
Joanna Leng
Consultant, UK

Wes Sharrock
University of Manchester, UK

Handbook of Research on
Computational Science
and Engineering:
Theory and Practice

Volume I

Handbook of research on computational science and engineering: theory and practice / Joanna Leng and Wes Sharrock,
editors.
 p. cm.
 Summary: “This book offers a timely introduction to the possibilities in computational science and engineering to advance
the ongoing research and applications leading to the discovery of new resources and cutting edge developments”-- Provided
by publisher.
 Includes bibliographical references and index.
 ISBN 978-1-61350-116-0 (hardcover) -- ISBN 978-1-61350-117-7 (ebook) -- ISBN 978-1-61350-118-4 (print & perpetual
access) 1. Science--Data processing. 2. Engineering mathematics--Data processing. 3. Numerical analysis--Data process-
ing. 4. Mathematical models. 5. Computer simulation. I. Leng, Joanna, 1965- II. Sharrock, W. W. (Wes W.)
 Q183.9.H36 2012
 501’.13--dc23
 2011032075

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Development Editor: Chris Wozniak
Acquisitions Editor: Erika Carter
Typesetters: Brittany Metzel, Lisandro Gonzalez
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

197

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-61350-116-0.ch009

Fumie Costen
University of Manchester, UK

Akos Balasko
Hungarian Academy of Sciences, Hungary

Opportunities and Challenges
in Porting a Parallel Code from

a Tightly-Coupled System
to the Distributed EU Grid,

Enabling Grids for E-sciencE

ABSTRACT

Any large scale computation, either in the science or arts, requires high performance computing (HPC)
facilities. This computational environment may change over time. Thus the source code of a computation
needs to be ported. The change in the computational architecture or system can make the porting of
code between various HPC facilities challenging. This chapter introduces an example of an engineering
application which runs on a HPC facility and the porting from a local computing facility to Enabling
Grids for E-sciencE (EGEE) is described in detail.

The computational architecture of Enabling Grids for E-sciencE is introduced as it made our code
porting very challenging, and the discussion presented is directly applicable to EGEE users. The final
solution to the code poring problem is proposed, and its performance is examined. The solution to this
problem be generally faced in the other large scale computation and so is applicable to users of other
HPC facilities. This chapter gives a hint to those who have difficulties in applications with heavy data
Input/Output (I/O) under the computational environment whose weak point is the data I/O.

198

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

INTRODUCTION

Research on distributed and parallel systems
is one of the most important areas in computer
science. This area is based on the exploitation of
large computational and data storing capabilities.
While the main components i.e., processors and
hard drives in a single computer are becoming
smaller but with larger storage capacity and higher
processing performance, distributed systems can
integrate these individual resources into one large,
heterogeneous, dynamic system that allows users
to benefit from the possible improved perfor-
mance. These systems are called grid.

The main goal of a well-maintained grid is
to provide large scale resources connected via
the Internet to researchers in the natural sciences
and engineering who have applications with high
demands for compute resources, or storing more
data than a single machine can accommodate.
Certainly, these applications must be parallelised
to fully exploit the resource capabilities, and make
them run faster in grid systems.

Researchers are nowadays surrounded with
a variety of grid computing facilities. Some are
more suitable to one’s application than others
but the cost and the performance of each HPC
facility is also different. Furthermore, the cost,
the performance and the suitability are always
changing over time. Therefore researchers have
to be prepared for the change in the computational
facility and have to be able to adjust to the new
computational environment.

This chapter shares the authors’ experience of
a significant change to the computational envi-
ronment used in the daily research activities and
provides some hints to those who may face the
similar situation.

The authors’ experience is based on the En-
abling Grids for E-sciencE (EGEE) project.

The EGEE project-family, founded by the
European Commission, started on April 2004. It
has provided academic and industrial research-
ers the means to have access to large computing

resources. It is focused on developing and main-
taining a robust and powerful grid network and
components, and to attract new users from industry
by standardized training and dissemination events.

A new grid-middleware, called gLite was
developed during this project. Its aim was to
organize and connect the components of the
large and international grid system. The last
project of this family (EGEE-III) was ended on
April 30th 2010. The new project was created to
continue the development of distributed systems
internationally in Europe and is called European
Grid Initiative(EGI). In this project all of the old
organizational-ideas have been reformed. EGI
manages the collaborative work of NGIs (National
Grid Initiatives) that are created to support the
national grid-community and maintain the related
grid-services.

Another but no less important project, founded
by the European Commission is EMI (European
Middleware Initiative). This project aims at inte-
grating the three major European grid middleware
systems (ARC, gLite, Unicore) into a unified
middleware distribution (UMD) in order to sup-
port the co-operation of researchers in the same
research field but with different grid-middlewares.

The section on Computation in Electromagnet-
ics discusses the motivation of our research and
introduces the core part of the equations necessary
to understand the nature of our computation. Fur-
thermore the section talks about the computational
environment we used before we faced a significant
change. The section on EGEE computational facil-
ity introduces the computational architecture of
Enabling Grids for E-sciencE(EGEE), which is
significantly different from our initial architec-
tures. The section on the Adaptation of our code
to EGEE describes the problems which we faced
and presents the solutions. The section on Future
research direction gives some insight and sugges-
tion for the improvement of the computational
algorithms as well as the algorithms which could
be applied to the data I/O problems.

199

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

COMPUTATION IN
ELECTROMAGNETICS

The Necessity of Computation
in Electromagnetics

One of our research activities in the University of
Manchester is the study of the biomedical problems
associated with human-body by means of numeri-
cal modelling and simulations. Our research goals
include the development of the next generation
of technology of broadband electromagnetics
for bioengineering modelling and simulation
for health care technologies. For example, in the
films, some scenes involve the defibrillation of
a fainted person. Defibrillation with the electric
shock to the torso is usually successful in the
films. However, in reality, the success rate is not
as high as the one you see in the films. This is
because the location, the shape, the excitation
waveform of the electrodes is not optimum for the
person to whom the electrical shock is applied.
The optimum method to apply the electric shocks
depends on the age, sex, size and body-shape of
the person. The currently exercised therapy used
to stimulate the heart does not have the known
focus points of stimulation. This is mainly due
to the fact that nobody knows the relationship
between the precise location/number/waveform/
phase of the electrodes and the stimulation focus
points. In spite of a long clinical experience and
detailed studies, the fundamental understanding
of the mechanisms responsible for defibrillation
is not fully known.

One way to increase this knowledge is to use
computer simulations. Computer modelling allows
us to perform experiments that are impossible
physically and/or ethically to carry out with ani-
mals. The knowledge gained from the numerical
simulations will be able to:

1. 	 Replace the currently exercised defibrillation
procedure with a flexible and more effective
technique;

2. 	 And expand the application of the heart
defibrillation beyond the currently exercised
area and improve the efficiency of these
therapies in general.

The numerical simulation involves the propa-
gation of ElectroMagnetic(EM) waves. In order to
develop the simulation tool, the Maxwell’s equa-
tions have to be solved. They can be numerically
solved either in the frequency or time domain.

We need to perform numerical simulation of
EM wave propagation from various electrodes
around the torso to the heart in the time domain to
reveal the unknown relationship mentioned above
and provide knowledge on the best way to excite
particular parts of the heart, aiming to increase
the success rate of defibrillation.

For a comprehensive study the computer simu-
lation should be able to handle both arbitrarily-
complex and very fine geometry; as well as a wide
frequency range and frequency dependent mate-
rials in time domain. The most suitable method
currently available is the Finite Difference Time
Domain(FDTD) method (Taflove and Hagness,
2005) unlike methods such as the Method of Mo-
ments (MoM), the Finite Element Method (FEM)
(Margetts et al., 2004), the Geometrical Theory
of Diffraction (GTD) and the Physical Theory
of Diffraction (PTD). The detail required for the
numerical modelling of our application is too
complicated to be handled by GTD. In particular,
broadband system analysis requires the examina-
tion of waveform distortion in the time domain
during propagation in a wide range of dispersive
media. Methods such as MoM and FEM mainly
work in the frequency domain, requiring repeti-
tion of simulations, sweeping the frequency of
interest to construct a single waveform in the
time domain. Unlike MoM and FEM, both FDTD
and Frequency Dependent (FD) - FDTD (Lueb-
bers et al., 1991) works in the time domain and
is capable of explicitly computing macroscopic
transient electromagnetic interactions with gen-
eral 3D geometries. Furthermore in FD-FDTD,

200

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

the medium parameters such as permittivity and
conductivity vary with frequency. It is important
for the broadband simulations to have the capabil-
ity to handle the frequency dependent materials.
FD-FDTD is the simplest method among a variety
of techniques to produce the time domain signal in
the frequency dependent media. Thus, FD-FDTD
is the most suitable for the numerical simulation
of the wideband wave propagation in the human
body. This chapter handles the standard explicit
FD-FDTD method for the large scale computation.

Nature of the Computation
of the FD-FDTD Methods

The computation of the EM wave propagation in
a human body requires the following procedure:

1. 	 Initialisation and data reading of the seg-
mented human body

2. 	 Setting the time loop counter to zero
3. 	 Incrementation of the time loop counter
4. 	 Computation of the electric field E, magnetic

field H, and electric flux density D (Costen
and Bérenger, 2009; Rouf et al., 2009a)

5. 	 Simulation of human body either using a
soft source or a hard source (Costen et al.,
2009)

6. 	 Output of the electric and magnetic field at
this time step

7. 	 Go back to the procedure step 3 unless the
time loop counter is above the maximum
time steps

The procedure 4 above involes the following
computation:

The magnetic (H) field has 3 components:
Hx, Hy, and Hz. For example the computation of
Hx is:

H i j k
i j k H i j k

i j k

t
i j k

E i j

x
n x

n

z
n

(, ,)
(, ,) (, ,)

(, ,)

(, ,)

(, ,

=

−
∆

−m
m

m

1

kk E i j k

y

E i j k E i j k

z
z
n

y
n

y
n) (, ,) (, ,) (, ,)− −

∆
−

− −

∆

















1 1

	
(1)

where Δy are Δz are the spatial discretisation in
the y and z directions, respectively and m (, ,)i j k
is the permeability at the FDTD grid (i,j,k). Δt is
the temporal discretisation. The upper-script of n
means nΔt. As (1) shows, H i j kx

n(, ,) is calculated
using the four neibouring electric E field values
of E i j kz

n(, ,) , E i j kz
n(, ,)-1 , E i j ky

n(, ,) , and
E i j ky
n(, ,)-1 . These four E values surround
H i j kx
n(, ,) on x=i plane. The computation of the

rest of the H components are calculated in the
similar manner to (1); H i j ky

n(, ,) and H i j kz
n(, ,)

are calculated using four E values which surround
H i j ky
n(, ,) and H i j kz

n(, ,) on y=j plane and on z=k
plane, respectively. The upper limit of Δt is gov-
erned by the the Courant Friedrichs Lewy (CFL)
condition (Taflove and Hagness, 2005) and The
CFL stability condition is written as in (2).

u∆
∆ ∆ ∆

t
x y z

≤ + +
−

()
1 1 1
2 2 2

1
2 	 (2)

where u is the highest propagation speed of the
signal in the medium. Using the newly computed
H in (1), the electric flux density D is calculated
as in (3). (see Exhibit 1.)

The four H field values of H i j kz
n(, ,)+1 ,

H i j kz
n(, ,) , H i j ky

n(, ,)+1 , and H i j ky
n(, ,) surrounds

D i j kx
n+1(, ,) and these values on x=i plane are used

to compute D i j kx
n+1(, ,) . Similarly D i j ky

n+1(, ,) and
D i j kz
n+1(, ,) are calculated using four H values

which surround D i j ky
n+1(, ,) and D i j kz

n+1(, ,) on
y=j plane and on z=k plane, respectively. Using
the newly calculated D field values in (3), E is

201

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

calculated as in (4). (see Exhibit 2) where s , ¥
, S , 0 , tD are conductivity, optical relative
permittivity, static relative permittivity, permit-
tivity in a vacuum, and the relaxation time, re-
spectively. These values are the frequency depen-
dent parameters based on Debye model (Debye,
1929) and the function of the Cartesian coordinate
(i,j,k) in the FDTD space. They also change de-
pending on the kind of the tissue. (4) is also used
for the computation of E i j ky

n+1(, ,) and E i j kz
n+1(, ,)

by changing x to y or z. The E field values are
computed using the D values at the same place
of (i,j,k).

Theoretically each voxel can have a different
tissue number and each tissue has its own s , ¥ ,
S , and tD . The tissue number of each voxel and
Debye parameters for each tissue have to be

loaded into the in-house FDTD software at the
initialisation step of the computation.

When the explicit FDTD code is parallelised
and the FDTD space is divided into several sub-
spaces in z direction using the Message Passing
Interface(MPI), the computation of both D and
H field values on the border of each subspace in
the FDTD space requires the field values from
the adjacent FDTD subspaces. The field values
of Dx , Dy , Hx , Hy on the border are calculated
using the field values on the x=i plane and the y=j
plane. Therefore the communication between
cores (i.e., between subspaces) is limited mainly
to Hx , Hy , Ex , and Ey on the border planes.
Thus the main computation is localised well and
the explicit FDTD method is inherently highly
parallelisable on the distributed memory archi-
tectures and suitable for grid computing. Even

Exhibit 2.

1

2
(, ,) 0 (, ,) (, , 0 (, ,) (, ,) (, ,

2
0 (, ,) (, , 0 (, ,) (, ,) (, , (, ,)

0 (, ,) (, ,

0 (, ,)

(, ,)

() 4 2()
(, ,)

2 2() ()

2

2

n
x

i j k i j k i j k i j k i j k i j k n
x

i j k i j k i j k i j k i j k i j k

i j k i j k

i j k

E i j k

t t
E i j k

t t

s e e t e e s t

e e t e e s t s

e e t

e e t

+

¥

¥

¥

¥

=

- D + + + D

+ + D + D

-

D) S D)

D) S D)

D)

D

1
2

(, , 0 (, ,) (, ,) (, , (, ,)

(, , 1
2

0 (, ,) (, , 0 (, ,) (, ,) (, , (, ,)

(, ,

0 (, ,) (, ,

(, ,)
2(()

2()
(, ,)

2 2(()

2(4)

2

n
x

i j k i j k i j k i j k i j k

i j k n
x

i j k i j k i j k i j k i j k i j k

i j k

i j k i j

E i j k
t t

t
D i j k

t t

t

e e s t s

t

e e t e e s t s

t

e e t

-

+

¥

¥

+ + D + D

D +
+

+ + D + D

D +
-

) S D)

D)

D) S D)

D)

D
2

0 (, ,) (, ,) (, , (, ,)

(, , 1
2

0 (, ,) (, , 0 (, ,) (, ,) (, , (, ,)

(, ,)
2(()

2
(, ,)

2 2(()

n
x

k i j k i j k i j k i j k

i j k n
x

i j k i j k i j k i j k i j k i j k

D i j k
t t

D i j k
t t

e e s t s

t

e e t e e s t s
-

¥

+ + D + D

+
+ + D + D

) S D)

D)

D) S D) 	 (4)

Exhibit 1.

D i j k

t
H i j k H i j k

y

H i j k H

x
n

z
n

z
n

y
n

y
n

+ =

+ −
−

+ −

1

1 1

(, ,)

(, ,) (, ,) (, ,) (
∆

∆

ii j k

z
D i j kx
n

, ,)
(, ,)

∆
















+

	 (3)

202

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

when the latency between the cores is low, the
parallelisation gains the computational efficiency
relative to the serial code because the communi-
cation between cores is limited to a certain level.
The high computational efficiency is achieved
when each FDTD subspace is sufficiently large
and the area of the border plane between sub-
spaces is small. When the shape of the FDTD
space is a rectangular parallelepiped, the longest
side should be in the z direction for high compu-
tational efficiency.

One of the main data input for the computation
is that of a digital human phantom. The digital
human phantom is generally produced in the fol-
lowing procedure:

1. 	 An entire human body is MRI-scanned.
Each scan shows the cross section of the
human body orthogonal to the direction
of the backbone. Our research group has
access to digital human phantoms in which
the distance between the MRI scan is either
1 mm or 2 mm. This means a human body
is scanned from the head to the feet every
1 mm or 2 mm.

2. 	 The MRI scanned image is segmented using
knowledge of medical doctors. The segmen-
tation involves the identification of a tissue
(such as bone, fat, and muscle) at each pixel
in an MRI image. The size of each pixel is
either 1 mm × 1 mm or 2 mm × 2 mm in our
digital human phantoms. In this way, each
pixel has a tissue number for example 10 for
bone and 11 for heart muscle. At this stage
the MRI scanned image is replaced with
a stream of integers without the Cartesian
coordinate. This stream of integers is in a
file that has a file name that gives the height
of each MRI scan phantom from the ground.

3. 	 In some practical biomedical applications,
the spatial resolution of the digital human
phantom has to be 0.1 ∼ 0.3 mm voxels. In
such cases, we have to re-sample the original
digital human phantom, applying smoothing

techniques in order to produce the digital
human phantom with the required spatial
resolution.

The data for a 64cm×32cm×175cm-sized hu-
man torso with 0.3 mm spatial resolution has the
tissue numbers for more than 1.3 ·1010 voxels.
Each voxel has one of 70 tissue numbers in inte-
ger. Each core reads the digital human phantom
data.

Each tissue has 4 parameters of s , S , ¥ ,
and tD for frequency dependent characteristics
for the one-pole Debye modelling as shown in
(4). The data on the frequency dependent charac-
teristics of each tissue starts in the following
format:

1. 	 “Cerebellum” 0.617740 107.79900 23.3220
2.0759E-011

2. 	 “Cerebrospinal Fluid” 2.013500 103.55500
22.1030 1.2639E-011

3. 	 “Cornea” 0.969300 79.49400 22.6600
1.6209E-011

Here the last 4 numerical values are s [S/m],
S , ¥ , and tD (seconds), respectively. These
values are computed through data fitting (Wuren
et al., 2007) to the real measurement made by the
US Air Force (Gabriel et al., 1996).

Each core needs to read the data file on these
media parameters for 70 tissues in order to set the
FDTD computational environment. The data of
the digital human phantom is not trivial in size.
Our in-house FDTD code assumes that this large
digital human phantom data is in one directory
which is accessible from each core (in our case
via Network File System (NFS) mount) without
having the copy of the same data at each core for
data loading.

The numerical procedure step 6 in the above
list produces data files which have the 6 field
values of Ex , Ey , Ez , Hx , Hy , and Hz at each
voxel together with the Cartesian coordinate of

203

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

the voxel. These values are all stored in one file.
This means more than 1011 field values in real
(also termed floats or decimal values) are produced
at each time step. Each core produces the data for
all the voxels in its own FDTD subspace for which
the core is responsible. These data files can be
produced either in the directory where the job is
submitted under the home directory or at any lo-
cal space available at each node and specified
with the input data. This demonstrates that this
in-house explicit FDTD software is highly data
I/O intensive.

Computational Environment

The initial code development was carried out us-
ing a very small local cluster in our office with 8
cores in 5 nodes. The 8 cores were composed of
2 single core AMD Athlon 64 4000+ and 3 dual
core 4200+. Each node held 4 GB of memory
and a Gigabit Ethernet with a Gigabit switch
were used to connect these 5 nodes. In the case
of the dual core machine, the maximum amount
of the computational memory for each core was
2 GB. This memory availability sets the practi-
cal upper limit of the FDTD space that could be
allocated to each core to achieve the reasonable
load balancing. Thus almost the same amount of
the FDTD space, which represents less than 2003
grid points, is allocated to each core and so avoid
the possibility of touching the swap space. Each
node has its own local storage and all nodes share
the home directory mounted by NFS. One of the
machines in the cluster plays the role of the NFS
server as well as the computational node.

When data output is produced under the home
directory, the machine which serves as the NFS
server has direct access to the hard disk whilst the
rest of the machines in the cluster produce the data
file under the home directory through the network
data transfer. Therefore the data production from
these computers, which are the NFS clients, takes
more time than that from the NFS server. Thus a

load imbalance occurs and the overall speed of
the computation becomes significantly slower
than the case when all cores produce the output
data at the local hard disk, not under the home
directory. The data post-processing can be carried
out either with the data in one directory or with
the data distributed across the cluster. The data
post-processing takes more time when the data
are distributed across the machines in our local
cluster. A parallel job can be submitted from any
of the machines in the cluster. The job submission
is performed in the home directory where all the
necessary input files exist.

The performance of our code was evaluated in
our local cluster prior to the code porting to the
HPC facility. Our analysis of the elapsed time in
our code revealed that most of the elapsed time
was spent on the output data file production, not
on the computation. The same problem is also
experienced by others in the FDTD research
community (Maaskant et al., 2006) and in other
scientific numerical simulations (Ross et al., 2001).

Although it is desirable to apply a high-level
I/O library on top of the Message Passing Interface
(MPI) - I/O interface such as ROMIO(Coti et al.,
2009) configured for the Parallel File Systems
(PFS) or the Parallel Virtual File System (PVFS)
(Carns et al., 2000), which provides a high perfor-
mance I/O infrastructure (Li et al., 2002), changing
the file system of our local cluster was not possible
as other researchers in the group were constantly
using it for their numerical experiments.

An alternative method to speed-up of the
data production is data compression. We tried
Hierarchical Data Format (HDF5) as a replace-
ment for the ASCII format which we were using.
Installation of the HDF5 in our local cluster took
a significant amount of time and effort even with
the help from our technician. Furthermore, in order
to understand the merit of HDF5, we minimised
the influence of the network. This is achieved by
letting one machine in the cluster handle all the
data I/O. Thus, at each time step, the machine,
which is in charge of the data I/O for the cluster,

204

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

should produce the same number of data files as
the number of cores that are in the cluster. The
data was stored as a 1D array of the 6 elements for
3D space in HDF5 files. The data is chunked and
shuffled to enable zlib compression. It turned out
that the HDF5 showed high efficiency when more
than 150 files with a size of less than 6KB, were
produced using more than 24 cores (Abalenkovs
et al., 2008).

After the performance evaluation of the code in
our local cluster, we had traditionally utilised the
HPC facility run by the University of Manchester.
There was no need to re-code for this HPC facility.
The supercomputer had 25 nodes with 16 GB of
memory per node. There was no practical limit
in the disk space. The job submission, storage
of the input and output data were all performed
under one directory in the system e.g. a home
directory or a scratch space. Unfortunately the
University’s HPC facility had a low throughput
(sometimes we had to wait for more than 2 days
for a job to start running in the system). There-
fore the National Grid Service (NGS) (www.ngs.
ac.uk) was used for the medium sized jobs. When
we used the NGS facility, the facility had about
20 nodes with 2 cores and 4 GB of memory per
node in one site, although the NGS facility has
improved significantly since then. The usage of
the system was almost the same as the University
HPC facility. The NGS did not set any practical
restriction in the disk space. The file transfer from
the local cluster to the NGS facility was sufficient
for code porting, similar to the supercomputer in
Manchester. Theis facility was just right fit to our
medium-sized computation which involved the
massive data I/O.

The newly developed function in our code,
the capability to handle the HDF5 was not used
on Manchester’s supercomputer and on the NGS.
In Manchester’s supercomputer, the different
version of the HDF was installed and there was
no compatibility to the one we were using. On
the NGS, HDF5 was not installed. Therefore the
previous program, which required each core to

produce their own data file either in ASCII or in
binary, was used for the numerical experiments.

However, these two facilities were to start
charging for the CPU time and disk space. Un-
less a steady stream of funding was obtained for
these facilities, they could not be used in a stable
and consistent manner. Therefore there was an
imminent need to move onto another high perfor-
mance facility before charging was introduced. We
decided to move to Enabling Grids for E-sciencE
(EGEE). The code porting took more than one year.
The reason for this difficulty in porting the code
is explained by understanding the computational
architecture of EGEE presented in the next section
on EGEE computational facility.

EGEE COMPUTATIONAL FACILITY

Introduction of EGEE

Activity of many grid-projects founded by the
European Union are centred on the production of
powerful and user-friendly packages, called grid
middle-ware, that aggregates distributed machines
and clusters turning them into one grid system.
The most common grid middle-ware, called
g-Lite€� (founded within the EGEE I-II-III proj-
ects (Jones, 2005)), aggregates more than 60000
CPU from different countries in Europe (Laure
et al., 2006). Another important middle-ware is
called the Advanced Resource Connector (ARC)
(Ellert, 2007), which is used by the researchers
of the Nordic countries, and Switzerland. The
Uniform Interface to Computing Resources
(Unicore) (Streite, 2009) is developed by Jülich
Supercomputing Centre, Germany, with national
foundation. There are more middle-ware that can
provide large grid systems. In the next projects
the European Union will integrate them into one
common and well-designed middle-ware product
that will be able to provide as much computational
and data capacity as possible within Europe for
the scientists for many different research areas.

205

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Scientists in any research areas could use a
general grid system. However some organisations
that provide the grid the computational resources
would like to serve specific areas only. Thus the
grid system could be separated to a set of com-
munities called Virtual Organisations (VO). Any
of the resources can be added to any VO, but all
VO must have dedicated machines as their core
grid components. For instance, the Biomed VO
is available for biological applications to help re-
search into bio-informatics; however any resource
within this VO can be a member of any other VO.
Users must have a membership to at least at one
of the VOs to be able to submit applications to
these resources.

In distributed systems security is more im-
portant than computational performance. In a
general grid system, every user has to have a
digital certificate signed by a regional Certificate
Authority (CA), which means that CA vouches
for the user’s identity. This certificate can allow
its owner to become a member of one or several
Virtual Organisations and therefore makes a grid
system safe from the illegal penetration. On the
other hand, users must hide their digital certificates
to prevent their identity from being stolen. To

reduce the possibility of damage to a grid system
being caused by stealing certificates, the digital
certificate is valid only for one year. The second
safety feature developed for certificates is the
creation of a proxy. In other words the users do
not use their certificate directly to access to the
grid, but instead they use their certificate to create
a temporary certificate called a proxy, and submit
their applications using that proxy. The proxy is
valid for one week. In the gLite middle-ware the
users’ certificates must be stored in a dedicated
component of the grid-system, called the MyProxy
Server, which generates the proxies.

Architecture of EGEE
(Christodoulopoulos et al., 2008)

Figure 1 shows the connection of the major ele-
ments of the EGEE which are explained later in
the chapter.

User Interface

The term “User Interface” (UI) is defined as an
end-point for the users, where they can use grid-
services via a set of user-level command-line tools.

Figure 1. The connection between each element in the EGEE. UI, WMS, BDII, CE, WN, SE, LFC stand
for User Interface, Workload Management System, Berkeley Database Information Index, Computing
Element, Worker Node, Storage Element, Logical File Catalogue, respectively.

206

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

It provides the main functionalities such as check-
ing the status of the available grid-component
machines and grid-resources related to the VO, the
file-transfer between a user interface machine and
grid storage services, job submission, checking a
job’s state and downloading output files. Depend-
ing on the different VO, UI can be official. When
a user gets a membership to a VO community, the
account of the user will be generated on the UI.

As all users have their own account in the
UI, they work in their own user-space. The lim-
ited space can be a bottleneck for real and data-
intensive algorithms, because the basic usage of
EGEE assumes that the source code and the input
files are all in the UI at the job submission stage.

Computing Element
and Worker Node

From the viewpoint of job execution, the most
important component of the grid is the Comput-
ing Element(CE). The CE can be defined as an
end-point of a set of execution resources, i.e., the
Worker Nodes (WNs). The CE provides various
execution queues. These are generally First-In-
First-Out queues that can be used to place a wide
range of jobs.

WNs are the machines,where the real jobs,
such as shell scripts, Fortran, or java codes, are
executed. The worker nodes are members of a
distributed and shared memory cluster using the
shared file-system. WNs can execute massively
parallel applications such as MPI jobs. A job runs
on a generated user-space (created and managed
by the middle-ware) with a really strict disk space
limitation (1-200 Mb). This means that one job, if it
does not use remote storage services supported by
the grid system in runtime, can not generate large
output files that are greater than local disk space.

Workload Management System

In the gLite middle-ware every job-submission is
sent to a machine called a Workload Management

System (WMS), which can be used as a broker
service. Generally a user does not know which
resource executes his or her job prior to the job
submission. A user can request that the WMS
makes an automated decision, which allocates
the job to the best resource based on the job’s
requirements. To save the WMS server from the
overloading, arriving jobs are placed in a queue,
and always the first job is processed and sent to
its selected resource.

Storage Element

One of the advantages of grid systems is the
large data-storage capability. Machines, where
the storage component of the gLite middle-ware
has been installed, are called Storage Elements
(SE). Although the accessibility of the SE strongly
depends on the network, theoretically they are
accessible from every WN in every CE.

Logical File Catalogue

We usually prefer sorting our remote files (files
that can be stored in several storage elements) in
a logical structure, similar to a normal file-system
i.e., in a directory structure. The Logical File
Catalogue (LFC) service provides this function.
LCG can be used to show or manipulate remote
files in a logical order.

Berkeley Database Information Index

The Berkeley Database Information Index (BDII)
was developed to store and provide information
about each available resource in the distributed
system. It is used by the end-users to explore the
load of the resources, and by the WMS to get the
availability of a claimed resource, or make a deci-
sion which resource fits for the user’s requirement.

207

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Job Submission Procedure

The job submission requires users to follow the
procedure given here:

1. 	 Login to the official UI (generally via ssh)
of the VO.

2. 	 Upload the certificate to the MyProxy server
to thus create a temporary Certificate called
a proxy.

3. 	 Copy the necessary input files and execut-
ables to the UI machine ready to submit a
job.

4. 	 Create a Job Description Language (JDL)
file to describe the executable files, the
input files, command line arguments, and
any restrictions for the resource where the
job should be executed.

After this user’s procedure, the following
procedure is taken by the drig and its resource
broker to run a job:

1. 	 All the files described in the JDL file are
transferred to the WMS server.

2. 	 The WMS gets information by querying
BDII server to be able to determine which
CE should be used.

3. 	 The WMS creates log entries to allow status-
checking and debugging of the system.

4. 	 The WMS matches the user’s requirements
with the available resources and sends the
job to the possible CE.

5. 	 The CE transfers the job to the Worker Nodes
(WN).

6. 	 The WN accesses the files in SE directly
using an API or LFC server.

7. 	 When a job generates a remote output file in
the SE, a command-line provided by gLite
can be used to download files (not a direc-
tory) to anywhere.

Adaptation of Our Code to EGEE

Disk Restriction to Run a Job in WNs

Each WN has a very limited amount of disk space.
As described in the section on the nature of the
computation of the FD-FDTD methods, each core
reads a file with a size of 1GB or more to make
up the data for the entire digital human phantom.
This file size easily exceeds the upper-limit of
each WN’s disk space. Therefore the one large
file (one digital human phantom) was separated
in the z direction, i.e., the direction of the human
height. For example, if a 175 cm-height digital
human phantom is meshed every 1mm, then
there are 1750 files to read at the beginning of
the FDTD computation. Since the parallelisation
is implemented in the z direction, each core reads
the z= a constant number of slices which the core
needs. For example, if there are 10 cores, then
each core reads 175 files.

Solution Using SE

The large output data can not be left on the Worker
Nodes in the CE. The obvious and immediate
solution to use the EGEE was to make use of the
SE. We implemented several shell scripts to move
the output data file from each Worker Node in the
CE to the SE on-the-fly. At the end of each data
production step, every WN transfers its output to
the SE and deletes the output file in WNs as soon
as this file copy is completed. With this approach,
there is a high possibility that many of the WNs
will try to access the same harddrive in the SE at
the same time. After the completion of the job, all
output files were transferred to the local cluster
in Manchester for data post-processing.

Unfortunately this approach did not work per-
fectly. Ideally all files produced in the CE should
have been transferred to the SE. However, 20-
30% of the output files were left in CE and were
not copied into the SE. Intensive investigation
revealed that there were some bugs in the lcg-cp

208

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

command itself. This means that we should not rely
on the Unix command lcg-cp for the file transfer
and that we should have an alternative storage
space for the transfer of the output data from the
WNs. Our local cluster in Manchester had disk
space enough to accommodate the massive data
produced on the EGEE. Since the Unix command
lines which the EGEE provides does not include
the communication between the WNs in the CE
and the computers outside the EGEE, we had to
create our own mechanism for this data transfer.

Solution Without SE

After a long period of trial and error, the final
solution to our main problem of how to handle the
large data I/O was to use the direct communica-
tion between the WNs and our local cluster. This
section describes the final solution in detail by
showing the shell scripts which can be adapted to
any similar situation and is independently to the
programming language e.g., C or Fortran.

We first created the RSA private and public
key on the UI machine by typing ‘ssh-keygen
-t rsa’ in order to perform the file access or the
file transfer from the UI machine to the local
cluster in Manchester without any passwords.
The public key (id_rsa.pub) on the UI machine
is copied into ‘$HOME/.ssh/authorized_keys’ on
the local machine in Manchester. The private key
should be cent to the CE together with the job.
Hence the WNs can access our local cluster in
Manchester with this key. To make this method
work, the file ‘known_hosts’has to be placed in
the directory ‘$HOME/.ssh/’ on each WN. To
achieve this To achieve this, our Fortran code
calls the following shell script immediately after
the MPI initialisation:

#!/bin/sh

mkdir $HOME/.ssh/

cp ‘pwd’/known_hosts $HOME/.ssh/

known_hosts

chmod 400./id_rsa

All the participating WNs call this shell script.
This shell script makes the secure copy possible
between the WNs and our local cluster using the
Unix command ‘scp’.

Every time a large output data file is produced
at each WN the Fortran code calls the shell script
presented in Appendix A to transfer the data file
from the WNs to our local cluster in Manchester.

This shell script is named copy.sh and called
just after each data is produced as follows:

open(unit=70+rank, file=dirfile,

access=”sequential”, &

form=”formatted”,status=”new”,iostat

=err)

do k=zs, zf

do i=0, nx+1

do j=0, ny+1

write(70+rank,”(3I6, 1E11.3)”) i, j,

k+zi, &

Hx(i,j,k),Hy(i,j,k),Hz(i,j,k),Ex(i,j,

k),Ey(i,j,k),Ez(i,j,k)

end do

end do

end do

cmd = “chmod 775./copy2SE.sh;./

copy2SE.sh ” // dirfile

call system(cmd)

close(unit=70+rank)

Here, the variable ‘rank’ is the number of each
core in the MPI-world. It is important that the
shell script ‘copy.sh’ has to be called before the
file port closure at ‘close(unit=70+rank)’.

The line ‘sleep 5’ in ‘copy.sh’ needs special
care; if this value is too small and with a heavily
loaded network or long-distance file transfer, some
files may not be transferred.

209

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

An almost identical shell script presented in
Appendix B is called just before reading the input
data in order to transfer the input data from our
local cluster in Manchester to the WNs. The dif-
ference between the two shell-scripts presented in
Appendix A and Appendix B is that the shell-script,
which copies files from the local cluster to the
WNs, does not include ‘rm $1’ because the input
files stored in our local cluster in Manchester were
not to be deleted. After the data was successfully
loaded from one file at each WN, the data file in
the WNs is swiftly deleted by calling the Unix
command from the Fortran code.

The JDL file job.jdl for this job reads:

JobType = “MPICH”;

NodeNumber = 30;

Executable = “mpi-start-wrapper-f90.

sh”;

Arguments = “fdtd-3d OPENMPI”;

StdOutput = “mpi-test.out”;

StdError = “mpi-test.err”;

InputSandbox = {”all.tar.gz”,”mpi-

start-wrapper-f90.sh”};

OutputSandbox = {”mpi-test.err”,”mpi-

test.out”};

Environment = {”LFC_HOST=lfc-biomed.

in2p3.fr”,”LCG_CATALOG_TYPE=lfc”};

RetryCount = 10;

Requirements =

Member(“MPI-START”, other.GlueHostAp-

plicationSoftwareRunTimeEnvironment)

&& Member(“OPENMPI”, other.Glue-

HostApplicationSoftwareRunTimeEnvi-

ronment)

&& other.GlueCEInfoHostname==”grid10.

lal.in2p3.fr”

Here, the compressed file ‘all.tar.gz’ includes
the Fortran code, the Makefile for the Fortran
code, the two shell scripts mentioned above, the
files called ‘id_rsa’, ‘ known_hosts’, and a shell
script used to compile the Fortran code with the

Makefile. When this JDL file is submitted via the
command ‘glite-wms-job-submit -a -c glite_wms.
conf job.jdl’, the file ‘mpi-start-wrapper-f90.sh’
and the file ‘all.tar.gz’ are placed on each WN.
Then the shell script mpi-start-wrapper-f90.sh on
each WN acts by:

1. 	 Un-zips and then un-tars the file ‘all.tar.gz’;
2. 	 Runs a shell script to compile the source

code;
3. 	 And finally runs the MPI job using 30 cores.

Arguments suggests the arguments for the shell
script ‘mpi-start-wrapper-f90.sh’ and the standard
output message and the error messages of the job
are written into the output files s ‘mpi-test.out’
and ‘mpi-test.err’. They can be downloaded at
the UI after the job is completed using the Unix
command:

’glite-wms-job-get-output’ provided

by gLite.

In this example the JDL file, the CE is spe-
cific to one site. At this site, there are 80 cores
and each core has 2GB of memory. The level of
the memory availability is the same as the local
cluster in Manchester. However, at another site
(gridgate.cs.tcd.ie), there are 768 cores but each
core has 0.5 GB of memory. As mentioned in the
section on Computation in Electromagnetics, this
in-house software achieves the high computational
efficiency when the each FDTD subspace is large
enough to cover the cost of the communication
between cores. When we use ‘gridgate.cs.tcd.ie’
instead of ‘grid10.lal.in2p3.fr’ as a CE for the
same amount of the total FDTD space (i.e., the
same amount of total memory usage), we need
4 times as many cores as required at ‘grid10.lal.
in2p3.fr’, leading to the lower throughput than the
site at ‘grid10.lal.in2p3.fr’ and the computational
efficiency is less than the site at ‘grid10.lal.in2p3.

210

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

fr’ due to the increase of the ratio of border area/
(FDTD subspace).

The result from this data input/output approach
is very promising because:

1. 	 All (100%) of the output/input files are
transferred between the local cluster and
the EGEE site.

2. 	 The overall elapsed time for a job to complete
including the data transfer is significantly
shorter than the approach using the SE and
LFC.

Although this approach was developed to run
our program on the EGEE, it is entirely applicable
to any other case where each core produces a sig-
nificant amount of data at a separate disk space
and the disk space is limited at each core.

FUTURE RESEARCH DIRECTION

In order to perform further speed-up of the com-
putation for the practical use, the computation
method of the Maxwell equations and the method
to handle the data I/O has to be improved.

Improvement of the
Computational Algorithm

The explicit scheme is a simple algorithm and
highly parallelisable, ideal for a grid computing
environment. However, since the temporal discre-
tisation cannot be set independently of the spatial
discretisation, one has to run the many FDTD
iterations for the fine spatial sampling. This is an
inefficiency of the FDTD computation that can
be overcome by modifying the algorithm. One of
the ways to do so is the development of implicit
methods by removing the CFL stability condi-
tion. These implicit schemes can set an arbitrary
Δt independently of Δs for a stable computation.
The Crank-Nicolson implicit method (Crank and
Nicolson, 1947) was proposed for this purpose.

However, the Crank-Nicolson implicit method
includes solving a huge sparse matrix. Therefore
at the time when it was invented the ordinary
computers were not able to run the Crank-Nicolson
code with ease.

In order to solve the Crank-Nicolson implicit
method without handling the sparse matrix, a
mathematical error was deliberately put into the
original Crank-Nicolson based Maxwell’s equa-
tions and the method successfully removed the
sparse matrix(Peaceman and Rachford Jr., 1955)
from the algorithm. Instead it handles the tri-
diagonal matrix (Douglas, 1955). This alternating
direction implicit technique was applied to the
FDTD method (Zheng et al., 1999; Costen and
Thiry, 2004) and became the standard implicit
method. However, the ADI-FDTD method is dif-
ficult to implement serially and furthermore in a
parallel manner due to the heavy communication
between the cores. Therefore there are many other
implicit schemes that are currently studied(Rouf
et al., 2009b).

In reality, the increase of Δt escalates the nu-
merical error. Therefore in the case of the implicit
scheme, the practical upper limit of Δt is set by
relation to an acceptable level of numerical noise.
This means the implicit scheme itself is not going to
achieve a dramatic improvement in computational
speed. The implicit scheme shines when the FDTD
space needs to be meshed very finely (but usually
not the entire FDTD space needs to be meshed);
a very localised space needs to be meshed finely;
otherwise a coarse meshing is acceptable. In this
case, the subgridding techniques (Bérenger, 2006;
Costen and Bérenger, 2009) can be used to reduce
the total number of voxels. The reduction of the
total voxel numbers can also be achieved by using
a very efficient and powerful boundary condition
(Bérenger, 2007). Usually the boundary condition
is one of the most computationally expensive
places in the whole computation. Thus utilisation
of the most computationally efficient boundary
condition is of primary importance.

211

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Improvement on the Data
Input and Output

As mentioned, the digital human phantom was
sliced in the direction of its height. As you can
imagine, the data gradually changes slice by slice
in z direction. The difference between the slices
can be significantly smaller than the size of the
original data. Thus, one way to improve the data
input is a reduction in the data algorithmically.
The information which gives the difference from
the neibouring slice can be used rather than the
raw digital human phantom. Although this method
requires the computation to reproduce the digital
human phantom in the FDTD code, the computa-
tion cost in time for this will be still significantly
smaller than the data transfer cost saving in time. In
order to reduce the amount of the data output, high
data compression techniques such as HDF can be
used as mentioned in the section on Computational
environment. However, the implementation of
HDF in the source code is not straightforward and
HDF is not always available. Therefore a method,
which uses the general machine-independent tool
such as very general Linux/Unix commands,
should be invented.

CONCLUSION

Many researchers who make use of high per-
formance computing facilities face the situation
where their computational architecture is changed
either suddenly or gradually over time. This can
be intentional or out of their control. In either
case, this is the nature of computational research
because the computational cost, the computational
performance, and the funding for their research
activities changes all the time. To be able to sur-
vive under any circumstances the researchers,
who implement their algorithms in software,
have to pay attention to the possible re-use of
their software, the ease of reading the software,
the computational efficiency, and the portability.

This chapter first introduced the nature of our
computation by presenting the core equations. It is
highly parallelisable, suitable for grid computing
apart from the need for the high data I/O and large
computational memory per core.

EGEE was chosen to be our next computational
facility because it is available to our research
group free of charge. However, EGEE, as it is,
was not suitable for the application which has a
high demand on data I/O.

This problem and the solution to our code port-
ing to a new and novel computational architecture
of EGEE are the main points of this chapter. The
same solution can be taken by people who are
suffering from the computational architecture
with weak data I/O.

Finally some suggestions on the performance
improvement were proposed from the viewpoint
of the computational algorithm and the data I/O.

ACKNOWLEDGMENT

The authors wish to thank Dr. Matthieu Bonilla
at EADS Nucletudes, France for the constructive
technical discussions for the parallel code produc-
tion and performance improvement, Pierre Girard,
Yannick Legre, Carles Loomis, Stephen Childs
for the practical advice on the usage of EGEE.

REFERENCES

Abalenkovs, M., Costen, F., Lucas, C., & Brown,
A. (2008). Data format selection for an I/O-
intensive large-scale FDTD. In IEEE International
Symposium on Antennas and Propagations USNC/
CNC/URSI Radio Science.

Bérenger, J.-P. (2006). A Huygens subgridding for
the FDTD method. IEEE Transaction on Antennas
and Propagation, 54.

212

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Bérenger, J.-P. (2007). On the Huygens absorb-
ing boundary conditions for electromagnetics.
Journal of Computational Physics, 226, 354–378.
doi:10.1016/j.jcp.2007.04.008

Carns, P., Ligon, W. B., III, Ross, R. B., & Thakur,
R. (2000). PVFS: A parallel file system for linux
clusters. In 4th Annual Linux Showcase Confer-
ence (pp. 317–328).

Christodoulopoulos, K., Gkamas, V., & Varvari-
gos, E. A. (2008). Statistical analysis and modeling
of jobs in a grid environment. Journal of Grid
Computing, 6, 77–102. doi:10.1007/s10723-
007-9089-1

Costen, F., & Bérenger, J.-P. (2009). Extension
of the FDTD Huygens subgridding to frequency
dependent media. Annals of Telecommunications.

Costen, F., Bérenger, J.-P., & Brown, A. (2009).
Comparison of FDTD hard source with fdtd soft
source and accuracy assessment in debye media.
Transaction on Antennas and Propagation, 57,
2014–2022. doi:10.1109/TAP.2009.2021882

Costen, F., & Thiry, A. (2004). Alternative formu-
lation of three dimensional frequency dependent
ADI-FDTD method. IEICE Electronics Express,
1, 528–533. doi:10.1587/elex.1.528

Coti, C., Herault, T., & Cappello, F. (2009). MPI
applications on grids: A topology aware approach.
(LNCS 5704, pp. 466–477). Berlin/Heidelberg,
Germany: Springer.

Crank, J., & Nicolson, P. (1947). A practical
method for numerical evaluation of solutions of
partial differential equations of the heat conduc-
tion type. Cambridge Philosophical Society, 43,
50–67. doi:10.1017/S0305004100023197

Debye, P. (1929). Polar molecules. New York,
NY: Dover.

Douglas, J. Jr. (1955). On the numerical integra-
tion of Uxx+ Uyy= Utt by implicit methods.
Journal of the Society for Industrial and Applied
Mathematics, 3, 42–65.

Ellert, M. (2007). Advanced resource connec-
tor middleware for lightweight computational
grids. Future Generation Computer Systems, 23,
219–240. doi:10.1016/j.future.2006.05.008

Gabriel, S., Lau, R. W., & Gabriel, C. (1996).
The dielectric properties of biological tissues:
Iii. Parametric models for the dielectric spectrum
of tissues. Physics in Medicine and Biology, 41,
2271–2293. doi:10.1088/0031-9155/41/11/003

Jones, B. (2005). An overview of the EGEE proj-
ect (LNCS 3664, pp. 1–8). Berlin/Heidelberg,
Germany: Springer.

Laure, E., Gr, C., Fisher, S., Frohner, A., Kunszt,
P., & Krenek, A. (2006). Programming the grid
with gLite. Computational Methods in Science
and Technology, 12(1), 33–45.

Li, J., Liao, W., Choudhary, A., & Taylor, V.
(2002). I/O analysis and optimization for an AMR
cosmology application. In IEEE International
Conference on Cluster Computing (pp. 119–126).

Luebbers, R. J., Hunsberger, F., & Kunz, K. S.
(1991). A frequency-dependent finite difference
time domain formulation for transient propagation
in plasma. IEEE Transactions on Antennas and
Propagation, 39, 29–34. doi:10.1109/8.64431

Maaskant, R., Ivashina, M., Mittra, R., Yu, W.,
& Huang, N. (2006). Parallel FDTD modeling
of a focal plane array with vivaldi elements on
the highly parallel LOFAR BlueGene/L Super-
computer. In IEEE International Symposium on
Antennas and Propagation.

Margetts, L., Pettipher, M. A., & Smith, I. M.
(2004). Parafem - performance of a suite of finite
element analysis codes on the cray x1. In 46th
International Cray User Group Conference.

213

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Peaceman, D. W., & Rachford, H. H. Jr. (1955).
The numerical solution of parabolic and elliptic
differential equations. Journal of the Society for
Industrial and Applied Mathematics, 3, 28–41.
doi:10.1137/0103003

Ross, R., Nurmi, D., Cheng, A., & Zingale, M.
(2001). A case study in application I/O on Linux
clusters. In Proceedings of the 2001 ACM Confer-
ence on Supercomputing.

Rouf, H., Costen, F., & Garcia, S. (2009a). 3D
crank-nicolson finite difference time domain
method for dispersive media. IET Electronics
Letters, 45, 961–962. doi:10.1049/el.2009.1940

Rouf, H., Costen, F., Garcia, S., & Fujino, S.
(2009b). On the solution of 3-D frequency de-
pendent crank-nicolson FDTD scheme. Journal
of Electromagnetic Waves and Applications, 23,
2163–2175. doi:10.1163/156939309790109261

Streite, A. (2009). UNICORE: Getting to the heart
of Grid technologies. British Publishers Ltd.

Taflove, A., & Hagness, S. (2005). Computa-
tional electromagnetics. The finite-difference
time-domain method. Boston, MA: Artech House.

Wuren, T., Takai, T., Fujii, M., & Sakagami, I.
(2007). Effective 2-debye-pole FDTD model of
electromagnetic interaction between whole hu-
man body and UWB radiation. IEEE Microwave
Wireless Components Letters, 17, 483–485.
doi:10.1109/LMWC.2007.899295

Zheng, F., Chen, Z., & Zhang, J. (1999). A finite
difference time domain method without the cou-
rant stability conditions. IEEE Microwave Guided
Letters, 9, 441–443. doi:10.1109/75.808026

ADDITIONAL READING

Andreetto, P., Andreozzi, S., Ghiselli, A., Mar-
zolla, M., Venturi, V., & Zangrando, L. (2010).
Standards-based job management in grid systems.
Journal of Grid Computing, 8, 19–45. doi:10.1007/
s10723-010-9146-z

Bérenger, J.-P. (2006). A Huygens Subgridding for
the FDTD method (Vol. 54). IEEE Transaction on
Antennas and Propagation.

Bérenger, J.-P. (2007). On the Huygens absorb-
ing boundary conditions for electromagnetics.
Journal of Computational Physics, 226, 354–378.
doi:10.1016/j.jcp.2007.04.008

Brooke, J. M., Marsh, J., Pettifer, S., Sastry, L.
S., 2006. The importance of locality in the vi-
sualization of large data sets. Concurrency and
Computation: Practice and Experience.

Carns, P., Ligon, W. B., III, Ross, R. B., & Thakur,
R. 2000. PVFS: A parallel file system for linux
clusters. In: 4th Annual Linux Showcase Confer-
ence. pp. 317–328.

Carver, G., Roy, K., & Stringfellow, N. 2005.
Using single sided communications to aid load
balancing. In: SGI User Group.

Costen, F., & B’erenger, J.-P. (2009). Extension
of the FDTD Huygens subgridding to frequency
dependent media. Annals Telecommunication.

Coveney, P. (1833). 2005. Scientific grid com-
puting. Philosophical Trans. Royal Soc. A, 363,
1707–1713. doi:10.1098/rsta.2005.1632

Foster, I., 2002. What is the grid? a three point
checklist. Technical report, GRIDToday.

Gagliardi, F., Jones, B., Grey, F., Bgin, M.-E.,
Heikkurinen, M., 2005. Building an infrastructure
for scientific grid computing: status and goals of
the EGEE project. Philosophical Transactions of
the Royal Society. A 363 (1833),pp. 1729–1742.

214

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Germain-Renaud, C., Loomis, C., Mo’scicki, J.,
& Texier, R. (2008). Scheduling for responsive
grids. Journal of Grid Computing, 6, 15–27.
doi:10.1007/s10723-007-9086-4

Guiffaut, C., & Mahdjoubi, K. (2001). A parallel
FDTD algorithm using the MPI library. IEEE
Antennas and Propagation Magazine, 43, 94–103.
doi:10.1109/74.924608

Guy, A. Schiavone, G. A., Codreanu, I., Palaniap-
pan, R., Wahid, P., 2000. FDTD speedups obtained
in distributed computing on a Linux workstation
cluster. In: IEEE International Symposium on
Antennas and Propagations USNC/CNC/URSI
Radio Science Meeting.

Jimenez-Peris, R., Patino-Martinez, M., &
Kemme, B. (2007). Enterprise grids: Challenges
ahead. Journal of Grid Computing, 5, 283–294.
doi:10.1007/s10723-007-9071-y

Jones, B. 2005. An overview of the EGEE project.
Vol. 3664. Springer Berlin / Heidelberg, pp. 1–8.

Kenn, E., Coghlan, B., Tsouloupas, G., Dikaiakos,
M., Walsh, J., Childs, S., et al. 2005. Heteroge-
neous Grid Computing: Issues and Early Bench-
marks. Vol. 3516. Springer Berlin / Heidelberg,
pp. 870–874.

Kong, J. A. (1975). Theory of Electromagnetic
Waves. John Wiley.

Lingrand, D., Montagnat, J., Martyniak, J., &
Colling, D. 2009. Analyzing the EGEE Production
Grid Workload: Application to Jobs Submission
Optimization. Vol. 5798. Springer Berlin / Hei-
delberg, pp. 37–58.

Montagnat, J., Glatard, T., Plasencia, I., Castej’on,
F., Pennec, X., & Taffoni, G. (2008). Workflow-
based data parallel applications on the egee
production grid infrastructure. Journal of Grid
Computing, 6, 369–383. doi:10.1007/s10723-
008-9108-x

Pacitti, E., Valduriez, P., & Mattoso, M. (2007).
Grid data management: Open problems and new
issues. Journal of Grid Computing, 5(3), 273–281.
doi:10.1007/s10723-007-9081-9

Pickles, S. M., Blake, R. J., Boghosian, B. M.,
Brooke, J. M., Chin, J., Clarke, P. E. L., et al.
2004. The teragyroid experiment. In: Workshop
on Case Studies on Grid Applications.

Rouf, H., Costen, F., Garcia, S., & Fujino, S.
(2009). On the solution of 3-D frequency de-
pendent crank-nicolson fdtd scheme. Journal
of Electromagnetic Waves and Applications, 23,
2163–2175. doi:10.1163/156939309790109261

Taflove, A., & Hagness, S. (2005). Computational
Electromagnetics. The finite-difference Time-
domain method. Boston, MA: Artech House.

Varadajaran, V., & Mittra, R. (1994). Finite-
difference time domain analysis using distributed
computing. IEEE Microwave Guided Wave Let-
ters., 4, 144–145. doi:10.1109/75.289515

Vazquez-Poletti, J.-L., Huedo, E., Montero, R., &
Llorente, I. 2006. Execution of a Bioinformatics
Application in a Joint IRISGrid/EGEETestbed.
Vol. 3911. Springer Berlin / Heidelberg, pp.
831–838.

Walsh, J., Coghlan, B., & Childs, S. 2010. An
Introduction to Grid Computing Using EGEE.
Vol. 791. Springer Berlin /Heidelberg.

Wang, J., Fujiwara, O., Watanabe, S., & Yamanaka,
Y. (2004). Computation with a parallel FDTD
system of human-body effect on electromagnetic
absorption for portable telephones. IEEE Transac-
tions on Microwave Theory and Techniques, 52,
53–58. doi:10.1109/TMTT.2003.821232

Weedon, W. H., & Rappaport, C. M. (1997). A
general method for FDTD modeling of wave
propagation in arbitrary frequency dispersive
media. IEEE Transactions on Antennas and
Propagation, 45, 401–410. doi:10.1109/8.558655

215

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

Yu, W., Liu, Y., Su, T., Hunag, N.-T., & Mittra,
R. (2006). A robust parallel conformal finite-
difference time-domain processing package using
the mpi library. IEEE Antennas and Propagation
Magazine, 47, 39–49.

KEY TERMS AND DEFINITIONS

Code Porting: Usually a software/code is
developed with a specific computational environ-
ment in mind. Therefore when a code written in
one computational environment is going to be
run in another computational environment, some
part of the code has to be modified. The activity
to make a code that runs on one machine usable
in the other machine is called code porting.

Computational Electromagnetics: Research
on the electromagnetic wave propagation using
the computational facility

Enabling Grids for E-sciencE(EGEE): A
grid-project that provides large computational
resources connected via the Internet and founded
by European Union. Applications must be paral-
lelized in order to benefit from EGEE.

Finite Difference Time Domain (FDTD)
Method: One of the most simple and powerful
method to solve Maxwell equations for the numeri-
cal simulation of the ElectroMagnetic(EM) wave
propagation. Maxwell equations are temporally
and spatially discretised. The basic equations are
repeatedly executed at each FDTD iteration. The
outcome of the FDTD simulation is the signal
signature(waveform) in time domain.

Grid Computing: Computations using a
computational grid facility that consists of many

computational or data-store resources. The soft-
ware program that contains the computation has
to take into account the fact that there are many
computational cores in many nodes.

Job Management: Scheduling and managing
computational requests to a particular computing
element. In cases where there are more than one
user in a grid computing facility, their computa-
tional requests (jobs) are submitted to one location.
These jobs are ranked in priority and placed at the
individual computational nodes.

Message Passing Interface: A programming
language-independent specification that provides
a multimode communication protocol. Data Input/
Output: activity to read/load data from data files
and to produce data files of the computation result.

Numerical Methods: The study on how to
solve equations accurately and efficiently from
the viewpoint of the computation.

Parallel Code: When there are many cores
in many nodes in a computational environment,
a code which uses a single core for computation
can be modified so that a big task in the code can
be divided into many little tasks and each little
task is handled by one node and many nodes work
for this single and big task at the same time. The
code modified in this way is called parallel code
which can make use of more than one machines
in a single run and run on more than one machine
simultaneously.

Security: Some information on the users and/
or the administrators in the computational facility
has to be kept secret. Security addresses the meth-
ods available that keep the computational facility,
including the private data within the facility safe.

216

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

APPENDIX A

A shell script to transfer a data file from a worker node to a computer outside EGEE:

#!/bin/sh

./VariableSetting.sh

REMOTE_FOLDER=”$USER”@$MACHINE

FILENAME=$1

CUT_FILENAME=’echo $1 | cut –d/ -f2’

LOCAL_FOLDER=’pwd’

 COUNT=1

 while [$COUNT –lt 10];

 do

sleep 5

scp -vC -P $PORT –I ‘pwd’/id_rsa

$LOCAL_FOLDER/$FILENAME $REMOTE_FOLDER:$REMOTE_PATH$CUT_FILENAME

 SUCCESS=$?

 if [SUCCESS –EQ 0];

 then

 COUNT=10

 else

 COUNT=’ expr $COUNT + 1 ‘

 fi

 echo $COUNT

 done

rm $1

217

Opportunities and Challenges in Porting a Parallel Code from a Tightly-Coupled System

APPENDIX B

A shell script to transfer a data file from a computer outside EGEE to a worker node:

#1/bin/sh

./VariableSetting.sh

REMOTE_FOLDER=”$USER”@$MACHINE”

FILENAME=$1

CUT_FILENAME=’ECHO $1 | cut –d/ -f2’

LOCAL_FOLDER=’pwd’

COUNT=1

while [$COUNT –lt 10];

do

sleep 0.01

scp –C –P $PORT –I ‘pwd’/id_rsa

$REMOTE_FOLDER:$REMOTE_PATH$CUT_FILENAME $LOCAL_FOLDER/$FILENAME

SUCCESS=$?

if [$SUCCESS –eq 0];

 then

 COUNT=10

 else

 COUNT=’ expr $COUNT + 1 ‘

 fi

done

