
1

Internal Schema Design,
Performance and Indexing

CS2312

Internal Schema Design

DBMS

request
stored
record

stored
record
returned

request
stored
block

stored
block
returned

disk I/O
operation

data read
from disk

File Manager

Disk Manager

Stored Database

Data Blocks

� Oracle manages data in
datafiles as data blocks
� the smallest unit of I/O

used by a database.
� the smallest units of

storage that Oracle
can use or allocate.

In contrast, at the physical, operating system level, all data is stored in bytes.
Each operating system has what is called a block size. Oracle requests data in
multiples of Oracle data blocks, not operating system blocks. Set the data block
size for each Oracle database when you create the database as a multiple of
the operating system's block size within the maximum (port-specific) limit to
avoid unnecessary I/O.

Performance Profiling
� Query Profile

� frequency of certain queries
� hit rate on relations
� certain relations used together
� selection attributes

� Update Profile
� dynamic or static
� hit rate of certain updates
� predictable—pre-fetch strategies

� Analysis and Monitoring using tuning tools

Performance: Joins with Composite FK.
Flight(flightcode, ukairport,holairport, depday, deptime…….)
Hotel(hotelid, hotelname,...)
GenericPackage(flightcode, hotelid, reservedrooms,

reservedseats)
SpecificPackage(flightcode, hotelid,

depdate,availseats,availrooms, …)
Booking(bookingid, contact, flightcode, hotelid, depdate,

noofpeople,noofrooms,…)

GenericPackage(gpackid,flightcode, hotelid, reservedrooms,
reservedseats)

SpecificPackage(spackid,gpackid, depdate, availseats,
availrooms, …)

Booking(bookingid, contact, spackid, noofpeople,noofrooms,…)

Performance: Frequent Joins

Department

Staff

worksfor

deptno

roomno

staffno

staffname

1

m

Dept(deptno, deptname)

Staff(staffno, staffname, roomno,
deptno)

deptname

2

1. Denormalise to 2NF

� Replicate attribute values

Staff(staffno, staffname, roomno, deptno,
deptname)

staffno → staffname, roomno
deptno → deptname

staffno staffname roomno deptno deptname
10 Goble 2.82 1 Computer Sci
22 Paton 2.83 1 Computer Sci
31 Smith 1.100 2 Maths
49 Leuder 2.23 2 Maths

2. Physically storing a file resulting from a join

� Materialised View
� Update integrity management

staffno staffname roomno deptno deptname
10 Goble 2.82 1 Computer Sci
22 Paton 2.83 1 Computer Sci
31 Smith 1.100 2 Maths
49 Leuder 1.23 2 Maths

staffno staffname roomno deptno
10 Goble 2.82 1
22 Paton 2.83 1
31 Smith 1.100 2
49 Leuder 1.23 2

deptno deptname
1 Computer Sci
2 Maths

File Organisation

� Organisation of the data of a file into records,
blocks and access structures

� Organisation
�Unordered records
�Ordered records
�Hashing

File Organisation: Unordered Records
� Place records in the order they are inserted. New

records inserted at the end of the file HEAP / PILE

S6

S1

S5

S2

studno nameInsertion efficient

Deleting expensive reorganisation
fragmentation

Searching expensive linear n/2

Retrieval
in order

expensive sort

File Organisation: Ordered Records
� Physically order the records of a file on disk based on

values of one of the fields — ordering field / ordering
key

S1

S2

S4

S6

studno name

S10

Insertion expensive reposition

Deleting expensive reorganisation &
fragmentation

Searching on
ordering key

more
efficient

binary log2(n)

Searching on
non-ordering
key

expensive linear n/2

Retrieval in
order of
ordering key

efficient no sort

Overflow Blocks
studno name

S1

S8

S7

S4

S2

S202

S201

S200

block 1

block 2

block N

overflow block

3

3. Inter-file clustering
� Store records that are logically related and frequently

used together physically close together on disk

cluster applied across multiple
files
e.g. frequently access depts
with their staff

Therefore interleave Dept and
Staff

1, Comp Sci

10, Goble, 2.82

23, Paton, 2.83

2, Maths

31, Smith, 1.100

49, Leuder, 1.23

Oracle Inter file Clustering
Create a cluster named PERSONNEL with the cluster key

column DEPTNO

CREATE CLUSTER personnel (deptno NUMBER(2)) ;

� Add the STAFF and DEPT tables to the cluster:

CREATE TABLE staff
(staffno NUMBER PRIMARY
KEY,
staffname VARCHAR2(10)
roomno NUMBER(2,3),
deptno NUMBER(2) NOT
NULL)
CLUSTER personnel (deptno);

CREATE TABLE dept
(deptno NUMBER(2),
deptname VARCHAR2(9))
CLUSTER personnel
(deptno);

Cluster key

Intra file clustering
� cluster around a clustering field in a single stored file
� e.g. frequently access STUDENT by year

create table student
(studentno number(8) primary key,
givenname char(20),
surname char(20),
hons char(3),
tutorid number(4),
yearno number(1) not null,
cluster year(yearno),
…);

2

2

S1

S95

S4

S67

S10

studno

1

1

1

year

4. Construct Access Structures for the join attributes

� Access Structures / Access Paths
� Indexes
� Multi-level indexes
� B trees, B+ trees
� Hashing
� Bitmap

� Access Methods
� routines that allow operations to be applied

to a file

Primary Index

studno nam e hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2

s10 smith cs goble 2

s11 bloggs ca goble 1
s12 jones cs zobel 1

s20 peters ca kahn 3

s501 smith cs bush 3
s502 patel cis wood 3

s508 jones cs wood 1
s599 gower cis paton 2

Block
anchor
primary key
value

Block pointer

S1
S11

S599

Data File
Index File

Data file is
physically ordered on
a key field
(ordering key field)

Oracle: Index-organized Tables

create table student
(studentno number(8) primary key,
givenname char(20),
surname char(20),
hons char(3),
tutorid number(4),
yearno number(1) not null,
ORGANIZATION INDEX TABLESPACE students
OVERFLOW TABLESPACE students_overflow;

4

Clustering Index
Data file is
physically ordered
on a non-key field
(clustering field)

year name hons tutor studno
1
1
1
2

2
2
3
3

3
3
3
3

Clustering
field value

Block pointer

1
2
3

Index File

Data File
Clustering Index in Oracle

� The following statement creates a cluster index on
the cluster key of PERSONNEL:

CREATE INDEX idx_personnel ON CLUSTER
personnel;

� After creating the cluster index, you can insert rows
into either the STAFF or DEPT tables.

Clustering Index with Separate Blocks
� Separate blocks

for each group of
records with the
same cluster field
value

year name hons tutor studn
o

1
1
1

Block pointer

2
2
2
2

Block pointer

2
2

Block pointer

3
3
3

Block pointer

Clustering
field value

Block pointer

1
2
3

Index File

Data File

Dense Secondary Index on a non-ordering key field

9
5
13
8

6
15
3
17

19
11
16
2

7
10
20
1

4
12
18
14

1
2
3
4
5
6
7
8

17
18
19
20

9
10
11
12
13
14
15
16

Index field
value

Block pointer

Index File Data File

Oracle: Create Index

create table enrol
(studno number(8),
courseno char(5),
primary key (studno, courseno),

…);

� CREATE INDEX enrol-idx1 ON enrol (studno, courseno);

� CREATE INDEX enrol-idx2 ON enrol (courseno, studno);

Secondary Index on a non-key field
Dept Name Staffno
3
5
1
6

2
3
4
8

6
8
4
1

6
5
2
5

5
1
6
3

1
2
3
4
5
6
8

Field
value

Block
pointer

Blocks of record pointers
Data File

Indexing field

Index File

5

Dense & Sparse Indexes
� Dense Index

� Every record in the data file is in the index
� Sparse Index

� Not every record in the data file is in the index.
� The index indicates the block of records

� takes less space
� quicker to scan the index
� efficient

but...no existence test based on the index
� A file can have one sparse index and many dense

indexes, because a sparse index relies on a unique
physical ordering of the data file on disk

Ordering Field Non-ordering Field

Key field Primary Index Secondary Index (key)

Non-key Field Clustering Index Secondary Index (non-key)

Types of Keys
� Unordered data files ⇒ lots of secondary

indexes
� Specify ordering attribute for file

� primary / clustering index
� attribute used most often for joins

Analysing database queries and transactions
� Each query

� files that will be accessed

� fields whose value is retrieved access paths

� fields specified in selection conditions access paths

� fields specified in joins access paths

� Each update transaction

� files that will be updated

� type of update operation on each file

� fields used in selection conditions

� fields whose value is modified avoid access structure

Analysing database queries and transactions
� Expected frequency of invocation of queries and

transactions
� expected frequency of each field as a selection field or

join field over all transactions
� expected frequency of retrieving and /or updating each

record

� Analysing time constraints of queries and transactions
� stringent performance constraints
� influence access paths on selection fields

� Analysing expected frequency of update operations
� volatile files
� reduce number of access paths

Types and Properties of Indexes
Type of
Index

Properties of Index Type

Number of
(first level) Index
Entries

Dense or
Non-dense

Block
Anchoring
on the
Data File

Primary Number of blocks
in data file

Non-dense Yes

Clustering Number of distinct
index field values

Non-dense Yes/No

Secondary
(key)

Number of records
in data file

Dense No

Secondary
(non-key)

Number of records
of number of
distinct index field
values

Dense or
Non-dense

No

Index Summary
� Speeds up retrieval but slows down inserts and

updates
� Improve performance when

� relations are large
� queries extract < 25% of all tuple in a relation
� a where clause is properly constructed

� Two main considerations:
1. Organisation
2. Access

� sequential range queries
� direct criteria queries
� existence tests

6

Data Definition: Create Table
create table year
(yearno number(1) primary key,
yeartutorid number(4),

yeartut_uk unique
exceptions into bad_tutors
using index
not null
constraint tut_fk
foreign key (yeartutorid) references

staff(staffid))
tablespace cags_course
storage (initial 6144

next 6144
minextents 1
maxextents 5
pctincrease 5
pctfree 20);

Multi-leveled indexes:
an index for an index

Index has bi blocks
bfri = blocking factor for the

index
bfri = fan-out

= fo

15
21

2
5

8
12

85
89

24
29
35
36
39
41

44
46
51
52

55
58

63
66
71
78
80
82

2
35
55
85

2
8
15
24

35
39
44
51

55
63
71
80

85

2nd (top) level

First (base) level Data FilePrimary Key Field

Tree Indexes
� Order

� a measure of the number of indexing field
values at each node

� Depth
� number of levels

A

C D

G H I

K

B

E F

J

Root node

Subtree
for
node B

B-trees Balanced Trees

� Every leaf is at the same level
� Ordered - Search time O(log(n))
� Predictable search time
� Efficiency - each node = block

� A key value is stored once, with the address
of the associated data record

B trees Order p
1. at least (p-1)/2 and at most p-1 key values at each

internal node and leaf
∴ internal nodes and leaves must always be at least

half full (or half empty)
2. the root must contain at least one key and 2 pointers

(thus 2 child nodes) unless its a leaf
∴ can’t have an empty start point for a non-null tree
3. for k key values at a node, there will be k+1 pointers

to child nodes
∴ a node must have between p/2 and p tree pointers

(child nodes)

B tree

14 51

11

7 10 12 32 50

35 53 60

52 54 62

< >

7

B trees
� Predictable search pattern
� at most X node comparisons for a tree of X levels

� Dense index addresses record location index value
can lie anywhere in the tree

Cost maintenance
but....

? Sequential access
? Range queries
? Sparse index

B+ trees

� Amendment to B tree: addresses for data
records are in the leaves and no where else

B tree

Sequential Set

B+ trees
32

7

545351

5250

351411

12

12 14 32 35 50 51 52 53 54 6010 11

< >=

B+ trees
1. Each node has at most p-1 comparisons
2. Number of nodes visited is limited by the depth of the

tree
� A tree with k levels has

� at most (p)(k-1) leaves
� at least (p/2)(k-1) leaves

� Each leaf has
� p/2 addresses if dense or
� 1 block of n if sparse

1

5

25

125

order 5

Sparse / Dense B+ Trees

Donna

Brian Bruce Paul

40

6020

2

70

2112 47 5923 60 79

Donna

21

Brian Bruce Claire Marcia Paul TimAaron

47 23 59 60 79 12 2

Data blocks and indexes

Sparse Primary Index Dense (Secondary) Index

B+ trees

� Sequential and direct access
� Straightforward insertion and deletion maintaining

ordering
� Grows as required—only as big as needs to be
� Predictable scanning pattern
� Predictable and constant search time
but ..…
� maintenance overhead
� overkill for small static files
� duplicate keys?
� relies on random distribution of key values for

efficient insertion

8

Data Blocks, Extents, and Segments
� Data stored in data blocks (also

called logical blocks, Oracle blocks,
or pages).

� One data block corresponds to a
specific number of bytes of physical
database space on disk

� An extent is a specific number of
contiguous data blocks allocated for
storing a specific type of information.

� A segment is a set of extents that
have been allocated for a specific
type of data structure.

� Each table's data is stored in its own
data segment, while each index's
data is stored in its own index
segment.

Tablespaces and Datafiles
� An Oracle database is divided into one or more logical

storage units called tablespaces. The database's data is
collectively stored in the database's tablespaces.

� Each tablespace in an Oracle database consists of one
or more files called datafiles. These are physical
structures that conform with the operating system in
which Oracle is running.

� A database's data is collectively stored in the datafiles
that constitute each tablespace of the database.

� The simplest Oracle database would have one
tablespace and one datafile. A more complicated
database might have three tablespaces, each consisting
of two datafiles (for a total of six datafiles).

Tablespaces and Datafiles Why bother with tablespaces?
� Uses tablespaces to:

� control disk space allocation for database data
� assign specific space quotas for database users
� control availability of data by taking individual

tablespaces online or offline
� perform partial database backup or recovery

operations
� allocate data storage across devices to improve

performance
� Different functions

� System tablespace
� Temporary tablespaces
� User tablespaces
� Read-only table spaces

Example

� create table year
(yearno number(1) primary key,
yeartutorid number(4),

yeartut_uk unique not null
constraint tut_fk
foreign key (yeartutorid) references

staff(staffid))
tablespace secondyr_course
storage (initial 6144

next 6144
minextents 1
maxextents 5
pctincrease 5
pctfree 20);

Partitioned Tables in Oracle
� Supports very large tables and indexes by allowing users

to decompose them into smaller and more manageable
pieces called partitions.

� Each partition is stored in a separate segment and you can
store each partition in a separate tablespace, so:
� contain the impact of damaged data.
� back up and recover each partition independently.
� balance I/O load by mapping partitions to disk drives.

� Useful for:
� Very Large Databases (VLDBs)
� Reducing Downtime for Scheduled Maintenance
� Reducing Downtime Due to Data Failures
� DSS Performance – I/O Performance
� Disk Striping: Performance vs. Availability

9

Example
� A sales table contains historical data divided by week

number into 13 four-week partitions.

CREATE TABLE sales
(acct_no NUMBER(5),
acct_name CHAR(30),
amount_of_sale NUMBER(6),
week_no INTEGER)
PARTITION BY RANGE (week_no) ...
(PARTITION VALUES LESS THAN (4) TABLESPACE ts0,
PARTITION VALUES LESS THAN (8) TABLESPACE ts1,

...
PARTITION VALUES LESS THAN (52) TABLESPACE ts12);

Hashing: Hash Clusters
� Physically store the rows of a table in a hash cluster

and retrieve them according to the results of a hash
function.

� A hash function generates a distribution of numeric
values, called hash values, which are based on
specific cluster key values. The key of a hash cluster
can be a single column or composite key.

� To find or store a row in a hash cluster, apply the
hash function to the row's cluster key value; the
resulting hash value corresponds to a data block in
the cluster, which you then reads or writes on behalf
of the issued statement.

Hashing Example

� Hash function

� mod (hash key
prime number)

� Collisions
� Rehash functions

� Oracle
� internal hash

function
� user defined hash

function

1
2
3
4
5
6
7

Hashing vs Indexing

Choice of Hashing

� If a key attribute is used mainly for equality
selection and join

� Nothing depends on layout order of data file
� Data files are static and of known size

