR, credit NUMBER) IS

/* A new mark is always put into this 'queue' before
being applied to the specified enrolment instance by
the APPLY_MARKS procedure. */

BEGIN

INSERT INTO marks

VALUES (sno, cno, kind, amount, 'Pending', sysdate);

COMMIT;

END enter_marks;

END marks_mgmt ; /* end package */

Create Package Body

6

Additional material

An error handling procedure
void sqlerror(void)
{ int o_errl;

int len = 550;
char o_err[550];

EXEC SQL WHENEVER SQLERROR CONTINUE;
sqlca.sqlerrm.sqlerrmc[sqlca.sqlerrm.sqlerrml] = NULL;
printf("\nOracle Error:\n%s", sqlca.sqlerrm.sqlerrmc);

oraca.orastxt.orastxtc[oraca.orastxt.orastxtl] = NULL;
printf("ERROR statement:%s\n", oraca.orastxt.orastxtc);

sqlglm(o_err, &len, &oerrl);
o_err[o_errl] = NULL;
printf("ERROR Details: %s\n",o_err);

oraca.orasfnm.orasfnmc[oraca.orasfnm.orasfnml] = NULL;
printf("ERROR at line %ld in %s\n",
oraca.oraslnr,oraca.orasfnm.orasfnmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(0);}

