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1 Transitive roles instead of transitive closure
o Deterministic expansion of JR.C', even when R R,
o (Relatively) simple blocking conditions
e Cycles always represent (part of) cyclical models

1 Direct algorithm/implementation instead of encodings

e GCI axioms can be used to “encode” additional
operators/axioms

o Powerful technique, particularly when used with FL
closure

o Can encode cardinality constraints, inverse roles,
range/domain, . ..
1 E.g., (domain R.C)=3dR.TLCC

e (FL) encodings introduce (large numbers of) axioms

o BUT even simple domain encoding is disastrous with
large numbers of roles
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Optimisation performed at 2 levels

1 Computing classification (partial ordering) of concepts
o Objective is to minimise number of subsumption tests

o Can use standard order-theoretic techniques
0 E.g., use enhanced traversal that exploits
information from previous tests

e Also use structural information from KB

'] E.qg., to select order in which to classify concepts
1 Computing subsumption between concepts

o Objective is to minimise cost of single subsumption tests

o Small number of hard tests can dominate classification
time

o Recent DL research has addressed this problem (with
considerable success)
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Optimisation techniques broadly fall into 2 categories

] Pre-processing optimisations
e Aim is to simplify KB and facilitate subsumption testing
o Largely algorithm independent
e Particularly important when KB contains GCI axioms

] Algorithmic optimisations

e Main aim is to reduce search space due to
non-determinism

o Integral part of implementation

o But often generally applicable to search based
algorithms
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e JR.C — —-VR.-C
o CUD — —~(=CT1-D)

1 Simplify concepts, e.q.:
o (DNNCYNM(AND)— ANNCNOID
o VR.T — T
e ...OCNHO...M=CN...— L

"1 Lazily unfold concepts in tableaux algorithm
o Use names/pointers to refer to complex concepts
o Only add structure as required by progress of algorithm
o Detect clashes between lexically equivalent concepts

{HappyFather, -HappyFather} — clash
{Vvhas-child.(Doctor U Lawyer), dhas-child.(—Doctor r —Lawyer)} — search
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1 Reasoning w.r.t. set of GCI axioms can be very costly

GCI C C D adds D U —-C to every node label
Expansion of disjunctions leads to search
With 10 axioms and 10 nodes search space already 2'%°

GALEN (medical terminology) KB contains hundreds of
axioms

1 Reasoning w.r.t. “"primitive definition” axioms is relatively
efficient

For CN C D, add D only to node labels containing CN
For CN J D, add —-D only to node labels containing —-CN
Can expand definitions lazily

I Only add definitions after other local (propositional)

expansion

"I Only add definitions one step at a time
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Absorption 1II

1 Transform GClIs into primitive definitions, e.g.
e CNNCCD —CNLCDUu-=C
e CNLUCID —CNZIDM=C

1 Absorb into existing primitive definitions, e.q.
e CNCA CNCDU-C —CNLC AN (DU=C)
e CNJA CNODM-C — CNJAU(DM-C)

] Use lazy expansion technique with primitive definitions
o Disjunctions only added to “relevant” node labels

'] Performance improvements often too large to measure
e At least four orders of magnitude with GALEN KB
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Algorithmic Optimisations

Useful techniques include

1 Avoiding redundancy in search branches
e Davis-Putnam style semantic branching search
e Syntactic branching with no-good list

| Dependency directed backtracking
o Backjumping
o Dynamic backtracking
1 Caching
o Cache partial models
o Cache satisfiability status (of labels)

| Heuristic ordering of propositional and modal expansion
e Min/maximise constrainedness (e.g., MOMS)
o Maximise backtracking (e.g., oldest first)
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Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices
1 Most commonly used technique is backjumping

Tag concepts introduced at branch points (e.g., when
expanding disjunctions)

Expansion rules combine and propagate tags

On discovering a clash, identify most recently
introduced concepts involved

Jump back to relevant branch points without
exploring alternative branches

Effect is to prune away part of the search space
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Dependency Directed Backtracking

1 Allows rapid recovery from bad branching choices

1 Most commonly used technique is backjumping
e Tag concepts introduced at branch points (e.g., when
expanding disjunctions)
e Expansion rules combine and propagate tags

e On discovering a clash, identify most recently
introduced concepts involved

e Jump back to relevant branch points without
exploring alternative branches

o Effect is to prune away part of the search space

o Performance improvements with GALEN KB again too
large to measure
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Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

T
LI
L) U{C1} x
LI
ﬁ(x)U{Cn-l} T
L LI
L(z)U{Cn} x r L(x) U{=Chr, Dn}
R R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)a_'A’A7B}
Clash Clash
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Backjump x
L L
Lx)U{C1} o L(x) U {=C1,D1}
L] L
L(x) U {_|CQ, DQ}
L

r L) U{=Cn, Dn}

R
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Backjumping

E.g., if IR-ANVR.(ANB)N(CyUDy)M...N((C,UD,) C L(x)

Backjump T .- Pruning
L ou
L@)u{C1} o L(z) U {=C1, D1}
L o
L(x) U {_|CQ, DQ}
U

r L) U{=Cn, Dn}

; R
L(y):{(Al_'B)v_'AvAaB} Yy Yy L(y):{(Al_lB)v_'AvA)B}

Clash Clash Clash ... Clash
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Cache the satisfiability status of a node label
Identical node labels often recur during expansion

Avoid re-solving problems by caching satisfiability status
When L(z) initialised, look in cache
Use result, or add status once it has been computed

Can use sub/super set caching to deal with similar labels
Care required when used with blocking or inverse roles
Significant performance gains with some kinds of
problem

Cache (partial) models of concepts
Use to detect “"obvious” non-subsumption
C IZ D if Cn—D is satisfiable
C 1 —D satisfiable if models of C' and —D can be merged
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Cache the satisfiability status of a node label
Identical node labels often recur during expansion

Avoid re-solving problems by caching satisfiability status
When L(z) initialised, look in cache
Use result, or add status once it has been computed

Can use sub/super set caching to deal with similar labels
Care required when used with blocking or inverse roles
Significant performance gains with some kinds of
problem

Cache (partial) models of concepts
Use to detect “"obvious” non-subsumption
C IZ D if Cn—D is satisfiable
C 1 —D satisfiable if models of C' and —D can be merged
If not, continue with standard subsumption test
Can use same technique in sub-problems
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Summary

1 Naive implementation results in effective non-termination

1 Problem is caused by non-deterministic expansion (search)
o GClIs lead to huge search space

1 Solution (partial) is
o Careful choice of logic/algorithm
e Avoid encodings
e Highly optimised implementation
I Most important optimisations are
o Absorption
o Dependency directed backtracking (backjumping)
o Caching

| Performance improvements can be very large
e E.g., more than four orders of magnitude
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