

 1

1

CS2312: Integrity Constraints in Oracle 8i

Carole Goble

1. Integrity Constraints
Integrity constraints can take the form of primary keys, foreign keys, check constraints
and null constraints. Primary keys are automatically defined to be NOT NULL.

Constraints are of the form:

constraint constraint_name primary key (attribute_name, ...)

constraint constraint_name foreign key (child_attribute, ...)
references tablename(parent_attribute, ...)

constraint constraint_name not null
Note:
• The ‘constraint constraint_name’ part is optional but it is a good idea to name

constraints (see below).
• When using column constraints (rather than table constraints) for foreign keys,

the ‘foreign key (child_attribute)’ keywords should not be used (see below for
Table and Column constraints).

• When a foreign key references a table’s primary key the (parent_attribute ...)
part is optional after the tablename. It is a good idea to include the attributes
referenced for clarity.

See the Oracle8 server manual entry for CONSTRAINT clause for a complete syntax
summary. The page is at:

http://aardvark.cs.man.ac.uk:8899/ora_803_doc/DOC/dcommon/oin/index.htm
Here are some rules for defining a table’s primary and foreign key constraints:

1.1 Naming Constraints
1.1.1 Choosing Names
Constraints may or may not be named. It is a good idea to name at least primary and
foreign keys. Oracle maintains a list of constraints defined on your tables in the Data
Dictionary relations USER_CONS_COLUMNS and USER_CONSTRAINTS. If a
constraint is not named then a system name is created. When a constraint violation
occurs, Oracle reports the name of the constraint that was violated. User named
constraints are much easier to identify than the obscure system names provided.

A good naming scheme would be to start all primary key constraint names with ‘pk_’,
all foreign key constraint names with ‘fk_’ and all Not Null constraint names with
‘nn_’. The name of the attribute being used or the name of the table can then make up
the complete constraint name. This makes identifying constraints in
USER_CONS_COLUMNS much easier.

1.1.2 Data Dictionary Relations
USER_CONS_COLUMNS provides information about the names of the constraints and
the attributes they are defined on. USER_CONSTRAINTS provides more detailed
information including the type of constraint and the deletion method used, where
appropriate. When using the SQL*Loader, if the test data does not satisfy a particular
constraint, the constraint name is reported.

 2

2

1.1.3 Unique Names
Constraint names must be unique throughout all the tables in a database. A constraint
name used in one table may not be used in any other table. It is often easy to forget this
when using identical foreign keys in several tables.
For example, suppose a table named COURSE is the target of foreign keys in tables
named STAFF and STUDENT. The foreign key constraints must have different names
even though they may refer to the same attribute in COURSE. If no constraint name is
given Oracle will assign a unique system name.

1.2 Table Constraints and Column Constraints
1.2.1 Choosing Table or Column Constraints
Constraints may be either table constraints or column constraints. A column constraint
is defined for an attribute along with the attribute’s data type. A table constraint is
defined for a named column before or after the column has been defined. There is not
much difference between them. However, when a primary key or foreign key is made up
of more than one attribute, a table constraint must be used. Since column constraints
only refer to the current column they cannot be used for multi-attribute keys.

For example, the following two table definitions will give the same results.

create table year
(yearno number(8) constraint year_pk1 primary key,
yeartutorid number(4),

constraint fk_tut foreign key (yeartutorid) references
STAFF(staffid));

create table year
(yearno number(8),
constraint year_pk1 primary key (yearno),
yeartutorid number(4) constraint fk_tut references

STAFF(staffid));

The first definition uses a column constraint to specify the primary key and a table
constraint to specify the foreign key.

The second definition uses a column constraint to specify the foreign key and a table
constraint to specify the primary key. Notice that when a column constraint is used to
define a foreign key, the keywords ‘foreign key’ are not required since Oracle knows
that a foreign key is being defined. It is often only the placing of commas (,) that
determine whether a constraint is a table constraint or a column constraint.

1.2.2 Using only Table Constraints or only Column Constraints
You could use only column constraints when specifying a table provided the
constraints are defined for single attributes only. You could also use only table
constraints. The next example can only be achieved using a table constraint for the
primary key:

create table TEACH
(courseno char(5),
lecturid number(4),
constraint pk_teach primary key (courseno, lecturid),
constraint fk_teach foreign key (courseno) references

COURSE,
constraint fk_lect foreign key (lecturid) references

STAFF(staffid));

 3

3

Notice:
• The primary key is made up of two attributes. The only way to specify the two

attributes to be the primary key is with a table constraint. The foreign keys have
also been specified by table constraints in this case but since they are only made
up of single attributes they could, in fact, have been defined with column
constraints.

• The ‘fk_teach’ foreign key does not specify which attribute in the target table

(course) is to be referenced. When no atribute is specified Oracle assumes the
primary key is to be referenced. The ‘fk_lect’ foreign key does specify an
attribute. In this case it also happens to be the primary key. It is a good idea to
include the fields to be referenced, even though they may not strictly be need, for
clarity.

• Indexed attributes as well as primary key atributes may be referenced by a

foreign key. If an index attribute is used then its name will have to be specified.

• The referenced attribute must be of the same data type as the attribute which

defines the foreign key, but not necessarily having the same name. It must also
be indexed, either explicitly or by it being a primary key.

1.2.3 Which style to use
A good style to use when defining constraints is:

• Use column constraints for primary keys and ‘not nulls’ when each constraint is

made up of a single attribute. A table constraint must be used otherwise.
• Use table constraints for all foreign keys after all the attributes have been

defined. This makes the definition easier to read and edit.
• Name primary key constraints and foreign key constraints. You could also name

‘not null’ constraints.

1.3 Altering, Disabling and Enabling Constraints
A constraint may be disabled at the time the table is created and then explicitly activated
by the owner at a later time. This is useful for recursive relationships where a foreign
key refers to the primary key of its own relation. Loading data would be impossible if
the foreign key could not be ‘switched off’ initially and then ‘switched on’ after the
table has been populated. For example, consider:

Staff

staffid

givenname

surname

title
appraisal

1

m

appraiser

appraisee

roomno

The following table definition has the recursive relationship implemented as a foreign
key defined on the ‘appraiserid’ attribute:

 4

4

create table staff
(staffid number(4) primary key,
givenname char(20),
surname char(20),
title char(4)

check (title in ('mrs', 'mr', 'ms','prof','rdr','dr')),
roomno char(6),
appraiserid number(4),

constraint app_fk foreign key (appraiserid) references
staff(staffid) disable);

Notice the ‘disable’ keyword in the foreign key definition. The foreign key on
‘appraiserid’ requires that an appraiser’s id must be a staff id of some other member of
staff, assuming that nobody is their own appraiser.

Consider the contents of the table:

SQL> select * from staff;

STAFFID GIVENNAME SURNAME TITL ROOMNO APPRAISERID
------- -------------- --------------- ---- ------ -----------

1 john latham dr 2.99 4
2 carole goble ms 2.82 11
3 graham gough dr 2.105 1
4 vicky bush mrs 2.46 11
5 dick zobel dr 2.36 6
6 ian watson prof IT417 1
7 margaret clarke dr IT202 6
8 alan knowles dr A1.12 9
9 roger hubbold dr 2.103 6

10 peter jinks mr A1.11 5
11 john gurd prof 2.127

Look at the first tuple. How could this be loaded into the table? The appraiserid foreign
key will try to locate a tuple with staffid ‘4’. Since the first tuple is the only tuple in
table when the loading of the test data begins, the SQL*Loader will report that the
foreign key has been violated and that it cannot find a tuple to match. The only way to
get any data into the table is to disable the foreign foreign key, populate the table and
then activate the foreign key using:

 alter table staff enable constraint app_fk;

To disable a constraint use

 alter table staff disable constraint app_fk;

If you want to change a constraint definition to be on delete cascade instead of delete
restrict or vice versa, then you cannot just modify the constraint. Instead you must:

a) alter the table to delete the current constraint

 alter table staff drop constraint app_fk;

b) alter the table to add a new constraint

alter table staff add constraint app_fk foreign key
(appraiserid) references staff(staffid) on delete cascade;

To drop a primary key and drop any foreign key reference to the primary key then use
the command

 5

5

 alter table staff primary key cascade;

If you don’t include the cascade the primary key won’t be dropped if a foreign key
points to it.

1.4 Maintaining Referential Integrity
1.4.1 Methods of Deletion
Foreign key constraints can specify the method of deletion. If the target primary key of a
foreign key is to be deleted then either cascade deletion or restricted deletion can be
used (see the lecture notes on Referential Integrity).

Oracle uses restricted deletion by default. To specify cascade deletion add cascade
delete to the foreign key definition. For example, the following table will use cascade
deletion:

create table year
(yearno number(8),
yeartutorid number(4) constraint fk_tut references

STAFF(staffid) on delete cascade),
constraint year_pk1 primary key (yearno));

When a tuple is removed from the STAFF table any tuples in the YEAR table whose
yeartutorid matches the removed member of staff will be deleted automatically. If the
‘cascade delete’ option was omitted then Oracle would not permit any deletion of tuples
from the STAFF table whose staffid was referenced by a yeartutorid in the YEAR table.

1.5 Multiple Constraints
An attribute can have more than one constraint defined for it. Any data inserted into the
table must satisfy all the constraints defined for an attribute. Typical examples are that
an attribute is a foreign key and it cannot be null, or an attribute has two foreign keys
defined for it. For example, the following table has a ‘not null’ constraint and a foreign
key constraint defined on the ‘country’ attribute:

create table Region
(region char(13) constraint region_pk primary key,
landtype char(4),
page number(3),
scenery char(9),
country char(8) not null,

constraint country_fk foreign key (country) references
Country(country));

The ‘not null’ constraint has not been named but it is still enforced. Any tuples inserted
into this table must have a non-null country that can be found in the Country relation.

2. Creating Tables
Tables in Oracle are created with the SQL*Plus CREATE TABLE command. This
allows you to specify the table name, attribute name, attribute data types and any
integrity constraints you may want to be enforced.

 6

6

2.1 Order of Creation, Population and Deletion
2.1.1 Creation
When defining tables with foreign key integrity constraints the order in which the tables
are created is important. A foreign key will usually refer to a target primary key of
another table (see 1.3 where this is not the case). Oracle requires that the parent table
containing the target primary key already exists when the child table containing the
foreign key is created. This requirement dictates the order in which the tables must be
created.

You could overcome this requirement by including the ‘disable’ keyword in all foreign
key definitions so that the foreign keys are only defined, not enforced. Once all the
tables have been created you would then have to enable all the constraints (see 1.3).
This would be too painful if a large number of tables and foreign keys were to be used.

The best method is to examine the tables and work out which ones do not refer to any
other tables. These should then be created first. The remaining tables can then be
created, ensuring that all parent tables exist before a child table is created. For example,
the Staff/Student database example can be summarised in the following way:

Student references Year and Staff.
Enrol references Student and Course.
Teach references Course and Staff.
Staff references Staff.
Course does not reference any other relation.
Year reference Staff.

So the order of creation is

Staff and Course (either one first),
Year and Teach (either one first),
Student,
Enrol

2.1.2 Population
The same order should be used when populating the database. As tuples are inserted
into the tables, Oracle enforces the integrity constraints for each tuple. A parent table
must be populated before the child table is populated so that Oracle can look up target
values of foreign keys.

2.1.3 Deletion
Whether a table can be deleted or not depends on the method of deletion defined in the
foreign key constraint definitions (see 1.4). If restricted deletion is used (the method
used by Oracle unless you explicitly use ‘cascade delete’) then you will not be able to
delete a table that is referenced by a foreign key using the usual ‘drop tablename’.
Oracle will complain about the foreign keys referencing the table. The table can be
dropped, however, using a ‘cascade constraint’ option, i.e.

drop table_name cascade constraint

This will drop the table ‘table_name’ and also drops any referential integrity constraints
(such as foreign keys) that were referencing table_name.

 7

7

2.2 Using Command Files
Command files are a useful way to store the SQL commands used to create the database
and the order in which the tables should be built. For example the first command below
creates all the tables with their integrity constraints. The second inserts tuples into the
tables. The third removes the entire database by dropping all the tables. The ‘cascade
constraint’ option is used just in case there are any foreign keys present.

build.sql
create table Staff
 (staffid number(4) constraint pk_staffid primary key,
 ...
)

create table Course
 (courseno char(5) constraint
 ...
)

populate.sql
insert into Staff values (1,’john’,’latham’,’dr’,2.99,4);
insert into Staff values (11,’john’,’gurd’,’prof’,2.127,null);
…

dropdb.sql
drop table staff cascade constraint
drop table course cascade constraint
drop table year cascade constraint
drop table student cascade constraint
drop table enrol cascade constraint
drop table teach cascade constraint

These files can be used to rebuild the database from scratch if something goes horribly
wrong.

