
Implementing DL Systems

IJCAR 2001: Description Logics tutorial – p.1/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:

➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm

➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation

IJCAR 2001: Description Logics tutorial – p.2/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .

➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial – p.3/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques

➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB

➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial – p.4/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial – p.5/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial – p.6/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search

IJCAR 2001: Description Logics tutorial – p.7/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN

• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN
• Can expand definitions lazily

➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial – p.8/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial – p.9/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial – p.10/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial – p.11/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

x

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

x

x

x

t

L(x) ∪ {Cn-1}

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

L(x) ∪ {C1}

L(x) ∪ {Cn}

x

x

x

x
t

t

L(x) ∪ {Cn-1}

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x
t

t

L(x) ∪ {Cn-1}

Clash

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

R

L(x) ∪ {C1}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

ClashClash

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Clash Clash Clash . . . Clash

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

Backjump
t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Clash Clash Clash . . . Clash

IJCAR 2001: Description Logics tutorial – p.12/16



Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)

Backjump Pruning
t

t

t

R

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn}

L(y) = {(A u B),¬A, A, B}

x

x

x

y

x

x L(x) ∪ {¬Cn, Dn}

y L(y) = {(A u B),¬A, A, B}

R

t

t

t

L(x) ∪ {Cn-1}

Clash Clash Clash . . . Clash

IJCAR 2001: Description Logics tutorial – p.12/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status

➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache

➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial – p.13/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial – p.14/16



Select Bibliography

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich.
An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a
move on. In B. Nebel, C. Rich, and W. Swartout, editors, Proc. of
KR’92, pages 270–281. Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure
for ALC. In Proc. of KR’96, pages 304–314. Morgan Kaufmann,
1996.

V. Haarslev and R. Möller. High performance reasoning with very
large knowledge bases: A practical case study. In Proc. of IJCAI
2001 (to appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept
languages. In Proc. of ECAI’90, pages 348–353. John Wiley &
Sons Ltd., 1990.

IJCAR 2001: Description Logics tutorial – p.15/16



Select Bibliography

I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption
optimizations. In Proc. of DL’98, pages 90–94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic
subsumption. Journal of Logic and Computation, 9(3):267–293,
1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and
practice. In Proc. of KR’00 pages 285–296. Morgan Kaufmann,
2000.

IJCAR 2001: Description Logics tutorial – p.16/16


	Implementing DL Systems
	Naive Implementations
	Careful Choice of Algorithm
	Highly Optimised Implementation
	Optimising Subsumption Testing
	Pre-processing Optimisations
	Normalisation and Simplification
	Absorption I
	Absorption II
	Algorithmic Optimisations
	Dependency Directed Backtracking
	Backjumping
	Caching
	Summary
	Select Bibliography
	Select Bibliography

