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Opportunities and Challenges 
in Porting a Parallel Code from 

a Tightly-Coupled System 
to the Distributed EU Grid, 

Enabling Grids for E-sciencE

ABSTRACT

Any large scale computation, either in the science or arts, requires high performance computing (HPC) 
facilities. This computational environment may change over time. Thus the source code of a computation 
needs to be ported. The change in the computational architecture or system can make the porting of 
code between various HPC facilities challenging. This chapter introduces an example of an engineering 
application which runs on a HPC facility and the porting from a local computing facility to Enabling 
Grids for E-sciencE (EGEE) is described in detail.

The computational architecture of Enabling Grids for E-sciencE is introduced as it made our code 
porting very challenging, and the discussion presented is directly applicable to EGEE users. The final 
solution to the code poring problem is proposed, and its performance is examined. The solution to this 
problem be generally faced in the other large scale computation and so is applicable to users of other 
HPC facilities. This chapter gives a hint to those who have difficulties in applications with heavy data 
Input/Output (I/O) under the computational environment whose weak point is the data I/O.
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INTRODUCTION

Research on distributed and parallel systems 
is one of the most important areas in computer 
science. This area is based on the exploitation of 
large computational and data storing capabilities. 
While the main components i.e., processors and 
hard drives in a single computer are becoming 
smaller but with larger storage capacity and higher 
processing performance, distributed systems can 
integrate these individual resources into one large, 
heterogeneous, dynamic system that allows users 
to benefit from the possible improved perfor-
mance. These systems are called grid.

The main goal of a well-maintained grid is 
to provide large scale resources connected via 
the Internet to researchers in the natural sciences 
and engineering who have applications with high 
demands for compute resources, or storing more 
data than a single machine can accommodate. 
Certainly, these applications must be parallelised 
to fully exploit the resource capabilities, and make 
them run faster in grid systems.

Researchers are nowadays surrounded with 
a variety of grid computing facilities. Some are 
more suitable to one’s application than others 
but the cost and the performance of each HPC 
facility is also different. Furthermore, the cost, 
the performance and the suitability are always 
changing over time. Therefore researchers have 
to be prepared for the change in the computational 
facility and have to be able to adjust to the new 
computational environment.

This chapter shares the authors’ experience of 
a significant change to the computational envi-
ronment used in the daily research activities and 
provides some hints to those who may face the 
similar situation.

The authors’ experience is based on the En-
abling Grids for E-sciencE (EGEE) project.

The EGEE project-family, founded by the 
European Commission, started on April 2004. It 
has provided academic and industrial research-
ers the means to have access to large computing 

resources. It is focused on developing and main-
taining a robust and powerful grid network and 
components, and to attract new users from industry 
by standardized training and dissemination events.

A new grid-middleware, called gLite was 
developed during this project. Its aim was to 
organize and connect the components of the 
large and international grid system. The last 
project of this family (EGEE-III) was ended on 
April 30th 2010. The new project was created to 
continue the development of distributed systems 
internationally in Europe and is called European 
Grid Initiative(EGI). In this project all of the old 
organizational-ideas have been reformed. EGI 
manages the collaborative work of NGIs (National 
Grid Initiatives) that are created to support the 
national grid-community and maintain the related 
grid-services.

Another but no less important project, founded 
by the European Commission is EMI (European 
Middleware Initiative). This project aims at inte-
grating the three major European grid middleware 
systems (ARC, gLite, Unicore) into a unified 
middleware distribution (UMD) in order to sup-
port the co-operation of researchers in the same 
research field but with different grid-middlewares.

The section on Computation in Electromagnet-
ics discusses the motivation of our research and 
introduces the core part of the equations necessary 
to understand the nature of our computation. Fur-
thermore the section talks about the computational 
environment we used before we faced a significant 
change. The section on EGEE computational facil-
ity introduces the computational architecture of 
Enabling Grids for E-sciencE(EGEE), which is 
significantly different from our initial architec-
tures. The section on the Adaptation of our code 
to EGEE describes the problems which we faced 
and presents the solutions. The section on Future 
research direction gives some insight and sugges-
tion for the improvement of the computational 
algorithms as well as the algorithms which could 
be applied to the data I/O problems.
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COMPUTATION IN 
ELECTROMAGNETICS

The Necessity of Computation 
in Electromagnetics

One of our research activities in the University of 
Manchester is the study of the biomedical problems 
associated with human-body by means of numeri-
cal modelling and simulations. Our research goals 
include the development of the next generation 
of technology of broadband electromagnetics 
for bioengineering modelling and simulation 
for health care technologies. For example, in the 
films, some scenes involve the defibrillation of 
a fainted person. Defibrillation with the electric 
shock to the torso is usually successful in the 
films. However, in reality, the success rate is not 
as high as the one you see in the films. This is 
because the location, the shape, the excitation 
waveform of the electrodes is not optimum for the 
person to whom the electrical shock is applied. 
The optimum method to apply the electric shocks 
depends on the age, sex, size and body-shape of 
the person. The currently exercised therapy used 
to stimulate the heart does not have the known 
focus points of stimulation. This is mainly due 
to the fact that nobody knows the relationship 
between the precise location/number/waveform/
phase of the electrodes and the stimulation focus 
points. In spite of a long clinical experience and 
detailed studies, the fundamental understanding 
of the mechanisms responsible for defibrillation 
is not fully known.

One way to increase this knowledge is to use 
computer simulations. Computer modelling allows 
us to perform experiments that are impossible 
physically and/or ethically to carry out with ani-
mals. The knowledge gained from the numerical 
simulations will be able to:

1. 	 Replace the currently exercised defibrillation 
procedure with a flexible and more effective 
technique;

2. 	 And expand the application of the heart 
defibrillation beyond the currently exercised 
area and improve the efficiency of these 
therapies in general.

The numerical simulation involves the propa-
gation of ElectroMagnetic(EM) waves. In order to 
develop the simulation tool, the Maxwell’s equa-
tions have to be solved. They can be numerically 
solved either in the frequency or time domain.

We need to perform numerical simulation of 
EM wave propagation from various electrodes 
around the torso to the heart in the time domain to 
reveal the unknown relationship mentioned above 
and provide knowledge on the best way to excite 
particular parts of the heart, aiming to increase 
the success rate of defibrillation.

For a comprehensive study the computer simu-
lation should be able to handle both arbitrarily-
complex and very fine geometry; as well as a wide 
frequency range and frequency dependent mate-
rials in time domain. The most suitable method 
currently available is the Finite Difference Time 
Domain(FDTD) method (Taflove and Hagness, 
2005) unlike methods such as the Method of Mo-
ments (MoM), the Finite Element Method (FEM)
(Margetts et al., 2004), the Geometrical Theory 
of Diffraction (GTD) and the Physical Theory 
of Diffraction (PTD). The detail required for the 
numerical modelling of our application is too 
complicated to be handled by GTD. In particular, 
broadband system analysis requires the examina-
tion of waveform distortion in the time domain 
during propagation in a wide range of dispersive 
media. Methods such as MoM and FEM mainly 
work in the frequency domain, requiring repeti-
tion of simulations, sweeping the frequency of 
interest to construct a single waveform in the 
time domain. Unlike MoM and FEM, both FDTD 
and Frequency Dependent (FD) - FDTD (Lueb-
bers et al., 1991) works in the time domain and 
is capable of explicitly computing macroscopic 
transient electromagnetic interactions with gen-
eral 3D geometries. Furthermore in FD-FDTD, 
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the medium parameters such as permittivity and 
conductivity vary with frequency. It is important 
for the broadband simulations to have the capabil-
ity to handle the frequency dependent materials. 
FD-FDTD is the simplest method among a variety 
of techniques to produce the time domain signal in 
the frequency dependent media. Thus, FD-FDTD 
is the most suitable for the numerical simulation 
of the wideband wave propagation in the human 
body. This chapter handles the standard explicit 
FD-FDTD method for the large scale computation.

Nature of the Computation 
of the FD-FDTD Methods

The computation of the EM wave propagation in 
a human body requires the following procedure:

1. 	 Initialisation and data reading of the seg-
mented human body

2. 	 Setting the time loop counter to zero
3. 	 Incrementation of the time loop counter
4. 	 Computation of the electric field E, magnetic 

field H, and electric flux density D (Costen 
and Bérenger, 2009; Rouf et al., 2009a)

5. 	 Simulation of human body either using a 
soft source or a hard source (Costen et al., 
2009)

6. 	 Output of the electric and magnetic field at 
this time step

7. 	 Go back to the procedure step 3 unless the 
time loop counter is above the maximum 
time steps

The procedure 4 above involes the following 
computation:

The magnetic (H) field has 3 components: 
Hx, Hy, and Hz. For example the computation of 
Hx  is:
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where Δy are Δz are the spatial discretisation in 
the y and z directions, respectively and m ( , , )i j k  
is the permeability at the FDTD grid (i,j,k). Δt is 
the temporal discretisation. The upper-script of n 
means nΔt. As (1) shows, H i j kx

n( , , )  is calculated 
using the four neibouring electric E field values 
of E i j kz

n( , , ) , E i j kz
n( , , )-1 , E i j ky

n( , , ) , and 
E i j ky
n( , , )-1 . These four E values surround 
H i j kx
n( , , )  on x=i plane. The computation of the 

rest of the H components are calculated in the 
similar manner to (1); H i j ky

n( , , )  and H i j kz
n( , , )  

are calculated using four E values which surround 
H i j ky
n( , , )  and H i j kz

n( , , )  on y=j plane and on z=k 
plane, respectively. The upper limit of Δt is gov-
erned by the the Courant Friedrichs Lewy (CFL) 
condition (Taflove and Hagness, 2005) and The 
CFL stability condition is written as in (2).

u∆
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≤ + +
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where u  is the highest propagation speed of the 
signal in the medium. Using the newly computed 
H in (1), the electric flux density D is calculated 
as in (3). (see Exhibit 1.)

The four H field values of H i j kz
n( , , )+1 , 

H i j kz
n( , , ) , H i j ky

n( , , )+1 , and H i j ky
n( , , )  surrounds 

D i j kx
n+1( , , )  and these values on x=i plane are used 

to compute D i j kx
n+1( , , ) . Similarly D i j ky

n+1( , , )  and 
D i j kz
n+1( , , )  are calculated using four H values 

which surround D i j ky
n+1( , , )  and D i j kz

n+1( , , )  on 
y=j plane and on z=k plane, respectively. Using 
the newly calculated D field values in (3), E is 
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calculated as in (4). (see Exhibit 2) where s , ¥
, S , 0 , tD  are conductivity, optical relative 
permittivity, static relative permittivity, permit-
tivity in a vacuum, and the relaxation time, re-
spectively. These values are the frequency depen-
dent parameters based on Debye model (Debye, 
1929) and the function of the Cartesian coordinate 
(i,j,k) in the FDTD space. They also change de-
pending on the kind of the tissue. (4) is also used 
for the computation of E i j ky

n+1( , , )  and E i j kz
n+1( , , )  

by changing x to y or z. The E field values are 
computed using the D values at the same place 
of (i,j,k).

Theoretically each voxel can have a different 
tissue number and each tissue has its own s , ¥ , 
S , and tD . The tissue number of each voxel and 
Debye parameters for each tissue have to be 

loaded into the in-house FDTD software at the 
initialisation step of the computation.

When the explicit FDTD code is parallelised 
and the FDTD space is divided into several sub-
spaces in z direction using the Message Passing 
Interface(MPI), the computation of both D and 
H field values on the border of each subspace in 
the FDTD space requires the field values from 
the adjacent FDTD subspaces. The field values 
of Dx , Dy , Hx , Hy  on the border are calculated 
using the field values on the x=i plane and the y=j 
plane. Therefore the communication between 
cores (i.e., between subspaces) is limited mainly 
to Hx , Hy , Ex , and Ey  on the border planes. 
Thus the main computation is localised well and 
the explicit FDTD method is inherently highly 
parallelisable on the distributed memory archi-
tectures and suitable for grid computing. Even 
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when the latency between the cores is low, the 
parallelisation gains the computational efficiency 
relative to the serial code because the communi-
cation between cores is limited to a certain level. 
The high computational efficiency is achieved 
when each FDTD subspace is sufficiently large 
and the area of the border plane between sub-
spaces is small. When the shape of the FDTD 
space is a rectangular parallelepiped, the longest 
side should be in the z direction for high compu-
tational efficiency.

One of the main data input for the computation 
is that of a digital human phantom. The digital 
human phantom is generally produced in the fol-
lowing procedure:

1. 	 An entire human body is MRI-scanned. 
Each scan shows the cross section of the 
human body orthogonal to the direction 
of the backbone. Our research group has 
access to digital human phantoms in which 
the distance between the MRI scan is either 
1 mm or 2 mm. This means a human body 
is scanned from the head to the feet every 
1 mm or 2 mm.

2. 	 The MRI scanned image is segmented using 
knowledge of medical doctors. The segmen-
tation involves the identification of a tissue 
(such as bone, fat, and muscle) at each pixel 
in an MRI image. The size of each pixel is 
either 1 mm × 1 mm or 2 mm × 2 mm in our 
digital human phantoms. In this way, each 
pixel has a tissue number for example 10 for 
bone and 11 for heart muscle. At this stage 
the MRI scanned image is replaced with 
a stream of integers without the Cartesian 
coordinate. This stream of integers is in a 
file that has a file name that gives the height 
of each MRI scan phantom from the ground.

3. 	 In some practical biomedical applications, 
the spatial resolution of the digital human 
phantom has to be 0.1 ∼ 0.3 mm voxels. In 
such cases, we have to re-sample the original 
digital human phantom, applying smoothing 

techniques in order to produce the digital 
human phantom with the required spatial 
resolution.

The data for a 64cm×32cm×175cm-sized hu-
man torso with 0.3 mm spatial resolution has the 
tissue numbers for more than 1.3 ·1010  voxels. 
Each voxel has one of 70 tissue numbers in inte-
ger. Each core reads the digital human phantom 
data.

Each tissue has 4 parameters of s , S , ¥ , 
and tD  for frequency dependent characteristics 
for the one-pole Debye modelling as shown in 
(4). The data on the frequency dependent charac-
teristics of each tissue starts in the following 
format:

1. 	 “Cerebellum” 0.617740 107.79900 23.3220 
2.0759E-011

2. 	 “Cerebrospinal Fluid” 2.013500 103.55500 
22.1030 1.2639E-011

3. 	 “Cornea” 0.969300 79.49400 22.6600 
1.6209E-011

Here the last 4 numerical values are s  [S/m], 
S , ¥ , and tD  (seconds), respectively. These 
values are computed through data fitting (Wuren 
et al., 2007) to the real measurement made by the 
US Air Force (Gabriel et al., 1996).

Each core needs to read the data file on these 
media parameters for 70 tissues in order to set the 
FDTD computational environment. The data of 
the digital human phantom is not trivial in size. 
Our in-house FDTD code assumes that this large 
digital human phantom data is in one directory 
which is accessible from each core (in our case 
via Network File System (NFS) mount) without 
having the copy of the same data at each core for 
data loading.

The numerical procedure step 6 in the above 
list produces data files which have the 6 field 
values of Ex , Ey , Ez , Hx , Hy , and Hz  at each 
voxel together with the Cartesian coordinate of 
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the voxel. These values are all stored in one file. 
This means more than 1011  field values in real 
(also termed floats or decimal values) are produced 
at each time step. Each core produces the data for 
all the voxels in its own FDTD subspace for which 
the core is responsible. These data files can be 
produced either in the directory where the job is 
submitted under the home directory or at any lo-
cal space available at each node and specified 
with the input data. This demonstrates that this 
in-house explicit FDTD software is highly data 
I/O intensive.

Computational Environment

The initial code development was carried out us-
ing a very small local cluster in our office with 8 
cores in 5 nodes. The 8 cores were composed of 
2 single core AMD Athlon 64 4000+ and 3 dual 
core 4200+. Each node held 4 GB of memory 
and a Gigabit Ethernet with a Gigabit switch 
were used to connect these 5 nodes. In the case 
of the dual core machine, the maximum amount 
of the computational memory for each core was 
2 GB. This memory availability sets the practi-
cal upper limit of the FDTD space that could be 
allocated to each core to achieve the reasonable 
load balancing. Thus almost the same amount of 
the FDTD space, which represents less than 2003 
grid points, is allocated to each core and so avoid 
the possibility of touching the swap space. Each 
node has its own local storage and all nodes share 
the home directory mounted by NFS. One of the 
machines in the cluster plays the role of the NFS 
server as well as the computational node.

When data output is produced under the home 
directory, the machine which serves as the NFS 
server has direct access to the hard disk whilst the 
rest of the machines in the cluster produce the data 
file under the home directory through the network 
data transfer. Therefore the data production from 
these computers, which are the NFS clients, takes 
more time than that from the NFS server. Thus a 

load imbalance occurs and the overall speed of 
the computation becomes significantly slower 
than the case when all cores produce the output 
data at the local hard disk, not under the home 
directory. The data post-processing can be carried 
out either with the data in one directory or with 
the data distributed across the cluster. The data 
post-processing takes more time when the data 
are distributed across the machines in our local 
cluster. A parallel job can be submitted from any 
of the machines in the cluster. The job submission 
is performed in the home directory where all the 
necessary input files exist.

The performance of our code was evaluated in 
our local cluster prior to the code porting to the 
HPC facility. Our analysis of the elapsed time in 
our code revealed that most of the elapsed time 
was spent on the output data file production, not 
on the computation. The same problem is also 
experienced by others in the FDTD research 
community (Maaskant et al., 2006) and in other 
scientific numerical simulations (Ross et al., 2001).

Although it is desirable to apply a high-level 
I/O library on top of the Message Passing Interface 
(MPI) - I/O interface such as ROMIO(Coti et al., 
2009) configured for the Parallel File Systems 
(PFS) or the Parallel Virtual File System (PVFS) 
(Carns et al., 2000), which provides a high perfor-
mance I/O infrastructure (Li et al., 2002), changing 
the file system of our local cluster was not possible 
as other researchers in the group were constantly 
using it for their numerical experiments.

An alternative method to speed-up of the 
data production is data compression. We tried 
Hierarchical Data Format (HDF5) as a replace-
ment for the ASCII format which we were using. 
Installation of the HDF5 in our local cluster took 
a significant amount of time and effort even with 
the help from our technician. Furthermore, in order 
to understand the merit of HDF5, we minimised 
the influence of the network. This is achieved by 
letting one machine in the cluster handle all the 
data I/O. Thus, at each time step, the machine, 
which is in charge of the data I/O for the cluster, 
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should produce the same number of data files as 
the number of cores that are in the cluster. The 
data was stored as a 1D array of the 6 elements for 
3D space in HDF5 files. The data is chunked and 
shuffled to enable zlib compression. It turned out 
that the HDF5 showed high efficiency when more 
than 150 files with a size of less than 6KB, were 
produced using more than 24 cores (Abalenkovs 
et al., 2008).

After the performance evaluation of the code in 
our local cluster, we had traditionally utilised the 
HPC facility run by the University of Manchester. 
There was no need to re-code for this HPC facility. 
The supercomputer had 25 nodes with 16 GB of 
memory per node. There was no practical limit 
in the disk space. The job submission, storage 
of the input and output data were all performed 
under one directory in the system e.g. a home 
directory or a scratch space. Unfortunately the 
University’s HPC facility had a low throughput 
(sometimes we had to wait for more than 2 days 
for a job to start running in the system). There-
fore the National Grid Service (NGS) (www.ngs.
ac.uk) was used for the medium sized jobs. When 
we used the NGS facility, the facility had about 
20 nodes with 2 cores and 4 GB of memory per 
node in one site, although the NGS facility has 
improved significantly since then. The usage of 
the system was almost the same as the University 
HPC facility. The NGS did not set any practical 
restriction in the disk space. The file transfer from 
the local cluster to the NGS facility was sufficient 
for code porting, similar to the supercomputer in 
Manchester. Theis facility was just right fit to our 
medium-sized computation which involved the 
massive data I/O.

The newly developed function in our code, 
the capability to handle the HDF5 was not used 
on Manchester’s supercomputer and on the NGS. 
In Manchester’s supercomputer, the different 
version of the HDF was installed and there was 
no compatibility to the one we were using. On 
the NGS, HDF5 was not installed. Therefore the 
previous program, which required each core to 

produce their own data file either in ASCII or in 
binary, was used for the numerical experiments.

However, these two facilities were to start 
charging for the CPU time and disk space. Un-
less a steady stream of funding was obtained for 
these facilities, they could not be used in a stable 
and consistent manner. Therefore there was an 
imminent need to move onto another high perfor-
mance facility before charging was introduced. We 
decided to move to Enabling Grids for E-sciencE 
(EGEE). The code porting took more than one year. 
The reason for this difficulty in porting the code 
is explained by understanding the computational 
architecture of EGEE presented in the next section 
on EGEE computational facility.

EGEE COMPUTATIONAL FACILITY

Introduction of EGEE

Activity of many grid-projects founded by the 
European Union are centred on the production of 
powerful and user-friendly packages, called grid 
middle-ware, that aggregates distributed machines 
and clusters turning them into one grid system. 
The most common grid middle-ware, called 
g-Lite€� (founded within the EGEE I-II-III proj-
ects (Jones, 2005)), aggregates more than 60000 
CPU from different countries in Europe (Laure 
et al., 2006). Another important middle-ware is 
called the Advanced Resource Connector (ARC) 
(Ellert, 2007), which is used by the researchers 
of the Nordic countries, and Switzerland. The 
Uniform Interface to Computing Resources 
(Unicore) (Streite, 2009) is developed by Jülich 
Supercomputing Centre, Germany, with national 
foundation. There are more middle-ware that can 
provide large grid systems. In the next projects 
the European Union will integrate them into one 
common and well-designed middle-ware product 
that will be able to provide as much computational 
and data capacity as possible within Europe for 
the scientists for many different research areas.
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Scientists in any research areas could use a 
general grid system. However some organisations 
that provide the grid the computational resources 
would like to serve specific areas only. Thus the 
grid system could be separated to a set of com-
munities called Virtual Organisations (VO). Any 
of the resources can be added to any VO, but all 
VO must have dedicated machines as their core 
grid components. For instance, the Biomed VO 
is available for biological applications to help re-
search into bio-informatics; however any resource 
within this VO can be a member of any other VO. 
Users must have a membership to at least at one 
of the VOs to be able to submit applications to 
these resources.

In distributed systems security is more im-
portant than computational performance. In a 
general grid system, every user has to have a 
digital certificate signed by a regional Certificate 
Authority (CA), which means that CA vouches 
for the user’s identity. This certificate can allow 
its owner to become a member of one or several 
Virtual Organisations and therefore makes a grid 
system safe from the illegal penetration. On the 
other hand, users must hide their digital certificates 
to prevent their identity from being stolen. To 

reduce the possibility of damage to a grid system 
being caused by stealing certificates, the digital 
certificate is valid only for one year. The second 
safety feature developed for certificates is the 
creation of a proxy. In other words the users do 
not use their certificate directly to access to the 
grid, but instead they use their certificate to create 
a temporary certificate called a proxy, and submit 
their applications using that proxy. The proxy is 
valid for one week. In the gLite middle-ware the 
users’ certificates must be stored in a dedicated 
component of the grid-system, called the MyProxy 
Server, which generates the proxies.

Architecture of EGEE 
(Christodoulopoulos et al., 2008)

Figure 1 shows the connection of the major ele-
ments of the EGEE which are explained later in 
the chapter.

User Interface

The term “User Interface” (UI) is defined as an 
end-point for the users, where they can use grid-
services via a set of user-level command-line tools. 

Figure 1. The connection between each element in the EGEE. UI, WMS, BDII, CE, WN, SE, LFC stand 
for User Interface, Workload Management System, Berkeley Database Information Index, Computing 
Element, Worker Node, Storage Element, Logical File Catalogue, respectively.
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It provides the main functionalities such as check-
ing the status of the available grid-component 
machines and grid-resources related to the VO, the 
file-transfer between a user interface machine and 
grid storage services, job submission, checking a 
job’s state and downloading output files. Depend-
ing on the different VO, UI can be official. When 
a user gets a membership to a VO community, the 
account of the user will be generated on the UI.

As all users have their own account in the 
UI, they work in their own user-space. The lim-
ited space can be a bottleneck for real and data-
intensive algorithms, because the basic usage of 
EGEE assumes that the source code and the input 
files are all in the UI at the job submission stage.

Computing Element 
and Worker Node

From the viewpoint of job execution, the most 
important component of the grid is the Comput-
ing Element(CE). The CE can be defined as an 
end-point of a set of execution resources, i.e., the 
Worker Nodes (WNs). The CE provides various 
execution queues. These are generally First-In-
First-Out queues that can be used to place a wide 
range of jobs.

WNs are the machines,where the real jobs, 
such as shell scripts, Fortran, or java codes, are 
executed. The worker nodes are members of a 
distributed and shared memory cluster using the 
shared file-system. WNs can execute massively 
parallel applications such as MPI jobs. A job runs 
on a generated user-space (created and managed 
by the middle-ware) with a really strict disk space 
limitation (1-200 Mb). This means that one job, if it 
does not use remote storage services supported by 
the grid system in runtime, can not generate large 
output files that are greater than local disk space.

Workload Management System

In the gLite middle-ware every job-submission is 
sent to a machine called a Workload Management 

System (WMS), which can be used as a broker 
service. Generally a user does not know which 
resource executes his or her job prior to the job 
submission. A user can request that the WMS 
makes an automated decision, which allocates 
the job to the best resource based on the job’s 
requirements. To save the WMS server from the 
overloading, arriving jobs are placed in a queue, 
and always the first job is processed and sent to 
its selected resource.

Storage Element

One of the advantages of grid systems is the 
large data-storage capability. Machines, where 
the storage component of the gLite middle-ware 
has been installed, are called Storage Elements 
(SE). Although the accessibility of the SE strongly 
depends on the network, theoretically they are 
accessible from every WN in every CE.

Logical File Catalogue

We usually prefer sorting our remote files (files 
that can be stored in several storage elements) in 
a logical structure, similar to a normal file-system 
i.e., in a directory structure. The Logical File 
Catalogue (LFC) service provides this function. 
LCG can be used to show or manipulate remote 
files in a logical order.

Berkeley Database Information Index

The Berkeley Database Information Index (BDII) 
was developed to store and provide information 
about each available resource in the distributed 
system. It is used by the end-users to explore the 
load of the resources, and by the WMS to get the 
availability of a claimed resource, or make a deci-
sion which resource fits for the user’s requirement.
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Job Submission Procedure

The job submission requires users to follow the 
procedure given here:

1. 	 Login to the official UI (generally via ssh) 
of the VO.

2. 	 Upload the certificate to the MyProxy server 
to thus create a temporary Certificate called 
a proxy.

3. 	 Copy the necessary input files and execut-
ables to the UI machine ready to submit a 
job.

4. 	 Create a Job Description Language (JDL) 
file to describe the executable files, the 
input files, command line arguments, and 
any restrictions for the resource where the 
job should be executed.

After this user’s procedure, the following 
procedure is taken by the drig and its resource 
broker to run a job:

1. 	 All the files described in the JDL file are 
transferred to the WMS server.

2. 	 The WMS gets information by querying 
BDII server to be able to determine which 
CE should be used.

3. 	 The WMS creates log entries to allow status-
checking and debugging of the system.

4. 	 The WMS matches the user’s requirements 
with the available resources and sends the 
job to the possible CE.

5. 	 The CE transfers the job to the Worker Nodes 
(WN).

6. 	 The WN accesses the files in SE directly 
using an API or LFC server.

7. 	 When a job generates a remote output file in 
the SE, a command-line provided by gLite 
can be used to download files (not a direc-
tory) to anywhere.

Adaptation of Our Code to EGEE

Disk Restriction to Run a Job in WNs

Each WN has a very limited amount of disk space. 
As described in the section on the nature of the 
computation of the FD-FDTD methods, each core 
reads a file with a size of 1GB or more to make 
up the data for the entire digital human phantom. 
This file size easily exceeds the upper-limit of 
each WN’s disk space. Therefore the one large 
file (one digital human phantom) was separated 
in the z direction, i.e., the direction of the human 
height. For example, if a 175 cm-height digital 
human phantom is meshed every 1mm, then 
there are 1750 files to read at the beginning of 
the FDTD computation. Since the parallelisation 
is implemented in the z direction, each core reads 
the z= a constant number of slices which the core 
needs. For example, if there are 10 cores, then 
each core reads 175 files.

Solution Using SE

The large output data can not be left on the Worker 
Nodes in the CE. The obvious and immediate 
solution to use the EGEE was to make use of the 
SE. We implemented several shell scripts to move 
the output data file from each Worker Node in the 
CE to the SE on-the-fly. At the end of each data 
production step, every WN transfers its output to 
the SE and deletes the output file in WNs as soon 
as this file copy is completed. With this approach, 
there is a high possibility that many of the WNs 
will try to access the same harddrive in the SE at 
the same time. After the completion of the job, all 
output files were transferred to the local cluster 
in Manchester for data post-processing.

Unfortunately this approach did not work per-
fectly. Ideally all files produced in the CE should 
have been transferred to the SE. However, 20-
30% of the output files were left in CE and were 
not copied into the SE. Intensive investigation 
revealed that there were some bugs in the lcg-cp 
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command itself. This means that we should not rely 
on the Unix command lcg-cp for the file transfer 
and that we should have an alternative storage 
space for the transfer of the output data from the 
WNs. Our local cluster in Manchester had disk 
space enough to accommodate the massive data 
produced on the EGEE. Since the Unix command 
lines which the EGEE provides does not include 
the communication between the WNs in the CE 
and the computers outside the EGEE, we had to 
create our own mechanism for this data transfer.

Solution Without SE

After a long period of trial and error, the final 
solution to our main problem of how to handle the 
large data I/O was to use the direct communica-
tion between the WNs and our local cluster. This 
section describes the final solution in detail by 
showing the shell scripts which can be adapted to 
any similar situation and is independently to the 
programming language e.g., C or Fortran.

We first created the RSA private and public 
key on the UI machine by typing ‘ssh-keygen 
-t rsa’ in order to perform the file access or the 
file transfer from the UI machine to the local 
cluster in Manchester without any passwords. 
The public key (id_rsa.pub) on the UI machine 
is copied into ‘$HOME/.ssh/authorized_keys’ on 
the local machine in Manchester. The private key 
should be cent to the CE together with the job. 
Hence the WNs can access our local cluster in 
Manchester with this key. To make this method 
work, the file ‘known_hosts’has to be placed in 
the directory ‘$HOME/.ssh/’ on each WN. To 
achieve this To achieve this, our Fortran code 
calls the following shell script immediately after 
the MPI initialisation:

#!/bin/sh 

mkdir $HOME/.ssh/ 

cp ‘pwd’/known_hosts $HOME/.ssh/

known_hosts 

chmod 400./id_rsa

All the participating WNs call this shell script. 
This shell script makes the secure copy possible 
between the WNs and our local cluster using the 
Unix command ‘scp’.

Every time a large output data file is produced 
at each WN the Fortran code calls the shell script 
presented in Appendix A to transfer the data file 
from the WNs to our local cluster in Manchester.

This shell script is named copy.sh and called 
just after each data is produced as follows:

open(unit=70+rank, file=dirfile, 

access=”sequential”, & 

form=”formatted”,status=”new”,iostat

=err) 

do k=zs, zf 

do i=0, nx+1 

do j=0, ny+1 

write(70+rank,”(3I6, 1E11.3)”) i, j, 

k+zi, & 

Hx(i,j,k),Hy(i,j,k),Hz(i,j,k),Ex(i,j,

k),Ey(i,j,k),Ez(i,j,k) 

end do 

end do 

end do 

cmd = “chmod 775./copy2SE.sh;./

copy2SE.sh ” // dirfile 

call system(cmd) 

close(unit=70+rank)

Here, the variable ‘rank’ is the number of each 
core in the MPI-world. It is important that the 
shell script ‘copy.sh’ has to be called before the 
file port closure at ‘close(unit=70+rank)’.

The line ‘sleep 5’ in ‘copy.sh’ needs special 
care; if this value is too small and with a heavily 
loaded network or long-distance file transfer, some 
files may not be transferred.
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An almost identical shell script presented in 
Appendix B is called just before reading the input 
data in order to transfer the input data from our 
local cluster in Manchester to the WNs. The dif-
ference between the two shell-scripts presented in 
Appendix A and Appendix B is that the shell-script, 
which copies files from the local cluster to the 
WNs, does not include ‘rm $1’ because the input 
files stored in our local cluster in Manchester were 
not to be deleted. After the data was successfully 
loaded from one file at each WN, the data file in 
the WNs is swiftly deleted by calling the Unix 
command from the Fortran code.

The JDL file job.jdl for this job reads:

JobType = “MPICH”; 

NodeNumber = 30; 

Executable = “mpi-start-wrapper-f90.

sh”; 

Arguments = “fdtd-3d OPENMPI”; 

StdOutput = “mpi-test.out”; 

StdError = “mpi-test.err”; 

InputSandbox = {”all.tar.gz”,”mpi-

start-wrapper-f90.sh”}; 

OutputSandbox = {”mpi-test.err”,”mpi-

test.out”}; 

Environment = {”LFC_HOST=lfc-biomed.

in2p3.fr”,”LCG_CATALOG_TYPE=lfc”}; 

RetryCount = 10; 

Requirements = 

Member(“MPI-START”, other.GlueHostAp-

plicationSoftwareRunTimeEnvironment) 

&& Member(“OPENMPI”, other.Glue-

HostApplicationSoftwareRunTimeEnvi-

ronment) 

&& other.GlueCEInfoHostname==”grid10.

lal.in2p3.fr”

Here, the compressed file ‘all.tar.gz’ includes 
the Fortran code, the Makefile for the Fortran 
code, the two shell scripts mentioned above, the 
files called ‘id_rsa’, ‘ known_hosts’, and a shell 
script used to compile the Fortran code with the 

Makefile. When this JDL file is submitted via the 
command ‘glite-wms-job-submit -a -c glite_wms.
conf job.jdl’, the file ‘mpi-start-wrapper-f90.sh’ 
and the file ‘all.tar.gz’ are placed on each WN. 
Then the shell script mpi-start-wrapper-f90.sh on 
each WN acts by:

1. 	 Un-zips and then un-tars the file ‘all.tar.gz’;
2. 	 Runs a shell script to compile the source 

code;
3. 	 And finally runs the MPI job using 30 cores.

Arguments suggests the arguments for the shell 
script ‘mpi-start-wrapper-f90.sh’ and the standard 
output message and the error messages of the job 
are written into the output files s ‘mpi-test.out’ 
and ‘mpi-test.err’. They can be downloaded at 
the UI after the job is completed using the Unix 
command:

’glite-wms-job-get-output’ provided 

by gLite.

In this example the JDL file, the CE is spe-
cific to one site. At this site, there are 80 cores 
and each core has 2GB of memory. The level of 
the memory availability is the same as the local 
cluster in Manchester. However, at another site 
(gridgate.cs.tcd.ie), there are 768 cores but each 
core has 0.5 GB of memory. As mentioned in the 
section on Computation in Electromagnetics, this 
in-house software achieves the high computational 
efficiency when the each FDTD subspace is large 
enough to cover the cost of the communication 
between cores. When we use ‘gridgate.cs.tcd.ie’ 
instead of ‘grid10.lal.in2p3.fr’ as a CE for the 
same amount of the total FDTD space (i.e., the 
same amount of total memory usage), we need 
4 times as many cores as required at ‘grid10.lal.
in2p3.fr’, leading to the lower throughput than the 
site at ‘grid10.lal.in2p3.fr’ and the computational 
efficiency is less than the site at ‘grid10.lal.in2p3.
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fr’ due to the increase of the ratio of border area/
(FDTD subspace).

The result from this data input/output approach 
is very promising because:

1. 	 All (100%) of the output/input files are 
transferred between the local cluster and 
the EGEE site.

2. 	 The overall elapsed time for a job to complete 
including the data transfer is significantly 
shorter than the approach using the SE and 
LFC.

Although this approach was developed to run 
our program on the EGEE, it is entirely applicable 
to any other case where each core produces a sig-
nificant amount of data at a separate disk space 
and the disk space is limited at each core.

FUTURE RESEARCH DIRECTION

In order to perform further speed-up of the com-
putation for the practical use, the computation 
method of the Maxwell equations and the method 
to handle the data I/O has to be improved.

Improvement of the 
Computational Algorithm

The explicit scheme is a simple algorithm and 
highly parallelisable, ideal for a grid computing 
environment. However, since the temporal discre-
tisation cannot be set independently of the spatial 
discretisation, one has to run the many FDTD 
iterations for the fine spatial sampling. This is an 
inefficiency of the FDTD computation that can 
be overcome by modifying the algorithm. One of 
the ways to do so is the development of implicit 
methods by removing the CFL stability condi-
tion. These implicit schemes can set an arbitrary 
Δt independently of Δs for a stable computation. 
The Crank-Nicolson implicit method (Crank and 
Nicolson, 1947) was proposed for this purpose. 

However, the Crank-Nicolson implicit method 
includes solving a huge sparse matrix. Therefore 
at the time when it was invented the ordinary 
computers were not able to run the Crank-Nicolson 
code with ease.

In order to solve the Crank-Nicolson implicit 
method without handling the sparse matrix, a 
mathematical error was deliberately put into the 
original Crank-Nicolson based Maxwell’s equa-
tions and the method successfully removed the 
sparse matrix(Peaceman and Rachford Jr., 1955) 
from the algorithm. Instead it handles the tri-
diagonal matrix (Douglas, 1955). This alternating 
direction implicit technique was applied to the 
FDTD method (Zheng et al., 1999; Costen and 
Thiry, 2004) and became the standard implicit 
method. However, the ADI-FDTD method is dif-
ficult to implement serially and furthermore in a 
parallel manner due to the heavy communication 
between the cores. Therefore there are many other 
implicit schemes that are currently studied(Rouf 
et al., 2009b).

In reality, the increase of Δt escalates the nu-
merical error. Therefore in the case of the implicit 
scheme, the practical upper limit of Δt is set by 
relation to an acceptable level of numerical noise. 
This means the implicit scheme itself is not going to 
achieve a dramatic improvement in computational 
speed. The implicit scheme shines when the FDTD 
space needs to be meshed very finely (but usually 
not the entire FDTD space needs to be meshed); 
a very localised space needs to be meshed finely; 
otherwise a coarse meshing is acceptable. In this 
case, the subgridding techniques (Bérenger, 2006; 
Costen and Bérenger, 2009) can be used to reduce 
the total number of voxels. The reduction of the 
total voxel numbers can also be achieved by using 
a very efficient and powerful boundary condition 
(Bérenger, 2007). Usually the boundary condition 
is one of the most computationally expensive 
places in the whole computation. Thus utilisation 
of the most computationally efficient boundary 
condition is of primary importance.
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Improvement on the Data 
Input and Output

As mentioned, the digital human phantom was 
sliced in the direction of its height. As you can 
imagine, the data gradually changes slice by slice 
in z direction. The difference between the slices 
can be significantly smaller than the size of the 
original data. Thus, one way to improve the data 
input is a reduction in the data algorithmically. 
The information which gives the difference from 
the neibouring slice can be used rather than the 
raw digital human phantom. Although this method 
requires the computation to reproduce the digital 
human phantom in the FDTD code, the computa-
tion cost in time for this will be still significantly 
smaller than the data transfer cost saving in time. In 
order to reduce the amount of the data output, high 
data compression techniques such as HDF can be 
used as mentioned in the section on Computational 
environment. However, the implementation of 
HDF in the source code is not straightforward and 
HDF is not always available. Therefore a method, 
which uses the general machine-independent tool 
such as very general Linux/Unix commands, 
should be invented.

CONCLUSION

Many researchers who make use of high per-
formance computing facilities face the situation 
where their computational architecture is changed 
either suddenly or gradually over time. This can 
be intentional or out of their control. In either 
case, this is the nature of computational research 
because the computational cost, the computational 
performance, and the funding for their research 
activities changes all the time. To be able to sur-
vive under any circumstances the researchers, 
who implement their algorithms in software, 
have to pay attention to the possible re-use of 
their software, the ease of reading the software, 
the computational efficiency, and the portability.

This chapter first introduced the nature of our 
computation by presenting the core equations. It is 
highly parallelisable, suitable for grid computing 
apart from the need for the high data I/O and large 
computational memory per core.

EGEE was chosen to be our next computational 
facility because it is available to our research 
group free of charge. However, EGEE, as it is, 
was not suitable for the application which has a 
high demand on data I/O.

This problem and the solution to our code port-
ing to a new and novel computational architecture 
of EGEE are the main points of this chapter. The 
same solution can be taken by people who are 
suffering from the computational architecture 
with weak data I/O.

Finally some suggestions on the performance 
improvement were proposed from the viewpoint 
of the computational algorithm and the data I/O.
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KEY TERMS AND DEFINITIONS

Code Porting: Usually a software/code is 
developed with a specific computational environ-
ment in mind. Therefore when a code written in 
one computational environment is going to be 
run in another computational environment, some 
part of the code has to be modified. The activity 
to make a code that runs on one machine usable 
in the other machine is called code porting.

Computational Electromagnetics: Research 
on the electromagnetic wave propagation using 
the computational facility

Enabling Grids for E-sciencE(EGEE): A 
grid-project that provides large computational 
resources connected via the Internet and founded 
by European Union. Applications must be paral-
lelized in order to benefit from EGEE.

Finite Difference Time Domain (FDTD) 
Method: One of the most simple and powerful 
method to solve Maxwell equations for the numeri-
cal simulation of the ElectroMagnetic(EM) wave 
propagation. Maxwell equations are temporally 
and spatially discretised. The basic equations are 
repeatedly executed at each FDTD iteration. The 
outcome of the FDTD simulation is the signal 
signature(waveform) in time domain.

Grid Computing: Computations using a 
computational grid facility that consists of many 

computational or data-store resources. The soft-
ware program that contains the computation has 
to take into account the fact that there are many 
computational cores in many nodes.

Job Management: Scheduling and managing 
computational requests to a particular computing 
element. In cases where there are more than one 
user in a grid computing facility, their computa-
tional requests (jobs) are submitted to one location. 
These jobs are ranked in priority and placed at the 
individual computational nodes.

Message Passing Interface: A programming 
language-independent specification that provides 
a multimode communication protocol. Data Input/
Output: activity to read/load data from data files 
and to produce data files of the computation result.

Numerical Methods: The study on how to 
solve equations accurately and efficiently from 
the viewpoint of the computation.

Parallel Code: When there are many cores 
in many nodes in a computational environment, 
a code which uses a single core for computation 
can be modified so that a big task in the code can 
be divided into many little tasks and each little 
task is handled by one node and many nodes work 
for this single and big task at the same time. The 
code modified in this way is called parallel code 
which can make use of more than one machines 
in a single run and run on more than one machine 
simultaneously.

Security: Some information on the users and/
or the administrators in the computational facility 
has to be kept secret. Security addresses the meth-
ods available that keep the computational facility, 
including the private data within the facility safe.
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APPENDIX A

A shell script to transfer a data file from a worker node to a computer outside EGEE:

#!/bin/sh

./VariableSetting.sh

REMOTE_FOLDER=”$USER”@$MACHINE

FILENAME=$1

CUT_FILENAME=’echo $1 | cut –d/ -f2’

LOCAL_FOLDER=’pwd’

       COUNT=1 

       while [ $COUNT –lt 10 ]; 

       do

sleep 5

scp -vC -P $PORT –I ‘pwd’/id_rsa

$LOCAL_FOLDER/$FILENAME $REMOTE_FOLDER:$REMOTE_PATH$CUT_FILENAME 

                    SUCCESS=$? 

                    if [ SUCCESS –EQ 0 ]; 

                    then 

                             COUNT=10 

                    else 

                             COUNT=’ expr $COUNT + 1 ‘ 

                       fi 

        echo $COUNT 

        done

rm $1
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APPENDIX B

A shell script to transfer a data file from a computer outside EGEE to a worker node:

#1/bin/sh

./VariableSetting.sh

REMOTE_FOLDER=”$USER”@$MACHINE”

FILENAME=$1

CUT_FILENAME=’ECHO $1 | cut –d/ -f2’

LOCAL_FOLDER=’pwd’

COUNT=1

while [ $COUNT –lt 10 ];

do

sleep 0.01

scp –C –P $PORT –I ‘pwd’/id_rsa

$REMOTE_FOLDER:$REMOTE_PATH$CUT_FILENAME $LOCAL_FOLDER/$FILENAME

SUCCESS=$?

if [ $SUCCESS –eq 0 ]; 

              then 

              COUNT=10 

              else 

              COUNT=’ expr $COUNT + 1 ‘ 

              fi

done


