
Implementing DL Systems
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Naive Implementations

Problems include:

☞ Space usage

• Storage required for tableaux datastructures

• Rarely a serious problem in practice

☞ Time usage

• Search required due to non-deterministic expansion

• Serious problem in practice

• Mitigated by:
➙ Careful choice of algorithm
➙ Highly optimised implementation
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Careful Choice of Algorithm

☞ Transitive roles instead of transitive closure

• Deterministic expansion of ∃R.C, even when R ∈ R+

• (Relatively) simple blocking conditions

• Cycles always represent (part of) cyclical models

☞ Direct algorithm/implementation instead of encodings

• GCI axioms can be used to “encode” additional
operators/axioms

• Powerful technique, particularly when used with FL
closure

• Can encode cardinality constraints, inverse roles,
range/domain, . . .
➙ E.g., (domain R.C) ≡ ∃R.> v C

• (FL) encodings introduce (large numbers of) axioms

• BUT even simple domain encoding is disastrous with
large numbers of roles
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Highly Optimised Implementation

Optimisation performed at 2 levels

☞ Computing classification (partial ordering) of concepts

• Objective is to minimise number of subsumption tests

• Can use standard order-theoretic techniques
➙ E.g., use enhanced traversal that exploits
information from previous tests

• Also use structural information from KB
➙ E.g., to select order in which to classify concepts

☞ Computing subsumption between concepts

• Objective is to minimise cost of single subsumption tests

• Small number of hard tests can dominate classification
time

• Recent DL research has addressed this problem (with
considerable success)
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Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

☞ Pre-processing optimisations

• Aim is to simplify KB and facilitate subsumption testing

• Largely algorithm independent

• Particularly important when KB contains GCI axioms

☞ Algorithmic optimisations

• Main aim is to reduce search space due to
non-determinism

• Integral part of implementation

• But often generally applicable to search based
algorithms
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Pre-processing Optimisations

Useful techniques include

☞ Normalisation and simplification of concepts

• Refinement of technique first used in KRIS system

• Lexically normalise and simplify all concepts in KB

• Combine with lazy unfolding in tableaux algorithm

• Facilitates early detection of inconsistencies (clashes)

☞ Absorption (simplification) of general axioms

• Eliminate GCIs by absorbing into “definition” axioms

• Definition axioms efficiently dealt with by lazy
expansion

☞ Avoidance of potentially costly reasoning whenever possible

• Normalisation can discover “obvious” (un)satisfiability

• Structural analysis can discover “obvious” subsumption
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Normalisation and Simplification

☞ Normalise concepts to standard form, e.g.:

• ∃R.C −→ ¬∀R.¬C

• C t D −→ ¬(¬C u ¬D)

☞ Simplify concepts, e.g.:

• (D u C) u (A u D) −→ A u C u D

• ∀R.> −→ >

• . . . u C u . . . u ¬C u . . . −→ ⊥

☞ Lazily unfold concepts in tableaux algorithm

• Use names/pointers to refer to complex concepts

• Only add structure as required by progress of algorithm

• Detect clashes between lexically equivalent concepts

{HappyFather,¬HappyFather} −→ clash

{∀has-child.(Doctor t Lawyer), ∃has-child.(¬Doctor u ¬Lawyer)} −→ search
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Absorption I

☞ Reasoning w.r.t. set of GCI axioms can be very costly

• GCI C v D adds D t ¬C to every node label

• Expansion of disjunctions leads to search

• With 10 axioms and 10 nodes search space already 2100

• GALEN (medical terminology) KB contains hundreds of
axioms

☞ Reasoning w.r.t. “primitive definition” axioms is relatively
efficient

• For CN v D, add D only to node labels containing CN
• For CN w D, add ¬D only to node labels containing ¬CN

• Can expand definitions lazily
➙ Only add definitions after other local (propositional)
expansion

➙ Only add definitions one step at a time
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Absorption II

☞ Transform GCIs into primitive definitions, e.g.

• CN u C v D −→ CN v D t ¬C

• CN t C w D −→ CN w D u ¬C

☞ Absorb into existing primitive definitions, e.g.

• CN v A, CN v D t ¬C −→ CN v A u (D t ¬C)

• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels

☞ Performance improvements often too large to measure

• At least four orders of magnitude with GALEN KB
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• CN w A, CN w D u ¬C −→ CN w A t (D u ¬C)

☞ Use lazy expansion technique with primitive definitions

• Disjunctions only added to “relevant” node labels
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Algorithmic Optimisations

Useful techniques include

☞ Avoiding redundancy in search branches

• Davis-Putnam style semantic branching search

• Syntactic branching with no-good list

☞ Dependency directed backtracking

• Backjumping

• Dynamic backtracking

☞ Caching

• Cache partial models

• Cache satisfiability status (of labels)

☞ Heuristic ordering of propositional and modal expansion

• Min/maximise constrainedness (e.g., MOMS)

• Maximise backtracking (e.g., oldest first)
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Dependency Directed Backtracking

☞ Allows rapid recovery from bad branching choices

☞ Most commonly used technique is backjumping

• Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

• Expansion rules combine and propagate tags

• On discovering a clash, identify most recently
introduced concepts involved

• Jump back to relevant branch points without
exploring alternative branches

• Effect is to prune away part of the search space

• Performance improvements with GALEN KB again too
large to measure
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Backjumping

E.g., if ∃R.¬A u ∀R.(A u B) u (C1 t D1) u . . . u (Cn t Dn) ⊆ L(x)
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Backjumping
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Caching

☞ Cache the satisfiability status of a node label

• Identical node labels often recur during expansion

• Avoid re-solving problems by caching satisfiability status
➙ When L(x) initialised, look in cache
➙ Use result, or add status once it has been computed

• Can use sub/super set caching to deal with similar labels

• Care required when used with blocking or inverse roles

• Significant performance gains with some kinds of
problem

☞ Cache (partial) models of concepts

• Use to detect “obvious” non-subsumption

• C 6v D if C u ¬D is satisfiable

• C u ¬D satisfiable if models of C and ¬D can be merged

• If not, continue with standard subsumption test

• Can use same technique in sub-problems
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Summary

☞ Naive implementation results in effective non-termination

☞ Problem is caused by non-deterministic expansion (search)

• GCIs lead to huge search space

☞ Solution (partial) is

• Careful choice of logic/algorithm

• Avoid encodings

• Highly optimised implementation

☞ Most important optimisations are

• Absorption

• Dependency directed backtracking (backjumping)

• Caching

☞ Performance improvements can be very large

• E.g., more than four orders of magnitude
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