
1

Normalisation Example

CS2312

Normalisation Example

BEER_DATABASE
beer brewery strength city region ware

house
quantity

Choice Websters XX York North West 1 200
Choice Websters XX York North West 4 100
Choice Websters XX York North West 8 200
Old Bob Websters XXX York North West 1 300
Old Bob Websters XXX York North West 2 300
Landlord Taylors XXX Leeds North West 8 200
Landlord Taylors XXX Leeds North West 3 190
Directors Fremlins X London South East 6 400
Directors Fremlins X London South East 4 290
Wobbly Joe Sam Smith XXXX York North West 4 90
Watery Whitbread O London South East null null

Additional Notes: Warehouses are shared by breweries.

Each beer is unique to the brewer. Each brewery is based in a city.

2

Minimal Sets of Functional Dependencies
� A set of functional dependencies F is minimal if:
1. Every dependency F has a single determined attribute

A
2. We cannot remove any dependency from F and still

have a set of dependencies equivalent to F
3. We cannot replace and dependency X → A in F with a

dependency A→ X, where A ⊂ X and still have a set of
dependencies that is equivalent to F

I.e. a canonical form with no redundancies
(beer, brewery, strength, city, region, warehouse, quantity)
� beer→ brewery
� beer→ strength
� brewery → city
� city → region
� beer, warehouse, → quantity

Relational Synthesis Algorithm into 3NF:
(beer, brewery, strength, city, region, {warehouse,
quantity})

set D := { R } ; P. 426, P. 431
1. Find a minimal cover G for F
2. For each determinant X of a functional dependency that appears in G

create a relation schema { X ∪ A1, X ∪ A2…X ∪ Am} in D
where

X → A1, X → A1, … X → A1m are the only dependencies in G
with X as the determinant;

3. Place any remaining (unplaced) attributes in a single relation to ensure
attribute preservation property so we don’t lose anything.

4. If none of the relations contains a key of R, create one more relation that
contains attributes that form a key for R.

� beer→ brewery (beer, brewery, strength)
� beer→ strength
� brewery → city (brewery, city)
� city → region (city, region)
� beer, warehouse, → quantity (beer, warehouse, quantity)

3

Step-wise normalisation:
(beer, brewery, strength, city, region,
{warehouse, quantity})

� beer→ brewery, strength partial dependency
� brewery → city transitive dependency
� city → region transitive dependency
� beer, warehouse, → quantity repeating group

1NF remove repeating group
(beer, brewery, strength, city, region, {warehouse, quantity})

(beer, warehouse, quantity)
beer, warehouse, → quantity

(beer, brewery, strength, city,
region)

beer→ brewery, strength
transitive dependency brewery → city
transitive dependency city → region

(beer, brewery, strength, city, region)

� beer→ brewery, strength
� brewery → city transitive dependency
� city → region transitive dependency

� 2NF no partial dependencies
� 3NF/BCNF no transitive dependencies

(beer, brewery, strength, city, region)

(city, region)
city → region (beer, brewery, strength, city)

beer→ brewery, strength
brewery → city

(brewery, city)
brewery → city

(beer, brewery, strength)
beer→ brewery, strength

Take the most indirect
transitive dependencies

4

Using BNCF decomposition algorithm:
(beer, brewery, strength, city, region, warehouse,
quantity)
� beer→ brewery, strength partial dependency
� brewery → city transitive dependency
� city → region transitive dependency
� beer, warehouse, → quantity
Directly to BCNF
take a violating dependency and form a relation from it.
First choose a direct transitive dependency and its closure

(beer, brewery, strength, city, region, warehouse,
quantity)

brewery → city

(brewery, city, region)
brewery → city
city → region transitive dependency

(beer, brewery, strength, warehouse, quantity)
beer→ brewery, strength partial dependency
beer, warehouse, → quantity

Using BNCF decomposition algorithm:
(beer, brewery, strength, city, region, warehouse, quantity)

� beer→ brewery, strength partial dependency
� brewery → city transitive dependency
� city → region transitive dependency
� beer, warehouse, → quantity
take a violating dependency and form a relation from it.
First the partial dependency and its closure

(beer, brewery, strength, city, region, warehouse, quantity)
beer→ brewery, strength

(beer, brewery, strength, city, region)
beer→ brewery, strength
brewery → city transitive dependency
city → region transitive dependency
normalise as before...

(beer, warehouse, quantity)
beer, warehouse, → quantity

