Implementing DL Systems

Naive Implementations

Problems include:

Naive Implementations

Problems include:
] Space usage

Naive Implementations

Problems include:

I Space usage
e Storage required for tableaux datastructures

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage
e Search required due to non-deterministic expansion

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage
e Search required due to non-deterministic expansion
e Serious problem in practice

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage
e Search required due to non-deterministic expansion
e Serious problem in practice
o Mitigated by:

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage
e Search required due to non-deterministic expansion
e Serious problem in practice
o Mitigated by:
[0 Careful choice of algorithm

IJCAR 2001: Description Logics tutorial — p.2/16

Naive Implementations

Problems include:

] Space usage
e Storage required for tableaux datastructures
e Rarely a serious problem in practice

I Time usage
e Search required due to non-deterministic expansion
e Serious problem in practice
o Mitigated by:
[0 Careful choice of algorithm
[0 Highly optimised implementation

IJCAR 2001: Description Logics tutorial — p.2/16

Careful Choice of Algorithm

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of 3R.C, even when R R,

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of 3R.C, even when R R,
o (Relatively) simple blocking conditions

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

] Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

] Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

] Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

o Can encode cardinality constraints, inverse roles,
range/domain, . ..

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

o Can encode cardinality constraints, inverse roles,
range/domain, . ..
1 E.g., (domain R.C)=3dR.TLCC

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
o Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

o Can encode cardinality constraints, inverse roles,
range/domain, . ..
1 E.g., (domain R.C)=3dR.TLCC

e (FL) encodings introduce (large numbers of) axioms

IJCAR 2001: Description Logics tutorial — p.3/16

Careful Choice of Algorithm

1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

o Can encode cardinality constraints, inverse roles,
range/domain, . ..
1 E.g., (domain R.C)=3dR.TLCC

e (FL) encodings introduce (large numbers of) axioms

o BUT even simple domain encoding is disastrous with
large numbers of roles

IJCAR 2001: Description Logics tutorial — p.3/16

Highly Optimised Implementation

Optimisation performed at 2 levels

Highly Optimised Implementation

Optimisation performed at 2 levels
1 Computing classification (partial ordering) of concepts

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests
o Can use standard order-theoretic techniques

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB
'] E.qg., to select order in which to classify concepts

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB
'] E.qg., to select order in which to classify concepts

1 Computing subsumption between concepts

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB
'] E.qg., to select order in which to classify concepts

1 Computing subsumption between concepts
o Objective is to minimise cost of single subsumption tests

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB
'] E.qg., to select order in which to classify concepts
1 Computing subsumption between concepts
o Objective is to minimise cost of single subsumption tests

o Small number of hard tests can dominate classification
time

IJCAR 2001: Description Logics tutorial — p.4/16

Highly Optimised Implementation

Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB

'] E.qg., to select order in which to classify concepts
1 Computing subsumption between concepts

o Objective is to minimise cost of single subsumption tests

o Small number of hard tests can dominate classification
time

o Recent DL research has addressed this problem (with
considerable success)

IJCAR 2001: Description Logics tutorial — p.4/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories
] Pre-processing optimisations

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
o Aim is to simplify KB and facilitate subsumption testing

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

1 Pre-processing optimisations
o Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

] Algorithmic optimisations

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

] Algorithmic optimisations

e Main aim is to reduce search space due to
non-determinism

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

] Algorithmic optimisations

e Main aim is to reduce search space due to
non-determinism

o Integral part of implementation

IJCAR 2001: Description Logics tutorial — p.5/16

Optimising Subsumption Testing

Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

] Algorithmic optimisations

e Main aim is to reduce search space due to
non-determinism

o Integral part of implementation

o But often generally applicable to search based
algorithms

IJCAR 2001: Description Logics tutorial — p.5/16

Pre-processing Optimisations

Useful techniques include

Pre-processing Optimisations

Useful techniques include
1 Normalisation and simplification of concepts

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in LRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

1 Absorption (simplification) of general axioms

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

1 Absorption (simplification) of general axioms
o Eliminate GCIs by absorbing into “definition” axioms

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

I Absorption (simplification) of general axioms
o Eliminate GCIs by absorbing into “definition” axioms
o Definition axioms efficiently dealt with by lazy expansion

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

I Absorption (simplification) of general axioms
o Eliminate GCIs by absorbing into “definition” axioms
o Definition axioms efficiently dealt with by lazy expansion

I Avoidance of potentially costly reasoning whenever possible

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

I Absorption (simplification) of general axioms
o Eliminate GCIs by absorbing into “definition” axioms
o Definition axioms efficiently dealt with by lazy expansion

I Avoidance of potentially costly reasoning whenever possible
» Normalisation can discover “obvious” (un)satisfiability

IJCAR 2001: Description Logics tutorial — p.6/16

Pre-processing Optimisations

Useful techniques include

1 Normalisation and simplification of concepts
o Refinement of technique first used in KRZS system
o Lexically normalise and simplify all concepts in KB
o Combine with lazy unfolding in tableaux algorithm
o Facilitates early detection of inconsistencies (clashes)

I Absorption (simplification) of general axioms
o Eliminate GCIs by absorbing into “definition” axioms
o Definition axioms efficiently dealt with by lazy expansion

I Avoidance of potentially costly reasoning whenever possible
» Normalisation can discover “obvious” (un)satisfiability
o Structural analysis can discover “obvious” subsumption

IJCAR 2001: Description Logics tutorial — p.6/16

Normalisation and Simplification

Normalisation and Simplification

1 Normalise concepts to standard form, e.q.:

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e dJR.C — —-VR.-C

Normalisation and Simplification

1 Normalise concepts to standard form, e.qg.:
e JR.C — —VR.-C
e CUD —>—I(—lC|_|—|D)

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

] Simplify concepts, e.qg.:

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

] Simplify concepts, e.qg.:
e (DNCYM(ANMD)— ANCND

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

1 Simplify concepts, e.q.:
o (DNC)N(AND)— ANNCNOD
o VR.T — T

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.qg.:
e JR.C — —VR.-C
o CUD — =(=CT1-D)
] Simplify concepts, e.qg.:
o (DNC)NM(AND) — ANICNTID
o VR.T — T
e ...ACMH...N=CH...— L

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.qg.:
e JR.C — —VR.-C
o CUD — =(=CT1-D)
1 Simplify concepts, e.q.:
o (DNC)NM(AND) — ANICNTID
o VR T — T
e ...MCMO...N=CM...— L

"1 Lazily unfold concepts in tableaux algorithm

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.qg.:
e JR.C — —VR.-C
o CUD — =(=CT1-D)
1 Simplify concepts, e.q.:
o (DNC)N(AND)— ANNCNOD
o VR T — T
e ...MCMO...N=CM...— L

"1 Lazily unfold concepts in tableaux algorithm
o Use names/pointers to refer to complex concepts

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.qg.:
e JR.C — —VR.-C
o CUD — =(=CT1-D)
1 Simplify concepts, e.q.:
o (DNC)N(AND)— ANNCNOD
o VR T — T
e ...MCMO...N=CM...— L

"1 Lazily unfold concepts in tableaux algorithm
o Use names/pointers to refer to complex concepts
o Only add structure as required by progress of algorithm

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

1 Simplify concepts, e.q.:
o (DNNCYNM(AND)— ANNCNOID
o VR.T — T
e ...OCNHO...M=CN...— L

"1 Lazily unfold concepts in tableaux algorithm
o Use names/pointers to refer to complex concepts
o Only add structure as required by progress of algorithm
o Detect clashes between lexically equivalent concepts

IJCAR 2001: Description Logics tutorial — p.7/16

Normalisation and Simplification

1 Normalise concepts to standard form, e.g.:
e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

1 Simplify concepts, e.q.:
o (DNNCYNM(AND)— ANNCNOID
o VR.T — T
e ...OCNHO...M=CN...— L

"1 Lazily unfold concepts in tableaux algorithm
o Use names/pointers to refer to complex concepts
o Only add structure as required by progress of algorithm
o Detect clashes between lexically equivalent concepts

{HappyFather, -HappyFather} — clash
{Vvhas-child.(Doctor U Lawyer), dhas-child.(—Doctor r —Lawyer)} — search

IJCAR 2001: Description Logics tutorial — p.7/16

Absorption I

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly
e GCI CC D adds DU —-C to every node label

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly
e GCI CC D adds DU —-C to every node label
e Expansion of disjunctions leads to search

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly
e GCI CC D adds DU —-C to every node label
e Expansion of disjunctions leads to search
o With 10 axioms and 10 nodes search space already 21°°

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly
e GCI CC D adds DU —-C to every node label
e Expansion of disjunctions leads to search
o With 10 axioms and 10 nodes search space already 21°°

e GALEN (medical terminology) KB contains hundreds of
axioms

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly
e GCI CC D adds DU —-C to every node label
e Expansion of disjunctions leads to search
o With 10 axioms and 10 nodes search space already 21°°
e GALEN (medical terminology) KB contains hundreds of
axioms
1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient
e For CNC D, add D only to node labels containing CN

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

For CN C D, add D only to node labels containing CN
For CN J D, add —-D only to node labels containing —-CN

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

For CN C D, add D only to node labels containing CN
For CN J D, add —-D only to node labels containing —-CN
Can expand definitions lazily

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

For CN C D, add D only to node labels containing CN
For CN J D, add —-D only to node labels containing —-CN
Can expand definitions lazily

I Only add definitions after other local (propositional)

expansion

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption I

1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

For CN C D, add D only to node labels containing CN
For CN J D, add —-D only to node labels containing —-CN
Can expand definitions lazily

I Only add definitions after other local (propositional)

expansion

"I Only add definitions one step at a time

IJCAR 2001: Description Logics tutorial — p.8/16

Absorption 11

Absorption 11

1 Transform GCIs into primitive definitions, e.q.

Absorption 11

1 Transform GCIs into primitive definitions, e.q.
e CNMCCD—CNLCDU-C

Absorption 1II

1 Transform GCIs into primitive definitions, e.qg.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GCIs into primitive definitions, e.qg.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.g.

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GCIs into primitive definitions, e.qg.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.g.
e CNCA CNCDU-C —CNLC AN (DU=C)

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.g.
e CNCA CNCDU-C —CNLC AN (DU=C)
e CNJA CNODM-C — CNJAU(DM-C)

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.q.
e CNCA CNCDU-C — CNLC AN (DU-C)
e CNJA CNODM-C — CNJAU(DM-C)

1 Use lazy expansion technique with primitive definitions

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.q.
e CNCA CNCDU-C —CNLC AN (DU=C)
e CNJA CNODM-C — CNJAU(DM-C)

1 Use lazy expansion technique with primitive definitions
o Disjunctions only added to “relevant” node labels

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.q.
e CNCA CNCDU-C — CNLC AN (DU-C)
e CNJA CNODM-C — CNJAU(DM-C)

1 Use lazy expansion technique with primitive definitions
o Disjunctions only added to “relevant” node labels

| Performance improvements often too large to measure

IJCAR 2001: Description Logics tutorial — p.9/16

Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.q.
e CNCA CNCDU-C —CNLC AN (DU=C)
e CNJA CNODM-C — CNJAU(DM-C)

] Use lazy expansion technique with primitive definitions
o Disjunctions only added to “relevant” node labels

'] Performance improvements often too large to measure
e At least four orders of magnitude with GALEN KB

IJCAR 2001: Description Logics tutorial — p.9/16

Algorithmic Optimisations

Useful techniques include

Algorithmic Optimisations

Useful techniques include
] Avoiding redundancy in search branches

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
e Dynamic backtracking

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
e Dynamic backtracking

] Caching

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
o Dynamic backtracking

] Caching
o Cache partial models

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

] Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
e Dynamic backtracking

] Caching

o Cache partial models
o Cache satisfiability status (of labels)

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

1 Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
o Dynamic backtracking
] Caching
o Cache partial models
o Cache satisfiability status (of labels)

"I Heuristic ordering of propositional and modal expansion

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

1 Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
e Dynamic backtracking

1 Caching

o Cache partial models
o Cache satisfiability status (of labels)

"I Heuristic ordering of propositional and modal expansion
e Min/maximise constrainedness (e.g., MOMS)

IJCAR 2001: Description Logics tutorial — p.10/16

Algorithmic Optimisations

Useful techniques include

1 Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
o Dynamic backtracking
1 Caching
o Cache partial models
o Cache satisfiability status (of labels)

| Heuristic ordering of propositional and modal expansion
e Min/maximise constrainedness (e.g., MOMS)
o Maximise backtracking (e.g., oldest first)

IJCAR 2001: Description Logics tutorial — p.10/16

Dependency Directed Backtracking

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices
] Most commonly used technique is backjumping

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

] Most commonly used technique is backjumping

e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

] Most commonly used technique is backjumping

e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)
o Expansion rules combine and propagate tags

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

1 Most commonly used technique is backjumping

e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

e Expansion rules combine and propagate tags

e On discovering a clash, identify most recently
introduced concepts involved

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

1 Most commonly used technique is backjumping

e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

e Expansion rules combine and propagate tags

e On discovering a clash, identify most recently
introduced concepts involved

e Jump back to relevant branch points without
exploring alternative branches

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices
1 Most commonly used technique is backjumping

Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

Expansion rules combine and propagate tags

On discovering a clash, identify most recently
introduced concepts involved

Jump back to relevant branch points without
exploring alternative branches

Effect is to prune away part of the search space

IJCAR 2001: Description Logics tutorial — p.11/16

Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

1 Most commonly used technique is backjumping
e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)
e Expansion rules combine and propagate tags

e On discovering a clash, identify most recently
introduced concepts involved

e Jump back to relevant branch points without
exploring alternative branches

o Effect is to prune away part of the search space

o Performance improvements with GALEN KB again too
large to measure

IJCAR 2001: Description Logics tutorial — p.11/16

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

X

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

L
L) U{C1} 2

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

L(z) U{C1} gz

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

L(z) U{C1} gz

Backjumping

E.g., if IR-ANVR.(ANNB)N(CyUDy)M...N(C,UD,)C L(x)

L(z) U{C1} gz

Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

T
LI
L) U{C1} x
LI
ﬁ(x)U{Cn-l} T
L LI
L(z)U{Cn} x r L(x) U{=Chr, Dn}
R R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)a_'A’A7B}
Clash Clash

IJCAR 2001: Description Logics tutorial — p.12/16

Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

xZ
LI LJ
L) U{C1} x L(z) U{~C1, D1}
L] LI
L(x) U {_|CQ, DQ}
ﬁ(x)U{Cn-l} T
LJ LJ
Lx)U{Cn} 2 r L(x) U{=Cn, Dn}
R R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)v_'AvA)B}
Clash Clash Clash ... Clash

IJCAR 2001: Description Logics tutorial — p.12/16

Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

Backjump x
L L
Lx)U{C1} o L(x) U {=C1,D1}
L] L
L(x) U {_|CQ, DQ}
L

r L) U{=Cn, Dn}

R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)v_'AvA)B}

Clash Clash Clash ... Clash

IJCAR 2001: Description Logics tutorial — p.12/16

Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

Backjump T .- Pruning
L ou
L@)u{C1} o L(z) U {=C1, D1}
L o
L(x) U {_|CQ, DQ}
U

r L) U{=Cn, Dn}

; R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)v_'AvA)B}

Clash Clash Clash ... Clash

IJCAR 2001: Description Logics tutorial — p.12/16

Caching

Caching

] Cache the satisfiability status of a node label

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion
e Avoid re-solving problems by caching satisfiability status

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels
o Care required when used with blocking or inverse roles

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels
o Care required when used with blocking or inverse roles

o Significant performance gains with some kinds of
problem

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels

o Care required when used with blocking or inverse roles

o Significant performance gains with some kinds of
problem

| Cache (partial) models of concepts

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels
o Care required when used with blocking or inverse roles
o Significant performance gains with some kinds of
problem
| Cache (partial) models of concepts
o Use to detect “obvious” non-subsumption

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels
o Care required when used with blocking or inverse roles
o Significant performance gains with some kinds of
problem
| Cache (partial) models of concepts
o Use to detect “obvious” non-subsumption
o CIZDif Cn—D is satisfiable

IJCAR 2001: Description Logics tutorial — p.13/16

Caching

1 Cache the satisfiability status of a node label
o Identical node labels often recur during expansion

e Avoid re-solving problems by caching satisfiability status
1 When L(x) initialised, look in cache
1 Use result, or add status once it has been computed

e Can use sub/super set caching to deal with similar labels
o Care required when used with blocking or inverse roles
o Significant performance gains with some kinds of
problem

| Cache (partial) models of concepts
o Use to detect “obvious” non-subsumption
o CIZDif Cn—D is satisfiable
o C 1 ~-D satisfiable if models of C and —D can be merged

IJCAR 2001: Description Logics tutorial — p.13/16

Cache the satisfiability status of a node label
Identical node labels often recur during expansion

Avoid re-solving problems by caching satisfiability status
When L(z) initialised, look in cache
Use result, or add status once it has been computed

Can use sub/super set caching to deal with similar labels
Care required when used with blocking or inverse roles
Significant performance gains with some kinds of
problem

Cache (partial) models of concepts
Use to detect “"obvious” non-subsumption
C IZ D if Cn—D is satisfiable
C 1 —D satisfiable if models of C' and —D can be merged
If not, continue with standard subsumption test

IJCAR 2001: Description Logics tutorial — p.13/16

Cache the satisfiability status of a node label
Identical node labels often recur during expansion

Avoid re-solving problems by caching satisfiability status
When L(z) initialised, look in cache
Use result, or add status once it has been computed

Can use sub/super set caching to deal with similar labels
Care required when used with blocking or inverse roles
Significant performance gains with some kinds of
problem

Cache (partial) models of concepts
Use to detect “"obvious” non-subsumption
C IZ D if Cn—D is satisfiable
C 1 —D satisfiable if models of C' and —D can be merged
If not, continue with standard subsumption test
Can use same technique in sub-problems

IJCAR 2001: Description Logics tutorial — p.13/16

Summary

Summary

1 Naive implementation results in effective non-termination

Summary

1 Naive implementation results in effective non-termination
1 Problem is caused by non-deterministic expansion (search)

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation

] Most important optimisations are

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption
o Dependency directed backtracking (backjumping)

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption
o Dependency directed backtracking (backjumping)
o Caching

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption
o Dependency directed backtracking (backjumping)
o Caching

| Performance improvements can be very large

IJCAR 2001: Description Logics tutorial — p.14/16

Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption
o Dependency directed backtracking (backjumping)
o Caching

| Performance improvements can be very large
e E.g., more than four orders of magnitude

IJCAR 2001: Description Logics tutorial — p.14/16

Select Bibliography

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich.
An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a
move on. In B. Nebel, C. Rich, and W. Swartout, editors, Proc. of
KR92, pages 270-281. Morgan Kaufmann, 1992.

F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure
for ALC. In Proc. of KR96, pages 304-314. Morgan Kaufmann,
1996.

V. Haarslev and R. Méller. High performance reasoning with very
large knowledge bases: A practical case study. In Proc. of IJCAI
2001 (to appear).

B. Hollunder and W. Nutt. Subsumption algorithms for concept
languages. In Proc. of ECAIO0, pages 348-353. John Wiley &
Sons Ltd., 1990.

IJCAR 2001: Description Logics tutorial — p.15/16

Select Bibliography

I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester, 1997.

I. Horrocks and P. F. Patel-Schneider. Comparing subsumption
optimizations. In Proc. of DL98, pages 90-94. CEUR, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic
subsumption. Journal of Logic and Computation, 9(3):267-293,
1999.

I. Horrocks and S. Tobies. Reasoning with axioms: Theory and
practice. In Proc. of KR’00 pages 285-296. Morgan Kaufmann,
2000.

IJCAR 2001: Description Logics tutorial — p.16/16

	Implementing DL Systems
	Naive Implementations
	Careful Choice of Algorithm
	Highly Optimised Implementation
	Optimising Subsumption Testing
	Pre-processing Optimisations
	Normalisation and Simplification
	Absorption I
	Absorption II
	Algorithmic Optimisations
	Dependency Directed Backtracking
	Backjumping
	Caching
	Summary
	Select Bibliography
	Select Bibliography

