Implementing DL Systems

Problems include:

Space usage

- Space usage
 - Storage required for tableaux datastructures

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice

Problems include:

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice

Time usage

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion
 - Serious problem in practice

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion
 - Serious problem in practice
 - Mitigated by:

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion
 - Serious problem in practice
 - Mitigated by:
 - → Careful choice of algorithm

- Space usage
 - Storage required for tableaux datastructures
 - Rarely a serious problem in practice
- Time usage
 - Search required due to non-deterministic expansion
 - Serious problem in practice
 - Mitigated by:
 - Careful choice of algorithm
 - Highly optimised implementation

Transitive roles instead of transitive closure

Transitive roles instead of transitive closure

• Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain, ...

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain, ...

→ E.g., (domain R.C) $\equiv \exists R.\top \sqsubseteq C$

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain, ...
 - → E.g., (domain R.C) $\equiv \exists R.\top \sqsubseteq C$
 - (FL) encodings introduce (large numbers of) axioms

- Transitive roles instead of transitive closure
 - Deterministic expansion of $\exists R.C$, even when $R \in \mathbf{R}_+$
 - (Relatively) simple blocking conditions
 - Cycles always represent (part of) cyclical models
- Direct algorithm/implementation instead of encodings
 - GCI axioms can be used to "encode" additional operators/axioms
 - Powerful technique, particularly when used with FL closure
 - Can encode cardinality constraints, inverse roles, range/domain, ...

→ E.g., (domain R.C) $\equiv \exists R.\top \sqsubseteq C$

- (FL) encodings introduce (large numbers of) axioms
- **BUT** even simple domain encoding is **disastrous** with large numbers of roles

Optimisation performed at 2 levels

Computing classification (partial ordering) of concepts

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - → E.g., to select order in which to classify concepts

Optimisation performed at 2 levels

Computing classification (partial ordering) of concepts

- Objective is to minimise number of subsumption tests
- Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
- Also use structural information from KB
 - → E.g., to select order in which to classify concepts
- Computing subsumption between concepts

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - → E.g., to select order in which to classify concepts
- Computing subsumption between concepts
 - Objective is to minimise cost of single subsumption tests

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - → E.g., to select order in which to classify concepts
- Computing subsumption between concepts
 - Objective is to minimise cost of single subsumption tests
 - Small number of hard tests can dominate classification time

- Computing classification (partial ordering) of concepts
 - Objective is to minimise number of subsumption tests
 - Can use standard order-theoretic techniques
 - E.g., use enhanced traversal that exploits information from previous tests
 - Also use structural information from KB
 - → E.g., to select order in which to classify concepts
- Computing subsumption between concepts
 - Objective is to minimise cost of single subsumption tests
 - Small number of hard tests can dominate classification time
 - Recent DL research has addressed this problem (with considerable success)

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

Pre-processing optimisations
- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms
- Algorithmic optimisations

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms
- Algorithmic optimisations
 - Main aim is to reduce search space due to non-determinism

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms
- Algorithmic optimisations
 - Main aim is to reduce search space due to non-determinism
 - Integral part of implementation

- Pre-processing optimisations
 - Aim is to **simplify KB** and facilitate subsumption testing
 - Largely algorithm independent
 - Particularly important when KB contains GCI axioms
- Algorithmic optimisations
 - Main aim is to reduce search space due to non-determinism
 - Integral part of implementation
 - But often generally applicable to search based algorithms

Useful techniques include

- Normalisation and simplification of concepts
 - Refinement of technique first used in \mathcal{KRIS} system

- Normalisation and simplification of concepts
 - Refinement of technique first used in \mathcal{KRIS} system
 - Lexically normalise and simplify all concepts in KB

- Normalisation and simplification of concepts
 - Refinement of technique first used in \mathcal{KRIS} system
 - Lexically normalise and simplify all concepts in KB
 - Combine with lazy unfolding in tableaux algorithm

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion
- Avoidance of potentially costly reasoning whenever possible

Useful techniques include

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion
- Avoidance of potentially costly reasoning whenever possible
 - Normalisation can discover "obvious" (un)satisfiability

Useful techniques include

Normalisation and simplification of concepts

- Refinement of technique first used in \mathcal{KRIS} system
- Lexically normalise and simplify all concepts in KB
- Combine with lazy unfolding in tableaux algorithm
- Facilitates early detection of inconsistencies (clashes)
- Absorption (simplification) of general axioms
 - Eliminate GCIs by absorbing into "definition" axioms
 - Definition axioms efficiently dealt with by lazy expansion

Avoidance of potentially costly reasoning whenever possible

- Normalisation can discover "obvious" (un)satisfiability
- Structural analysis can discover "obvious" subsumption

Normalise concepts to standard form, e.g.:

• $\exists R.C \longrightarrow \neg \forall R.\neg C$

- $\exists R.C \longrightarrow \neg \forall R.\neg C$
- $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$

- $\exists R.C \longrightarrow \neg \forall R.\neg C$
- $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:

- $\exists R.C \longrightarrow \neg \forall R.\neg C$
- $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - $\dots \sqcap C \sqcap \dots \sqcap \neg C \sqcap \dots \longrightarrow \bot$

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts
 - Only add structure as required by progress of algorithm

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts
 - Only add structure as required by progress of algorithm
 - Detect clashes between lexically equivalent concepts

- Normalise concepts to standard form, e.g.:
 - $\exists R.C \longrightarrow \neg \forall R.\neg C$
 - $C \sqcup D \longrightarrow \neg(\neg C \sqcap \neg D)$
- Simplify concepts, e.g.:
 - $(D \sqcap C) \sqcap (A \sqcap D) \longrightarrow A \sqcap C \sqcap D$
 - $\forall R. \top \longrightarrow \top$
 - ... $\sqcap C \sqcap \ldots \sqcap \neg C \sqcap \ldots \longrightarrow \bot$
- Lazily unfold concepts in tableaux algorithm
 - Use names/pointers to refer to complex concepts
 - Only add structure as required by progress of algorithm
 - Detect clashes between lexically equivalent concepts

{HappyFather, \neg HappyFather} \longrightarrow clash { \forall has-child.(Doctor \sqcup Lawyer), \exists has-child.(\neg Doctor $\sqcap \neg$ Lawyer)} \longrightarrow search

Reasoning w.r.t. set of GCI axioms can be very costly

Reasoning w.r.t. set of GCI axioms can be very costly

• GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label

Reasoning w.r.t. set of GCI axioms can be very costly

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}

- Reasoning w.r.t. set of GCI axioms can be very costly
 - GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
 - Expansion of disjunctions leads to search
 - With 10 axioms and 10 nodes search space already 2^{100}
 - GALEN (medical terminology) KB contains hundreds of axioms

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For $CN \supseteq D$, add $\neg D$ only to node labels containing $\neg CN$

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For $CN \supseteq D$, add $\neg D$ only to node labels containing $\neg CN$
 - Can expand definitions lazily

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For $CN \supseteq D$, add $\neg D$ only to node labels containing $\neg CN$
 - Can expand definitions lazily
 - Only add definitions after other local (propositional) expansion

- GCI $C \sqsubseteq D$ adds $D \sqcup \neg C$ to every node label
- Expansion of disjunctions leads to search
- With 10 axioms and 10 nodes search space already 2^{100}
- GALEN (medical terminology) KB contains hundreds of axioms
- Reasoning w.r.t. "primitive definition" axioms is relatively efficient
 - For $CN \sqsubseteq D$, add D only to node labels containing CN
 - For $CN \supseteq D$, add $\neg D$ only to node labels containing $\neg CN$
 - Can expand definitions lazily
 - Only add definitions after other local (propositional) expansion
 - Only add definitions one step at a time

Transform GCIs into primitive definitions, e.g.

• $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$

Transform GCIs into primitive definitions, e.g.

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$

Absorb into existing primitive definitions, e.g.

Transform GCIs into primitive definitions, e.g.

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$

Absorb into existing primitive definitions, e.g.

• $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \supseteq A$, $\mathsf{CN} \supseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \supseteq A \sqcup (D \sqcap \neg C)$

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \sqsupseteq A$, $\mathsf{CN} \sqsupseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \sqsupseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \sqsupseteq A$, $\mathsf{CN} \sqsupseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \sqsupseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
 - Disjunctions only added to "relevant" node labels

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C'$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \supseteq A$, $\mathsf{CN} \supseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \supseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
 - Disjunctions only added to "relevant" node labels
- Performance improvements often too large to measure

- $\mathsf{CN} \sqcap C \sqsubseteq D \longrightarrow \mathsf{CN} \sqsubseteq D \sqcup \neg C'$
- $\mathsf{CN} \sqcup C \sqsupseteq D \longrightarrow \mathsf{CN} \sqsupseteq D \sqcap \neg C$
- Absorb into existing primitive definitions, e.g.
 - $\mathsf{CN} \sqsubseteq A$, $\mathsf{CN} \sqsubseteq D \sqcup \neg C \longrightarrow \mathsf{CN} \sqsubseteq A \sqcap (D \sqcup \neg C)$
 - $\mathsf{CN} \supseteq A$, $\mathsf{CN} \supseteq D \sqcap \neg C \longrightarrow \mathsf{CN} \supseteq A \sqcup (D \sqcap \neg C)$
- Use lazy expansion technique with primitive definitions
 - Disjunctions only added to "relevant" node labels
- Performance improvements often too large to measure
 - At least four orders of magnitude with GALEN KB

Useful techniques include

Avoiding redundancy in search branches

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion
 - Min/maximise constrainedness (e.g., MOMS)

- Avoiding redundancy in search branches
 - Davis-Putnam style semantic branching search
 - Syntactic branching with no-good list
- Dependency directed backtracking
 - Backjumping
 - Dynamic backtracking
- Caching
 - Cache partial models
 - Cache satisfiability status (of labels)
- Heuristic ordering of propositional and modal expansion
 - Min/maximise constrainedness (e.g., MOMS)
 - Maximise backtracking (e.g., oldest first)

Allows rapid recovery from bad branching choices

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space

- Allows rapid recovery from bad branching choices
- Most commonly used technique is **backjumping**
 - Tag concepts introduced at branch points (e.g., when expanding disjunctions)
 - Expansion rules combine and propagate tags
 - On discovering a clash, identify most recently introduced concepts involved
 - Jump back to relevant branch points without exploring alternative branches
 - Effect is to prune away part of the search space
 - Performance improvements with GALEN KB again too large to measure

Cache the satisfiability status of a node label

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status

Cache the satisfiability status of a node label

- Identical node labels often recur during expansion
- Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache

Cache the satisfiability status of a node label

- Identical node labels often recur during expansion
- Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\sqsubseteq D$ if $C \sqcap \neg D$ is satisfiable

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\sqsubseteq D$ if $C \sqcap \neg D$ is satisfiable
 - $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\sqsubseteq D$ if $C \sqcap \neg D$ is satisfiable
 - $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
 - If not, continue with standard subsumption test

- Cache the satisfiability status of a node label
 - Identical node labels often recur during expansion
 - Avoid re-solving problems by caching satisfiability status
 → When L(x) initialised, look in cache
 - → Use result, or add status once it has been computed
 - Can use sub/super set caching to deal with similar labels
 - Care required when used with blocking or inverse roles
 - Significant performance gains with some kinds of problem
- Cache (partial) models of concepts
 - Use to detect "obvious" non-subsumption
 - $C \not\subseteq D$ if $C \sqcap \neg D$ is satisfiable
 - $C \sqcap \neg D$ satisfiable if models of C and $\neg D$ can be merged
 - If not, continue with standard subsumption test
 - Can use same technique in sub-problems

Naive implementation results in effective non-termination

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)
 - Caching

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)
 - Caching
- Performance improvements can be very large

- Naive implementation results in effective non-termination
- Problem is caused by non-deterministic expansion (search)
 - GCIs lead to huge search space
- Solution (partial) is
 - Careful choice of logic/algorithm
 - Avoid encodings
 - Highly optimised implementation
- Most important optimisations are
 - Absorption
 - Dependency directed backtracking (backjumping)
 - Caching
- Performance improvements can be very large
 - E.g., more than **four orders of magnitude**

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. In B. Nebel, C. Rich, and W. Swartout, editors, *Proc. of KR'92*, pages 270–281. Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC. In *Proc. of KR'96*, pages 304–314. Morgan Kaufmann, 1996.

V. Haarslev and R. Möller. High performance reasoning with very large knowledge bases: A practical case study. In *Proc. of IJCAI 2001* (to appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. In *Proc. of ECAI'90*, pages 348–353. John Wiley & Sons Ltd., 1990.

I. Horrocks. *Optimising Tableaux Decision Procedures for Description Logics*. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In *Proc. of DL'98*, pages 90–94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption. *Journal of Logic and Computation*, 9(3):267–293, 1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In *Proc. of KR'00* pages 285–296. Morgan Kaufmann, 2000.