~ Internal Schema Design,
" Performance and Indexing

CS2312

G

¥ Internal Schema Design

stored
record
returned

request
stored
record

& request
L stored
block

disk 1/0
operation

data read
from disk

=

Stored Database

¥ Data Blocks

g

Camman and ¥ariabe Header

¥ Performance Profiling

“ = Query Profile

;1 Oracle manages data in

Table Rirsciory
Faw Direchiry
Fres Space
Raw Dat=

= frequency of certain queries
» hit rate on relations

datafiles as data blocks
« = the smallest unit of I/O
’é -’f used by a database.
' " » the smallest units of
" storage that Oracle

can use or allocate.

In contrast, at the physical, operating system level, all data is stored in bytes.
Each operating system has what is called a block size. Oracle requests data in
multiples of Oracle data blocks, not operating system blocks. Set the data block
size for each Oracle database when you create the database as a multiple of
the operating system's block size within the maximum (port-specific) limit to
avoid unnecessary 1/0.

=

= certain relations used together
= selection attributes
#» Update Profile
» dynamic or static
= hit rate of certain updates
» predictable—pre-fetch strategies

="

#* Analysis and Monitoring using tuning tools

?Performance: Joins with Composite FK.

. Flight(flightcode, ukairport,holairport, depday, deptime.......)
U Hotel(hotelid, hotelname,...)

T GenericPackage(flightcode, hotelid, reservedrooms,
’é -reservedseats)

¥ SpecificPackage(flightcode, hotelid,

'. depdate,availseats,availrooms, ...)

@boking(bookingid, contact, flightcode, hotelid, depdate,
noofpeople,noofrooms,...)

GenericPackage(gpackid,flightcode, hotelid, reservedrooms,
reservedseats)
l@ SpecificPackage(spackid,gpackid, depdate, availseats,
availrooms, ...)
Booking(bookingid, contact, spackid, noofpeople,noofrooms,...)

¥ Performance: Frequent Joins

3 4

Dept(deptno, deptname)

Staff(staffno, staffname, roomno,

Staff deptno)

roomno

="

f? 1. Denormalise to 2NF

>

. * Replicate attribute values

2¥Physically storing a file resulting from a join

¥

. # Materialised View

blocks and access structures

Ly Ly inteari
- #» Update integrity management
Staff(staffno, staffname, roomno, deptno staffno staffname roomno |deptno |deptname
d t—' ’ ’ ’ 10 Goble 2.82 1 Computer Sci
¢ ep name) 22 Paton 2.83 1 Computer Sci
. 31 Smith 1.100 2 Maths
#
staffno — staffname, roomno 9 Loudar 193 5 Mathe
deptno — deptname /
staffno staffname roomno |deptno |deptname
10 Goble 282 |1 Computer Sci fplafino__stafiname __roomno_deptno_ ||/ gepino [deptname
22 Paton 2.83 1 Computer Sci o) 2‘83 1 1 Computer Sci
R a1 Smith 1100 |2 Maths = ol T90 |2 2 Maths
49 Leuder 2.23 2 Maths 49 LenelEr 1.23 2
¥ File Organisation ¥ File Organisation: Unordered Records
" . Organisation of the data of a file into records, *. . * Place records in the order they are inserted. New
i iy records inserted at the end of the file HEAP / PILE

» Organisation té Insertion efficient it
§] S6
: Deletin expensive reorganisation
B +Unordered records e p fragmentation o
» Ordered records Searching expensive linear n/2 S5
» Hashing Retrieval expensive sort S2
in order
L LS
W W
¥ File Organisation: Ordered Records ¥ Overflow Blocks
& studno name
#» Physically order the records of a file on disk based on By s1
43 “ values of one of the fields — ordering field / ordering 13 ® block1 |s2
3 key ! s4
studno name
Insertion expensive reposition 1 s7
Deleting expensive reorganisation & ,.5’ block2 | S8
fragmentation S2 !
@
Searching on more binary logp(n) sS4 .
ordering key efficient s6
Searching on expensive linear n/2 S200
non-ordering 510 blockN 8201
key $202
L Retrieval in efficient no sort \%
| order of §
ordering key overflow block

f? 3. Inter-file clustering

3_.

* Store records that are logically related and frequently
L used together physically close together on disk

%
L

@{ 1, Comp Sci
] 10, Goble, 2.82

[23, Paton, 2.83

[31, Smith, 1.100
a1 | [49, Leuder, 1.23

cluster applied across multiple
files

e.g. frequently access depts
with their staff

Therefore interleave Dept and
Staff

¥ Oracle Inter file Clustering
Create a cluster named PERSONNEL with the cluster key
.+ €olumn DEPTNO
3 Cluster key
%%REATE CLUSTER personnel (deptmﬁJMBER(Z));
"t:'%dd the STAFF and DEPT tables to the cluster:

*

CREATE TABLE staff CREATE TABLE dept
(staffno NUMBER PRIMARY (deptno NUMBER(2),
KEY, deptname VARCHAR2(9))
staffname VARCHAR2(10) CLUSTER personnel

\% roomno NUMBER(2,3), (deptno);
deptno NUMBER(2) NOT
NULL)

CLUSTER personnel (deptno);

¥ Intra file clustering

: "# cluster around a clustering field in a single stored file
i e eg. frequently access STUDENT by year

ear studno
create table student ;
studentno number (8) primary key, S

1 (810

! © givenname char (20) ,
“'surname char (20) , 181
hons char (3),
tutorid number (4) ,
yearno number (1) not null, .
cluster year (yearno),

4Construct Access Structures for the join attributes

#

Access Structures / Access Paths
» Indexes
» Multi-level indexes
» B trees, B* trees
» Hashing
= Bitmap

Access Methods
» routines that allow operations to be applied

) 2 1599 A to afile
2 |S67 X
¥ Primary Index ¥ Oracle: Index-organized Tables
i Data File .
. & IndexFile oeie eme e [iker Jheen create table student
Block Block pointer s1 jones |ca bush |2 (studentno number(8) primary key,
anchor s2 brown |[cis kahn 2 .
Eeey givenname char(20),
H gﬁ;lue | s10 |smith |cs |goble |2 surname char(20),
S11 | — h
ons char(3),
1 bloggs ‘ca goble |1] . ®
] s12 jones |cs zobel |1 tutorid number(4),
(5599 } o ien e ein & yearno number(1) not null,
ORGANIZATION INDEX TABLESPACE students
Data file is \ OVERFLOW TABLESPACE students_overflow;
k physically ordered on s501 [smith ‘cs bush ‘3 h
v*a key field s502 |[patel cis wood (3 W :
(ordering key field) s508 |jones |cs wood |1
s599 |gower |cis paton |2

f" Clustering Index

: Data File
i letaf”e” is d d lyear [name |hons [tutor |studno
4! “physically ordere
¢ Onanon-key field I
(clustering field)

r’ 2
Index File 2
Clustering Block pointer g
field value a
1 J)
2 ‘
3 o«

i

b Clustering Index in Oracle
_ #.The following statement creates a cluster index on
" the cluster key of PERSONNEL:

d

. CREATE INDEX idx_personnel ON CLUSTER
.personnel;

#» After creating the cluster index, you can insert rows
into either the STAFF or DEPT tables.

L8
)

® Clustering Index with Separate Blocks

Dense Secondary Index on a non-ordering key field

r Data File 3 y
. % Separate blocks T o o EE . o r
4* “for each group of ; z o Sk ! £
. records with the ! t e
same cluster field -
va | ue Block pointer T~ té o iy >
v 2 2 ;' 7
Index File E:E h B
o 2 I 1
Clustering Block pointer, e — (2] Oy N 6
feld value A f i
7 2 L
% e 4 y T
P —e—= r
[Blockpointer =
3 . s 7] b 2
8
3
9 o
l@ P gl ‘@ 0 o N
" Block pointer [ol [PA 2
Index fietd—giock pojnter 8
valu 4
T
Index File Data File

% Oracle: Create Index

B

% “create table enrol
(studno number (8),
courseno char (5),
. primary key (studno, courseno),

i) ;

CREATE INDEX enrol-idx1 ON enrol (studno, courseno);

l@ # CREATE INDEX enrol-idx2 ON enrol (courseno, studno);

¥ Secondary Index on a non-key field

#

Indexing field

0}

\ Dept Name Staffno

. index File
!Tl

tf Field Block
_value pointer,

N
2 i
;ﬁgg‘;

1/ - —~
:,/\ I \ |y 4
2 :;\b\o/.i%
< 1]
o] \“
i < o/
\ <A
T
[« o7 T o+ ™
o~ L~
‘{@ & 4 =N ‘
; —— —
1%

Blocks of record pointers

Data File

=

¥ Dense & Sparse Indexes

#» Dense Index
» Every record in the data file is in the index

#» Sparse Index
#» Not every record in the data file is in the index.
#» The index indicates the block of records

% » takes less space

+ quicker to scan the index
« efficient
but...no existence test based on the index
A file can have one sparse index and many dense
indexes, because a sparse index relies on a unique
physical ordering of the data file on disk

¥ Types of Keys

Unordered data files = lots of secondary
#' " indexes
#» Specify ordering attribute for file
. = primary / clustering index
' © wattribute used most often for joins

‘Ordering Field ‘Non-ordering Field

Key field
Non-key Field

Primary Index |Secondary Index (key)

Clustering Index|Secondary Index (non-key)

Y

¥ Analysing database queries and transactions
. Each query
+ files that will be accessed
» fields whose value is retrieved access paths
» fields specified in selection conditions access paths
» fields specified in joins access paths
Each update transaction

» files that will be updated

» type of update operation on each file

» fields used in selection conditions

?Analysing database queries and transactions

~» Expected frequency of invocation of queries and
4} " transactions
. » expected frequency of each field as a selection field or
join field over all transactions
f » expected frequency of retrieving and /or updating each
2E record

#* Analysing time constraints of queries and transactions
= stringent performance constraints
» influence access paths on selection fields

2

Clustering |Number of distinct |Non-dense |Yes/No
index field values
Secondary |Number of records |Dense No
(key) in data file
Secondary |Number of records |Dense or |No
(non-key) |of number of Non-dense
distinct index field
values

l.:m » fields whose value is modified avoid access structure l# # Analysing expected frequency of update operations
: » volatile files
» reduce number of access paths
¥ Types and Properties of Indexes ¥ Index Summary
o m;im AR I AR #* Speeds up retrieval but slows down inserts and
1{;‘ = Number of Dense or |Block updates
(firstllevel) Index Non-dense | Anchoring - Improve performance when
Entries on the
_ Data File » relations are large
Primary. | Number of blacks - |Non-derse Yes » queries extract < 25% of all tuple in a relation

» a where clause is properly constructed

Two main considerations:
1. Organisation

2. Access
l# » sequential range queries
s » direct criteria queries

» existence tests

» a measure of the number of indexing field
values at each node
#* Depth

» number of levels

/ Root node

CAD
Subtree
o | B D) Cbo
de B
D

- o Multi-leveled indexes: 2 }
Data Definition: Create Table ah index for an index | | |
£y B 2
create table year Index has bi blocks 1o }
i * (yearno number (1) primary key, bfri = blocking factor for the 7
yeartutorid number (4) , “index P
yeartut_uk unique %fn = fan-out . < =
exceptions into bad_tutors = 4 o 39
using index : ',-__fo /41
f not null - » < o
¥ constraint tut fk = T m ‘.:; 51
foreign key (yeartutorid) references 55 N & o =
19 y (y 85 < 55 | [[
staff (staffid)) \s '/'% ‘ ‘ ‘
tablespace cags_course 2nd (top) level sf &
storage (initial 6144 : 66
{ next 6144 (* s;&
E minextents 1 z& 85 « 80
maxextents 5 \gg
pctincrease 5 89
pctfree 20); First (base) level Primary Key Field Data File
¥ Tree Indexes ¥ B-trees Balanced Trees
“ » Order " . = Every leaf is at the same level
!Tl

¢ # Ordered - Search time O(log(n))
* Predictable search time
. .~ = Efficiency - each node = block

A key value is stored once, with the address
of the associated data record

="

=

¥ B trees Order p

N

. at least (p-1)/2 and at most p-1 key values at each
internal node and leaf

. internal nodes and leaves must always be at least
half full (or half empty)

2. the root must contain at least one key and 2 pointers
(thus 2 child nodes) unless its a leaf

. can’t have an empty start point for a non-null tree
3. for k key values at a node, there will be k+1 pointers
to child nodes

. a node must have between p/2 and p tree pointers
(child nodes)

¥ Btrees

#» Predictable search pattern
at most X node comparisons for a tree of X levels

Dense index addresses record location index value
can lie anywhere in the tree
- Cost maintenance
&
but....

? Sequential access
? Range queries
? Sparse index

=

f" B* trees

#

Amendment to B tree: addresses for data
records are in the leaves and no where else

& B tree

Sequential Set

Y

¥ B*trees

1’. Each node has at most p-1 comparisons

zfi 2. Number of nodes visited is limited by the depth of the
t' tree

!é A tree with k levels has
order 5 1

. = atmost (p)k-"leaves

» at least (p/2)&" leaves
Each leaf has
p/2 addresses if dense or 25
1 block of n if sparse

=
]
=
-
.|
-
=
=

¥ Sparse / Dense B+ Trees
S;)arse Primary Index Dense (Secondary) Index

3
!.Ti‘ Donna

Bruce Paul

Aaron Brian Bruce | Claire Donna | Marcia Paul | Tim

47 23 59 60 21 79 12 2

Data blocks and indexes

¥ B*trees

#» Sequential and direct access

Straightforward insertion and deletion maintaining
ordering

Grows as required—only as big as needs to be
Predictable scanning pattern
» Predictable and constant search time

maintenance overhead
#» overkill for small static files
#* duplicate keys?

relies on random distribution of key values for
efficient insertion

=

¥ Data Blocks, Extents, and Segments

#» Data stored in data blocks (also
called logical blocks, Oracle blocks,
or pages).

o)

¥ Tablespaces and Datafiles

An Oracle database is divided into one or more logical
storage units called tablespaces. The database's data is
collectively stored in the database's tablespaces.

3

: - # One data block corresponds to a
I | specific number of bytes of physical #» Each tablespace in an Oracle database consists of one
i | database space on disk 'ﬁ . ormore files called datafiles. These are physical
| =] |® An f_Xfem lsda tSPEIC'f'E nulflﬂbez Odff « + structures that conform with the operating system in
] contiguous data blocks allocatea for - H H H
e storing a specific type of information. § which Oracle is rur?nlng. . i §
P » A segment is a set of extents that * A database's data is collectively stored in the datafiles
2k have been allocated for a specific that constitute each tablespace of the database.
2 type of da‘? structure. N # The simplest Oracle database would have one
= |, Eafh table's ‘:atah!ls Storid_'r(‘j"sl"w” tablespace and one datafile. A more complicated
N) ot i e ot o XS L database might have three tablespaces, each consisting
T segment -\ of two datafiles (for a total of six datafiles).
| '
Dab B‘hahs
¥ Tablespaces and Datafiles ¥ Why bother with tablespaces?
. Fe " 1 . = Uses tablespaces to:
8 Y| | e dnis 41 © = control disk space allocation for database data

» assign specific space quotas for database users

= control availability of data by taking individual
¥ tablespaces online or offline

» perform partial database backup or recovery
& operations
» allocate data storage across devices to improve
performance
» Different functions
» System tablespace

2

© staff (staffid))

(yearno number (1) primary key,
yeartutorid number (4) ,
yeartut_uk unigque not null
constraint tut fk
foreign key (yeartutorid) references
tablespace secondyr_course
storage (initial 6144
next 6144
minextents 1
maxextents 5
pctincrease 5
pctfree 20) ;

=

\ﬁ \# » Temporary tablespaces
Db Flen - / » User tablespaces
fﬂ.’ﬁ ;“ﬂ;j;ﬂfm m'ﬂ; = o » Read-only table spaces
¥ Example ¥ Partitioned Tables in Oracle
. # ; i’Supports very large tables and indexes by allowing users
T * create table year zfj #to decompose them into smaller and more manageable

pieces called partitions.

Each partition is stored in a separate segment and you can
- store each partition in a separate tablespace, so:

+~ = contain the impact of damaged data.
© = back up and recover each partition independently.
= balance I/0 load by mapping partitions to disk drives.
= Useful for:
= Very Large Databases (VLDBs)
» Reducing Downtime for Scheduled Maintenance
» Reducing Downtime Due to Data Failures
DSS Performance — 1/0O Performance
» Disk Striping: Performance vs. Availability

¥ Example

. # A sales table contains historical data divided by week
2l s»number into 13 four-week partitions.

Wazks 43 Warkx 47 Waakx 0351
B wmaeram | [amamroms T
i 12, Mataraks, S000,3 4, Oracle, 11000, 7 17, Satewary, 8000, 51
W . Fte iy, 9005 12 Untornte 001

CREATE TABLE sales

(acct_no NUMBER(5),
acc‘ name CHAR(sO) TABLEZPACE ts) TAHLEZ PACE i TABLESPACE k{2

amount_of_sale NUMBER(6),

week_no INTEGER)

PARTITION BY RANGE (week_no) ...

k. (PARTITION VALUES LESS THAN (4) TABLESPACE ts0,
© PARTITION VALUES LESS THAN (8) TABLESPACE ts1,

PARTITION VALUES LESS THAN (52) TABLESPACE ts12);

¥ Hashing: Hash Clusters

Physically store the rows of a table in a hash cluster
and retrieve them according to the results of a hash

function.
. # A hash function generates a distribution of numeric
5 values, called hash values, which are based on
E specific cluster key values. The key of a hash cluster
§ can be a single column or composite key.

To find or store a row in a hash cluster, apply the
hash function to the row's cluster key value; the
resulting hash value corresponds to a data block in
the cluster, which you then reads or writes on behalf
of the issued statement.

Y

&

Hashing Example

if-; & # Hash function

o,

mod (_hash ke
prime number)

#» Collisions
Rehash functions

N[O |A WN =

Oracle
» internal hash
function
» user defined hash
function

2

¥ Hashing vs Indexing

Cluster Halding the TRIAL Tmbla

Hmsh Gluster
Key ¥

L Ke
2w | TRAING | One Caurms
i 1
w2y
Bl

23

N
§E
q
i
I

1
i
1

5%

ol

¥ Choice of Hashing

» If a key attribute is used mainly for equality
selection and join

#» Nothing depends on layout order of data file
» Data files are static and of known size

2

