
Reviewing the Design of DAML+OIL:
An Ontology Language for the Semantic Web

Ian Horrocks
University of Manchester

Manchester, UK
horrocks@cs.man.ac.uk

Peter F. Patel-Schneider
Bell Labs Research

Murray Hill, NJ, U.S.A.
pfps@research.bell-labs.com

Frank van Harmelen
Vrije Universiteit

Amsterdam, the Netherlands
Frank.van.Harmelen@cs.vu.nl

Abstract

In the current “Syntactic Web”, uninterpreted syntactic con-
structs are given meaning only by private off-line agreements
that are inaccessible to computers. In the Semantic Web vi-
sion, this is replaced by a web where both data and its se-
mantic definition are accessible and manipulable by computer
software. DAML+OIL is an ontology language specifically
designed for this use in the Web; it exploits existing Web
standards (XML and RDF), adding the familiar ontological
primitives of object oriented and frame based systems, and
the formal rigor of a very expressive description logic. The
definition of DAML+OIL is now over a year old, and the lan-
guage has been in fairly widespread use. In this paper, we
review DAML+OIL’s relation with its key ingredients (XML,
RDF, OIL, DAML-ONT, Description Logics), we discuss the
design decisions and trade-offs that were the basis for the
language definition, and identify a number of implementa-
tion challenges posed by the current language. These issues
are important for designers of other representation languages
for the Semantic Web, be they competitors or successors of
DAML+OIL, such as the language currently under definition
by W3C.

Introduction
In the short span of its existence, the World Wide Web has
resulted in a revolution in the way information is transferred
between computer applications. It is no longer necessary for
humans to set up channels for inter-application information
transfer; this is handled by TCP/IP and related protocols. It
is also no longer necessary for humans to define the syntax
and build parsers used for each kind of information transfer;
this is handled by HTML, XML and related standards. How-
ever, it is still not possible for applications to interoperate
with other applications without some pre-existing, human-
created, and outside-of-the-web agreements as to the mean-
ing of the information being transferred.

The next generation of the Web aims to alleviate this
problem—making Web resources more readily accessible to
automated processes by adding information that describes
Web content in a machine-accessible and manipulable fash-
ion. This coincides with the vision that Tim Berners-Lee
calls the Semantic Web in his recent book “Weaving the
Web” (Berners-Lee 1999).

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

If such information (often called meta-data) is to make re-
sources more accessible to automated agents, it is essential
that its meaning can be understood by such agents. Ontolo-
gies will play a pivotal role here by providing a source of
shared and precisely defined terms that can be used in such
meta-data. An ontology typically consists of a hierarchical
description of important concepts in a domain, along with
descriptions of the properties of each concept. The degree
of formality employed in capturing these descriptions can
be quite variable, ranging from natural language to logical
formalisms, but increased formality and regularity clearly
facilitates machine understanding.

Ontologies can be profitably used, e.g., in e-commerce
sites (McGuinness 1998), where they can facilitate machine-
based communication between buyer and seller, enable
vertical integration of markets, and allow descriptions to
be reused in different marketplaces; in search engines,
where they can help searching to go beyond the current
keyword-based approach, and allow pages to be found
that contain syntactically different, but semantically simi-
lar words/phrases; in Web services (McIlraith, Son, & Zeng
2001), where they can provide semantically richer service
descriptions that can be more flexibly interpreted by intelli-
gent agents.

DAML+OIL: An Ontology Language for the
Semantic Web

The recognition of the key role that ontologies are likely
to play in the future of the Web has led to the extension
of Web markup languages in order to facilitate content de-
scription and the development of Web based ontologies, e.g.,
XML Schema1, RDF2 (Resource Description Framework),
and RDF Schema. (See (Decker et al. 2000) for the role of
each of these on the Semantic Web). RDF Schema (RDFS)
in particular is recognisable as an ontology language: it talks
about classes and properties, range and domain constraints,
and subclass and subproperty relations.

RDFS is, however, a very limited language and more ex-
pressive power is clearly both necessary and desirable in
order to describe data in sufficient detail. Moreover, such
descriptions should be amenable to automated reasoning if

1http://www.w3.org/XML/Schema/
2http://www.w3c.org/RDF/

they are to be used effectively by automated processes, e.g.,
to determine the semantic relationships between syntacti-
cally different terms.

DAML+OIL is the result of merging DAML-ONT (an
early result of the DARPA Agent Markup Language
(DAML) programme3) and OIL (the Ontology Inference
Layer) (Fensel et al. 2001), developed by a group of (largely
European) researchers, several of whom were members of
the European-funded On-To-Knowledge consortium.4

Until recently, the development of DAML+OIL has been
undertaken by a committee largely made up of members
of the two language design teams (and rather grandly titled
the Joint EU/US Committee on Agent Markup Languages).5

More recently, DAML+OIL has been submitted to W3C as a
proposal for the basis of the W3C Web Ontology language.6

As it is an ontology language, DAML+OIL is designed
to describe the structure of a domain. DAML+OIL takes an
object oriented approach, with the structure of the domain
being described in terms of classes and properties. An on-
tology consists of a set of axioms that assert characteristics
of these classes and properties. Asserting that resources are
instances of DAML+OIL classes or that resources are re-
lated by properties is left to RDF, a task for which it is well
suited.

Since the definition of DAML+OIL is available else-
where,7 we will not repeat it here. Instead, in the follow-
ing sections, we will review a number of fundamental design
choices that were made for DAML+OIL: foundations in De-
scription Logic, XML datatypes, layering on top of RDFS,
comparison with its predecessor OIL, and the role of infer-
ence for a Semantic Web ontology language.

Foundations in Description Logic

DAML+OIL is, in essence, equivalent to a very expressive
Description Logic (DL), with a DAML+OIL ontology cor-
responding to a DL terminology. As in a DL, DAML+OIL
classes can be names (URI’s in the case of DAML+OIL) or
expressions, and a variety of constructors are provided for
building class expressions. The expressive power of the lan-
guage is determined by the class (and property) constructors
provided, and by the kinds of axioms allowed.

Figure 1 summarises the constructors in DAML+OIL.
The standard DL syntax is used in this paper for compact-
ness as the RDF syntax is rather verbose. In the RDF syntax,
for example, Human � Male would be written as

<daml:Class>
<daml:intersectionOf

rdf:parseType="daml:collection">
<daml:Class rdf:about="#Human"/>
<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>
</daml:Class>

3http://www.daml.org/
4http://www.ontoknowledge.org/oil
5http://www.daml.org/committee
6http://www.w3.org/Submission/2001/12/
7http://www.daml.org/2001/03/daml+oil-

index.html

Constructor DL Syntax Example
intersectionOf �����������	�
��� Human � Male
unionOf ����
������	

��� Doctor
 Lawyer
complementOf ��� � Male
oneOf ����������������� � john � mary �
toClass ����� � � hasChild �Doctor
hasClass ������� � hasChild � Lawyer
hasValue �������	� � � citizenOf ��� USA �
minCardinalityQ !#"$��� � !#% hasChild � Lawyer
maxCardinalityQ &#"$��� � &(' hasChild �Male
cardinalityQ)�"$�����)*' hasParent � Female

Figure 1: DAML+OIL class constructors

The meanings of the first three constructors from Figure 1
are just the standard boolean operators on classes. The
oneOf constructor allows classes to be defined by enumerat-
ing their members.

The toClass and hasClass constructors correspond to slot
constraints in a frame-based language. The class ������� is
the class all of whose instances are related via the property
� only to resources of type � , while the class ����� � is the
class all of whose instances are related via the property � to
at least one resource of type � . The hasValue constructor is
just shorthand for a combination of hasClass and oneOf.

The minCardinalityQ, maxCardinalityQ and cardinalityQ
constructors (known in DLs as qualified number restrictions)
are generalisations of the hasClass and hasValue construc-
tors. The class !#"$��� � (&
"$��� � ,)�"+�����) is the class
all of whose instances are related via the property � to at
least (at most, exactly) " different resources of type � . The
emphasis on different is because there is no unique name as-
sumption with respect to resource names (URIs): it is possi-
ble that many URIs could name the same resource.

Note that arbitrarily complex nesting of constructors is
possible. The formal semantics of the class constructors is
given by DAML+OIL’s model-theoretic semantics8 or can
be derived from the specification of a suitably expressive DL
(e.g., see (Horrocks & Sattler 2001)).

Figure 2 summarises the axioms allowed in DAML+OIL.
These axioms make it possible to assert subsumption or
equivalence with respect to classes or properties, the dis-
jointness of classes, the equivalence or non-equivalence of
individuals (resources), and various properties of properties.

A crucial feature of DAML+OIL is that subClassOf and
sameClassAs axioms can be applied to arbitrary class ex-
pressions. This provides greatly increased expressive power
with respect to standard frame-based languages where such
axioms are invariably restricted to the form where the left
hand side is a class name, there is only one such axiom per
name, and there are no cycles (the class on the right hand
side of an axiom cannot refer, either directly or indirectly, to
the class name on the left hand side).

A consequence of this expressive power is that all of the
class and individual axioms, as well as the uniqueProperty

8http://www.w3.org/TR/daml+oil-model

Axiom DL Syntax Example
subClassOf ����� ��� Human � Animal � Biped
sameClassAs ����� ��� Man � Human � Male
subPropertyOf � � � � � hasDaughter � hasChild
samePropertyAs ����� ��� cost � price
disjointWith � ��� ����� Male � � Female
sameIndividualAs �	���	��� ����� � � President Bush ��� � G W Bush �
differentIndividualFrom �	� � �	� � �	� � � � john �	� � � peter �
inverseOf � � � ��
� hasChild � hasParent

transitiveProperty �	�
� � ancestor ��� ancestor
uniqueProperty ��� & ' � ��� &(' hasMother
unambiguousProperty ��� & ' �
 ��� &(' isMotherOf

Figure 2: DAML+OIL axioms

and unambiguousProperty axioms, can be reduced to sub-
ClassOf and sameClassAs axioms (as can be seen from the
DL syntax).

As we have seen, DAML+OIL also allows properties of
properties to be asserted. It is possible to assert that a prop-
erty is unique (i.e., functional) and unambiguous (i.e., its
inverse is functional). It is also possible to use inverse prop-
erties and to assert that a property is transitive.

XML Datatypes in DAML+OIL
DAML+OIL supports the full range of datatypes in XML
Schema: the so called primitive datatypes such as string,
decimal or float, as well as more complex derived datatypes
such as integer sub-ranges. This is facilitated by main-
taining a clean separation between instances of “object”
classes (defined using the ontology language) and instances
of datatypes (defined using the XML Schema type system).
In particular, the domain of interpretation of object classes
is disjoint from the domain of interpretation of datatypes,
so that an instance of an object class (e.g., the individual
“Italy”) can never have the same denotation as a value of
a datatype (e.g., the integer 5), and that the set of object
properties (which map individuals to individuals) is disjoint
from the set of datatype properties (which map individuals
to datatype values).

The disjointness of object and datatype domains was mo-
tivated by both philosophical and pragmatic considerations:
� Datatypes are considered to be already sufficiently struc-

tured by the built-in predicates, and it is, therefore, not
appropriate to form new classes of datatype values using
the ontology language (Hollunder & Baader 1991).

� The simplicity and compactness of the ontology language
are not compromised: even enumerating all the XML
Schema datatypes would add greatly to its complexity,
while adding a logical theory for each datatype, even if
it were possible, would lead to a language of monumental
proportions.

� The semantic integrity of the language is not
compromised—defining theories for all the XML
Schema datatypes would be difficult or impossible
without extending the language in directions whose

semantics would be difficult to capture within the existing
framework.

� The “implementability” of the language is not
compromised—a hybrid reasoner can easily be im-
plemented by combining a reasoner for the “object”
language with one capable of deciding satisfiability ques-
tions with respect to conjunctions of (possibly negated)
datatypes (Horrocks & Sattler 2001).

From a theoretical point of view, this design means that
the ontology language can specify constraints on data val-
ues, but as data values can never be instances of object
classes they cannot apply additional constraints to elements
of the object domain. This allows the type system to be ex-
tended without having any impact on the ontology language,
and vice versa. Similarly, the formal properties of hybrid
reasoners are determined by those of the two components;
in particular, the combined reasoner will be sound and com-
plete if both components are sound and complete.

From a practical point of view, DAML+OIL implementa-
tions can choose to support some or all of the XML Schema
datatypes. For supported datatypes, they can either imple-
ment their own type checker/validater or rely on some exter-
nal component. The job of a type checker/validater is simply
to take zero or more data values and one or more datatypes,
and determine if there exists any data value that is equal to
every one of the specified data values and is an instance of
every one of the specified data types.

Extending RDF Schema
DAML+OIL is tightly integrated with RDFS: RDFS is used
to express DAML+OIL’s machine readable specification,9

and RDFS provides the only serialisation for DAML+OIL.
While the dependence on RDFS has some advantages in
terms of the re-use of existing RDFS infrastructure and the
portability of DAML+OIL ontologies, using RDFS to com-
pletely define the structure of DAML+OIL is quite difficult
as, unlike XML, RDFS is not designed for the precise spec-
ification of syntactic structure. For example, there is no way
in RDFS to state that a restriction (slot constraint) should
consist of exactly one property (slot) and one class.

9http://www.daml.org/2001/03/daml+oil.daml

The solution to this problem adopted by DAML+OIL is to
define the semantics of the language in such a way that they
give a meaning to any (parts of) ontologies that conform
to the RDFS specification, including “strange” constructs
such as restrictions with multiple properties and classes. The
meaning given to strange constructs may, however, include
strange “side effects”. For example, in the case of a restric-
tion with multiple properties and classes, the semantics in-
terpret this in the same way as a conjunction of all the con-
straints that would result from taking the cross product of
the specified properties and classes, but with the added (and
probably unexpected) effect that all these restrictions must
have the same interpretation (i.e., are equivalent).

DAML+OIL’s dependence on RDFS may also have con-
sequences for the decidability of the language. Decidability
is lost when cardinality constraints can be applied to proper-
ties that are transitive, or that have transitive sub-properties.
(Horrocks, Sattler, & Tobies 1999). There is no way to for-
mally capture this constraint in RDFS, so decidability in
DAML+OIL depends on an informal prohibition of cardi-
nality constraints on non-simple properties.

DAML+OIL vs. OIL
From the point of view of language constructs, the differ-
ences between OIL and DAML+OIL are relatively trivial.
Although there is some difference in “keyword” vocabulary,
there is usually a one to one mapping of constructors, and in
the cases where the constructors are not completely equiva-
lent, simple translations are possible.

OIL also uses RDFS for its serialisation (although it also
provides a separate XML-based syntax). Consequently,
OIL’s RDFS based syntax would seem to be susceptible to
the same difficulties as described above for DAML+OIL.
However, in the case of OIL there does not seem to
be an assumption that any ontology conforming to the
RDFS meta-description should be a valid OIL ontology—
presumably ontologies containing unexpected usages of the
meta-properties would be rejected by OIL processors as the
semantics do not specify how these could be translated into���������	��

. Thus, OIL and DAML+OIL take rather differ-
ent positions with regard to the layering of languages on the
Semantic Web.

Another effect of DAML+OIL’s tight integration with
RDFS is that the frame structure of OIL’s syntax is much
less evident: a DAML+OIL ontology is more DL-like in
that it consists largely of a relatively unstructured collec-
tion of subsumption and equality axioms. This can make
it more difficult to use DAML+OIL with frame based tools
such as Protégé (Grosso et al. 1999) or OilEd (Bechhofer et
al. 2001) because the axioms may be susceptible to many
different frame-like groupings. (Bechhofer, Goble, & Hor-
rocks 2001).

The treatment of individuals in OIL is also very different
from that in DAML+OIL. In the first place, DAML+OIL re-
lies wholly on RDF for assertions involving the type (class)
of an individual or a relationship between a pair of objects.
In the second place, DAML+OIL treats individuals occur-
ring in the ontology (in oneOf constructs or hasValue

restrictions) as true individuals (i.e., interpreted as single
elements in the domain of discourse) and not as primitive
concepts as is the case in OIL. This weak treatment of the
oneOf construct is a well known technique for avoiding
the reasoning problems that arise with existentially defined
classes, and is also used, e.g., in the CLASSIC knowledge
representation system (Borgida & Patel-Schneider 1994).
Moreover, DAML+OIL makes no unique name assumption:
it is possible to explicitly assert that two individuals are the
same or different, or to leave their relationship unspecified.

This treatment of individuals is very powerful, and justi-
fies intuitive inferences that would not be valid for OIL, e.g.,
that persons all of whose countries of residence are Italy are
kinds of person that have at most one country of residence:

Person � � residence � � Italy �	� & ' residence

Inference in DAML+OIL
As we have seen, DAML+OIL is equivalent to a very ex-
pressive DL. More precisely, DAML+OIL is equivalent to
the

�����
�
DL (Horrocks, Sattler, & Tobies 1999) with

the addition of existentially defined classes (i.e., the oneOf
constructor) and datatypes (often called concrete domains
in DLs (Baader & Hanschke 1991)). This equivalence al-
lows DAML+OIL to exploit the considerable existing body
of description logic research to define the semantics of the
language and to understand its formal properties, in par-
ticular the decidability and complexity of key inference
problems (Donini et al. 1997); as a source of sound and
complete algorithms and optimised implementation tech-
niques for deciding key inference problems (Horrocks, Sat-
tler, & Tobies 1999; Horrocks & Sattler 2001); and to
use implemented DL systems in order to provide (partial)
reasoning support (Horrocks 1998a; Patel-Schneider 1998;
Haarslev & Möller 2001).

A important consideration in the design of DAML+OIL
was that key inference problems in the language, in partic-
ular class consistency/subsumption, to which most other in-
ference problems can be reduced, should be decidable, as
this facilitates the provision of reasoning services. More-
over, the correspondence with DLs facilitates the use of DL
algorithms that are known to be amenable to optimised im-
plementation and to behave well in realistic applications in
spite of their high worst case complexity (Horrocks 1998b;
Haarslev & Möller 2001).

Maintaining the decidability of the language requires cer-
tain constraints on its expressive power that may not be ac-
ceptable to all applications. However, the designers of the
language decided that reasoning would be important if the
full power of ontologies was to be realised, and that a pow-
erful but still decidable ontology language would be a good
starting point.

Reasoning can be useful at many stages during the design,
maintenance and deployment of ontologies.

Reasoning can be used to support ontology design and to
improve the quality of the resulting ontology. For example,
class consistency and subsumption reasoning can be used
to check for logically inconsistent classes and (possibly un-
expected) implicit subsumption relationships (Bechhofer et

al. 2001). This kind of support has been shown to be par-
ticularly important with large ontologies, which are often
built and maintained over a long period by multiple authors.
Other reasoning tasks, such as “matching” (Baader et al.
1999) and/or computing least common subsumers (Baader
& Küsters 1998) could also be used to support “bottom up”
ontology design, i.e., the identification and description of
relevant classes from sets of example instances.

Like information integration (Calvanese et al. 1998),
ontology integration can also be supported by reason-
ing. For example, integration can be performed using
inter-ontology assertions specifying relationships between
classes and properties, with reasoning being used to com-
pute the integrated hierarchy and to highlight any prob-
lems/inconsistencies. Unlike some other integration tech-
niques, this method has the advantage of being non-intrusive
with respect to the original ontologies.

Reasoning with respect to deployed ontologies will en-
hance the power of “intelligent agents”, allowing them to
determine if a set of facts is consistent w.r.t. an ontology, to
identify individuals that are implicitly members of a given
class etc. A suitable service ontology could, for example,
allow an agent seeking secure services to identify a service
requiring a userid and password as a possible candidate.

Challenges

Class consistency/subsumption reasoning in DAML+OIL is
known to be decidable (as it is contained in the C2 fragment
of first order logic (Grädel, Otto, & Rosen 1997)), but many
challenges remain for implementors of “practical” reasoning
systems, i.e., systems that perform well with the kinds of
reasoning problem generated by realistic applications.

Individuals Unfortunately, the combination of
DAML+OIL individuals with inverse properties is so
powerful that it pushes the worst case complexity of the
class consistency problem from EXPTIME (for

� ���
�
/OIL)

to NEXPTIME. No “practical” decision procedure is cur-
rently known for this logic, and there is no implemented
system that can provide sound and complete reasoning
for the whole DAML+OIL language. In the absence of
inverse properties, however, a tableaux algorithm has been
devised (Horrocks & Sattler 2001), and in the absence of
individuals (in extensionally defined classes), DAML+OIL
can exploit implemented DL systems via a translation into�������

(extended with datatypes) similar to the one used
by OIL. It would, of course, also be possible to translate
DAML+OIL ontologies into

�����
�
using OIL’s weak

treatment of individuals, but in this case reasoning with
individuals would not be complete with respect to the
semantics of the language. This approach is taken by some
existing applications, e.g., OilEd (Bechhofer et al. 2001)

Scalability Even without the oneOf constructor, class con-
sistency reasoning is still a hard problem. Moreover, Web
ontologies can be expected to grow very large, and with de-
ployed ontologies it may also be desirable to reason w.r.t. a
large numbers of class/property instances.

There is good evidence of empirical tractability and

scalability for implemented DL systems (Horrocks 1998b;
Haarslev & Möller 2001), but this is mostly w.r.t. logics
that do not include inverse properties (e.g.,

��� �
(Horrocks,

Sattler, & Tobies 1999)). Adding inverse properties makes
practical implementations more problematical as several im-
portant optimisation techniques become much less effec-
tive. Work is required in order to develop more highly opti-
mised implementations supporting inverse properties, and to
demonstrate that they can scale as well as

��� �
implemen-

tations. It is also unclear if existing techniques will be able
to cope with large numbers of class/property instances (Hor-
rocks, Sattler, & Tobies 2000).

Finally, it is an inevitable consequence of the high worst
case complexity that some problems will be intractable, even
for highly optimised implementations. It is conjectured that
such problems rarely arise in practice, but the evidence for
this conjecture is drawn from a relatively small number of
applications, and it remains to be seen if a much wider range
of Web application domains will demonstrate similar char-
acteristics.

New Reasoning Tasks So far we have mainly discussed
class consistency/subsumption reasoning, but this may not
be the only reasoning problem that is of interest. Other tasks
could include querying, explanation, matching, computing
least common subsumers, etc. Querying in particular may
be important in Semantic Web applications. Some work on
query languages for DLs has already been done (Calvanese,
De Giacomo, & Lenzerini 1999; Horrocks & Tessaris 2000),
and work is underway on the design of a DAML+OIL query
language, but the computational properties of such a lan-
guage, either theoretical or empirical, have yet to be deter-
mined.

Explanation may also be an important problem, e.g., to
help an ontology designer to rectify problems identified by
reasoning support, or to explain to a user why an applica-
tion behaved in an unexpected manner. As discussed above,
reasoning problems such as matching and computing least
common subsumers could also be important in ontology de-
sign.

Discussion
There are other concerns with respect to the place
DAML+OIL has in the Semantic Web. After DAML+OIL
was developed, the W3C RDF Core Working Group devised
a model theory for RDF and RDFS10, which is incompati-
ble with the semantics of DAML+OIL, an undesirable state
of affairs. Also, in late 2001 W3C initiated the Web On-
tology working group11, a group tasked with developing an
ontology language for the Semantic Web. DAML+OIL has
been submitted to this working group as a starting point for
a W3C recommendation on ontology languages.

A W3C ontology language needs to fit in with other
W3C recommendations even more than an independent
DAML+OIL would. Work is thus needed to develop a se-
mantic web ontology language, which the Web Ontology

10http://www.w3.org/TR/rdf-mt/
11http://www.w3.org/2001/sw/WebOnt/

working group has tentatively name OWL, that layers bet-
ter on top of RDF and RDFS.

Unfortunately, the obvious layering (that is, using the
same syntax as RDF and extending its semantics, just as
RDFS does) is not possible. Such an extension results in se-
mantic paradoxes—variants of the Russell paradox. These
paradoxes arise from the status of all classes (including
DAML+OIL restrictions) as individuals, which requires that
many restrictions be present in all models; from the sta-
tus of the class membership relationship as a regular prop-
erty (rdf:type); from the ability to make contradictory state-
ments; and from the ability to create restrictions that refer to
themselves. In an RDFS-compliant version of DAML+OIL,
a restriction that states that its instances have no rdf:type re-
lationships to itself is not only possible to state, but exists in
all models, resulting in an ill-formed logical formalism.

The obvious way around this problem, that of using non-
RDF syntax for DAML+OIL restrictions, appears to be
meeting with considerable resistance so either further edu-
cation or some other solution is needed.

Conclusion
We have discussed a number of fundamental design deci-
sions underlying the design of DAML+OIL, in particular its
foundation in Description Logic, its use of datatypes from
XML Schema, its sometimes problematic layering on top of
RDF Schema, and its deviations from its predecessor OIL.
We have also described how various aspects of the language
are motivated by the desire for tractable reasoning facilities.

Although a number of challenges remain, DAML+OIL
has considerable merits. In particular, the basic idea of
having a formally-specified web language that can repre-
sent ontology information will go a long way towards allow-
ing computer programs to interoperate without pre-existing,
outside-of-the-web agreements. If this language also has
an effective reasoning mechanism, then computer programs
can manipulate this interoperability information themselves,
and determine whether a common meaning for the informa-
tion that they pass back and forth is present.

References
Baader, F., and Hanschke, P. 1991. A schema for integrating
concrete domains into concept languages. In Proc. of IJCAI-91,
452–457.
Baader, F., and K üsters, R. 1998. Computing the least com-
mon subsumer and the most specific concept in the presence of
cyclic ����� -concept descriptions. In Proc. of KI’98, 129–140.
Springer-Verlag.
Baader, F.; K üsters, R.; Borgida, A.; and McGuinness, D. L.
1999. Matching in description logics. J. of Logic and Compu-
tation 9(3):411–447.
Bechhofer, S.; Horrocks, I.; Goble, C.; and Stevens, R. 2001.
OilEd: a reason-able ontology editor for the semantic web. In
Proc. of the Joint German/Austrian Conf. on Artificial Intelli-
gence (KI 2001), 396–408. Springer-Verlag.
Bechhofer, S.; Goble, C.; and Horrocks, I. 2001. DAML+OIL
is not enough. In Proc. of the First Semantic Web Working Sym-
posium (SWWS’01), 151–159. CEUR Electronic Workshop Pro-
ceedings, http://ceur-ws.org/.

Berners-Lee, T. 1999. Weaving the Web. San Francisco: Harper.

Borgida, A., and Patel-Schneider, P. F. 1994. A semantics and
complete algorithm for subsumption in the CLASSIC description
logic. J. of Artificial Intelligence Research 1:277–308.

Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Nardi, D.; and
Rosati, R. 1998. Information integration: Conceptual modeling
and reasoning support. In Proc. of CoopIS’98, 280–291.

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 1999. An-
swering queries using views in description logics. In Proc.
of DL’99, 9–13. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-22/.

Decker, S.; van Harmelen, F.; Broekstra, J.; Erdmann, M.; Fensel,
D.; Horrocks, I.; Klein, M.; and Melnik, S. 2000. The semantic
web: The roles of XML and RDF. IEEE Internet Computing 4(5).

Donini, F. M.; Lenzerini, M.; Nardi, D.; and Nutt, W. 1997. The
complexity of concept languages. Information and Computation
134:1–58.

Fensel, D.; van Harmelen, F.; Horrocks, I.; McGuinness, D. L.;
and Patel-Schneider, P. F. 2001. OIL: An ontology infrastructure
for the semantic web. IEEE Intelligent Systems 16(2):38–45.

Gr ädel, E.; Otto, M.; and Rosen, E. 1997. Two-variable logic
with counting is decidable. In Proc. of LICS-97, 306–317. IEEE
Computer Society Press.

Grosso, W. E.; Eriksson, H.; Fergerson, R. W.; Gennari, J. H.;
Tu, S. W.; and Musen, M. A. 1999. Knowledge modelling at the
millenium (the design and evolution of prot ég é-2000). In Proc. of
Knowledge acqusition workshop (KAW-99).

Haarslev, V., and M öller, R. 2001. High performance reasoning
with very large knowledge bases: A practical case study. In Proc.
of IJCAI-01.

Hollunder, B., and Baader, F. 1991. Qualifying number restric-
tions in concept languages. In Proc. of KR-91, 335–346.

Horrocks, I., and Sattler, U. 2001. Ontology reasoning in the���	��

(D) description logic. In Proc. of IJCAI-01. Morgan

Kaufmann.

Horrocks, I., and Tessaris, S. 2000. A conjunctive query language
for description logic Aboxes. In Proc. of AAAI 2000, 399–404.

Horrocks, I.; Sattler, U.; and Tobies, S. 1999. Practical reasoning
for expressive description logics. In Ganzinger, H.; McAllester,
D.; and Voronkov, A., eds., Proc. of LPAR’99, 161–180. Springer-
Verlag.

Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Reasoning with
individuals for the description logic

���
��

. In Proc. of CADE-

17, LNAI, 482–496.

Horrocks, I. 1998a. The FaCT system. In de Swart, H., ed., Proc.
of TABLEAUX-98, 307–312. Springer-Verlag.

Horrocks, I. 1998b. Using an expressive description logic: FaCT
or fiction? In Proc. of KR-98, 636–647.

McGuinness, D. L. 1998. Ontological issues for knowledge-
enhanced search. In Proc. of FOIS, Frontiers in Artificial Intelli-
gence and Applications. IOS-press.

McIlraith, S.; Son, T.; and Zeng, H. 2001. Semantic web services.
IEEE Intelligent Systems 16(2):46–53.

Patel-Schneider, P. F. 1998. DLP system description. In Proc.
of DL’98, 87–89. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/.

