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Uncertainty analysis on FDTD computation with
artificial neural network
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Abstract—The artificial neural network (ANN) has appeared as
a potential alternative for uncertainty quantification (UQ) in the
finite difference time domain (FDTD) computation. It is applied
to build a surrogate model for the compute-intensive FDTD
simulation and to bypass the numerous simulations required
for UQ. However, when the surrogate model utilizes the ANN,
a considerable number of data is generally required for high
accuracy and generating such large quantities of data becomes
computationally prohibitive. To address this drawback, a number
of adaptations for ANN are proposed which additionally improves
the accuracy of the ANN in UQ for the FDTD computation while
maintaining a low computational cost. The proposed algorithm
is tested for application in bioelectromagnetics and considerable
speed-up, as well as improved accuracy of UQ, is observed
compared to traditional methods such as the non-intrusive
polynomial chaos method.

Index Terms—Artificial neural network (ANN), uncertainty
quantification (UQ), finite difference time domain (FDTD), Debye
media, biological tissues

I. INTRODUCTION

The finite difference time domain (FDTD) method [1],
[2] is a well-proven technique for transient and full-wave
numerical simulation of the propagation of electromagnetic
waves in inhomogeneous media. It is especially applied in
bioelectromagnetics for numerical simulations. However, in
the FDTD simulation of the human body, the input param-
eters, such as the complex permittivities of human tissues,
are determined from measurements of dielectric properties
with typical uncertainty of ±10%. The ambiguity of these
input parameters results in a degree of uncertainty in the
system response, and subsequently the system response cannot
be precisely determined. Therefore, in order to increase the
reliability and accuracy of FDTD simulations, it is necessary
to quantify the impact of uncertainties of input parameters on
the system responses.

This paper addresses the uncertainty analysis of FDTD sim-
ulations of the human body, where a digital human phantom
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(DHP) [3] is utilized as an equivalent human model, and
the one-pole Debye model [4] is implemented in the FDTD
computation to characterize the complex frequency-dependent
behaviour of the biological tissues. Each tissue in the DHP is
associated with Debye parameters which are subject to some
degree of uncertainty, leading to different frequency responses
among the population. This problem is known as forward
uncertainty quantification (UQ) or the uncertainty propagation.

Various UQ techniques have been proposed in the last
decades. The traditional Monte Carlo Method (MCM) [5]
proves to be inappropriate for UQ because a considerable
number of FDTD simulations is required to reach a reasonable
level of convergence. There exist some ideal alternatives to
MCM, such as the non-intrusive polynomial chaos (NIPC)
expansion method [6], [7], and the stochastic collocation
based method [8]. However, both methods cannot efficiently
handle the high-dimensional UQ problems, due to the curse of
dimensionality [9] whereby the number of required simulations
substantially grows when the number of random variables
increases. Although various techniques, such as the hyperbolic
scheme [10] and the analysis of variance (ANOVA) decom-
position method [11], are applied to reduce the impact of the
curse of dimensionality, the computational cost associated with
the system simulations remains high.

Many advanced UQ techniques have been proposed over the
last decade to alleviate the curse of dimensionality and improve
the accuracy of UQ [12]–[14]. Ideas behind these techniques
include sparse strategies [15], [16], surrogate modelling [17],
model order reduction [18] and hierarchical approach [19],
[20]. The surrogate modelling technique, which builds a
simpler equivalent model for the original complex system, is
an ideal candidate for the UQ of computationally-intensive
systems. A surrogate model has the potential to accurately
predict the system outputs and it allows to bypass thousands of
otherwise necessary system simulations, thereby significantly
improving the efficiency of traditional methods such as MCM
and NIPC.

The artificial neural network (ANN) [21]–[23] has become
one of the most promising surrogate modelling techniques,
owing to its high flexibility and learning capability. This paper
studies the ANN in UQ for the FDTD computation. The ANN
model is trained using the data which include the input samples
of Debye parameters and the desired outputs obtained from
the FDTD simulations. In general, the accuracy of ANN can
be improved by increasing the number of data. However, this
way may lead to the computational inefficiency in UQ for the
compute-intensive systems, such as the 3-dimensional (3D)
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FDTD simulation. In order to improve the accuracy of ANN in
UQ for the FDTD computation without increasing the number
of system simulations, an activation function of ANN [24] is
proposed.

The proposed activation function is inspired by the NIPC
expansion and the work in [18]. The quadratic NIPC expan-
sion, i.e. with the order of polynomials restricted to two, was
demonstrated to provide sufficient accuracy [25] for the UQ for
the FDTD computation. When multiple random variables are
considered, it may be useful to treat each random variable as
a single uncertain input while the remaining random variables
are considered as constants [18]. The proposed activation func-
tion is therefore devised using the quadratic NIPC expansion
for one random variable. This proposed activation function is
also known as the polynomial activation function, which had
been utilized on various applications of ANN. However, it has
never been applied to quantify the uncertainty of the FDTD
results.

The novelty of this paper lies in both the application and
the method.
• In terms of the application, we analyse the uncertainty of

the 3D FDTD simulations of the human body. The DHP
used in this work is derived from the medical imaging of
a healthy male subject. This representative model of the
human body is used to produce the experimental results
of UQ that are consistent with reality.

• In terms of the method, we utilize the ANN for UQ
of the FDTD computation, where two techniques are
proposed to improve the efficiency and accuracy of UQ
via the ANN. Firstly, we propose an activation function
specified for the FDTD computation. This enables the
ANN to build an accurate surrogate model for the FDTD
computation from limited data, and thus improves the
efficiency and accuracy of UQ. Secondly, we introduce a
series of termination criteria to the ANN to prevent the
potential risk of overfitting [26] that usually occurs when
the data is insufficient, thereby maintaining the accuracy
of UQ.

This paper is organised as follows: Section II explains the
principles of the ANN, and the proposed adaptations for the
ANN. Section III details the numerical experiments for UQ
by the MCM and the proposed method. Finally, the results
obtained using these different techniques are presented and
the merits of the proposed method evaluated.

II. METHODOLOGY

In the FDTD calculations, the relationship between electric
field E and the electric flux density D in one-pole Debye

model is written as [27] D = ε0

[
ε∞ +

εS − ε∞
1 + ωτ

+
σS
ωε0

]
E,

where ε0 is the permittivity of vacuum, εS is the static
permittivity, ε∞ is the optical perimittivity, ω is the angular
frequency,  is the imaginary unit satisfying  =

√
−1, σS

is the static conductivity, and τ is the relaxation time. Each
tissue in the DHP is associated with four Debye parameters
(σS , ε∞, εS , τ ).

We assume there are K independent Debye parameters
of interest satisfying the normal distribution and M sets

of input samples to an ANN. These K Debye parameters
are considered as uncertain inputs and they are expressed
in a vectorial form of ξ = [ξ1, ξ2, · · · , ξK]

T . We define
ξ(m) as the m-th sample of ξ for 1 ≤ m ≤ M. Apart
from these K Debye parameters, input parameters in the
FDTD simulation, such as the location of the excitation, are
treated as constant. Since the specific absorption rate (SAR)
is usually of interest in bioelectromagnetics applications,
the square of the electric field |E|2 is considered the
output of the FDTD simulation calculated as in |E|2 =∑
n̂

(∣∣∣E n̂
x (̂i, ĵ, k̂)

∣∣∣2 +
∣∣∣E n̂

y (̂i, ĵ, k̂)
∣∣∣2 +

∣∣∣E n̂
z (̂i, ĵ, k̂)

∣∣∣2),

where (̂i, ĵ, k̂) is the point location of the observation and
n̂ is the FDTD time step. Fig. 1 is an example showing

how the uncertainty of Debye parameters of εS and ε∞ for
muscle affects the FDTD response |E|2 in the 3-dimensional
FDTD simulations, in which εS and ε∞ are varied from
−10% to 10% simultaneously by steps of 2%. Details of the
experimental setup for Fig. 1 are presented in Section III. It is
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Fig. 1. Impact of uncertain Debye parameters of muscle on the system
response

observed that the uncertainties of εS and ε∞ induce a variation
of up to 16% for the FDTD response |E|2. Furthermore,
it is important to note that the numerical experiments of
Fig. 1 only consider the uncertainties of Debye parameters
from one tissue, i.e., muscle. When multiple uncertain Debye
parameters of tissues are considered, the FDTD response
cannot be simply determined and it is therefore crucial to
estimate the uncertainty of the FDTD response induced by
these uncertain Debye parameters. This paper proposes an
adaptive ANN to quantify the uncertainty of the FDTD
simulation, in which a number of adaptations are introduced
to the ANN aiming at improving the performance of the
ANN in UQ. Details of the proposed method are presented
as follows.

A. The architecture of ANN

The ANN is a machine learning algorithm utilized to model
the underlying relationships between the input parameters and
system output. An ANN typically has three types of layers of
input, hidden and output layers. In this paper, the neurons in
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the input layer represent the uncertain Debye parameters and
the neuron in the output layer indicates the output of the ANN
which is a single scalar of the prediction of |E|2.

Each neuron in the hidden layer receives its input T from
the previous layer and converts T to the input of the successive
layer by an activation function f (T ). We form a set of data

pairs from the input ξ(m) and the desired output
∣∣∣E(m)

∣∣∣2 and
train the ANN in order to optimise the weights of ANN which

enables the ANN to make an accurate prediction of
∣∣∣E(m)

∣∣∣2
for any input ξ(m).

B. Polynomial activation function

This paper proposes a polynomial activation function to
improve the accuracy of ANN in predicting the output of the
FDTD computation. We define this activation function as

fp (T ) = T + T 2. (1)

This polynomial activation function is inspired by [18] and
the NIPC expansion method. The work in [18] quantifies the
uncertainty of the system K times when a system has K
parameters. [18] considers only one parameter as an uncertain
input at one time and the remaining K − 1 parameters are
treated as constants. Thus, the number of polynomials is
calculated based on the case of one parameter instead of K
parameters thereby alleviating the curse of dimensionality.

The quadratic NIPC expansion method [25] achieves a high
accuracy in estimating UQ for the FDTD computation. When a
system has one random Debye parameter satisfying the normal
distribution, ψ0(ξk) = 1, ψ1(ξk) = ξk, ψ2(ξk) = ξk

2 − 1 are
the quadratic Hermite polynomials. The NIPC expansion is

formed by three polynomials as in
2∑

α=0

dαψα(ξk), where dα

is a coefficient of ψα(ξk). We set dα for 0 ≤ α ≤ 2 to 1 for
the sake of simplicity. Replacing ξk with T , we design (1) as

in fp (T ) =

2∑
α=0

ψα(T ).

C. ANN with multiple hidden layers

The ANN with one hidden layer may underperform on the
accuracy of the prediction of the system output when it is used
to model a complex system. In such circumstances, multiple
hidden layers are required. This paper defines an ANN with
two hidden layers of the 1st-hidden layer with G1 neurons
and the 2nd-hidden layer with G2 neurons.

Training an ANN with multiple hidden layers mainly in-
volves three stages of forward propagation, backpropagation
and the update of weights. Let ξk(m) be the m-th sample of ξk
used for the FDTD computation and X (M) =

{
ξ̃k

(m)
,m =

1 ∼M, k = 1 ∼ K
}

be a normalised sample set, where ξ̃k
(m)

is the normalised ξk(m). In the stage of forward propagation,
we calculate the output of ANN by

Ê = fp
(
fp
(X (M)W1

)W2

)W3, (2)

where the matrix W1 = {W1(kg1)
, k = 1 ∼ K, g1 = 1 ∼ G1}

consists of the weights between the input layer and the 1st-
hidden layer.W1(kg1)

indicates the weight between k-th neuron
in the input layer and g1-th neuron in the 1st-hidden layer.
W2 = {W2(g1g2)

, g1 = 1 ∼ G1, g2 = 1 ∼ G2} refers to
the weights between the 1st-hidden layer and the 2nd-hidden

layer, and W3 =
[
W3(1) ,W3(2) , . . . ,W3(G2)

]T
indicates the

weights between the 2nd-hidden layer and the output layer.
Furthermore, when the input to fp in (1) is a matrix or vector,
the operation in fp is element-wise.

The stages of backpropagation and update of weights are
based on the gradient descent method. The ANN updates
its weights in order to minimize the loss function of L =
1

2
(Ê−E)2, where E =

[∣∣∣E(1)
∣∣∣2 , · · · , ∣∣∣E(M)

∣∣∣2]T is a vector

consisting of M |E|2 obtained from the M FDTD simula-
tions. The procedure for forward propagation, backpropagation
and update of weights is called an ANN iteration. Let Wi

(j)

for i = 1 ∼ 3 be the weights of the ANN at j-th ANN
iteration. The ANN updates its weights as in

Wi
(j+1) = Wi

(j) − ηfp (T i−1)
(j)T

δi
(j) for i = 2, 3

W1
(j+1) = W1

(j) − ηX (M)
T
δ1

(j),
(3)

where T 1 = X (M)W1 and T 2 = fp (T 1)W2 represent
inputs to the 1st-hidden layer and the 2nd-hidden layer,
respectively. η is the learning rate utilized to tune the update
of weights. δi(j) for i = 1 ∼ 3 are the error signals at the j-th
ANN iteration used to measure how much L varies with the
changes of T i for i = 1 ∼ 2. δi(j) for i = 1 ∼ 3 are written
as

δ3 =
∂L

∂Ê
= Ê − E

δi =
∂fp (T i)

∂T i
�
(
δi+1Wi+1

T
)
, for i = 1, 2

(4)

where � denotes the element-wise multiplication of matrices.
The ANN iteration is repeated for a certain number of times,
each with updated weights and is terminated when the accu-
racy of the estimation of the system output via ANN reaches
our expectation. The leave-one-out cross-validation (LOOCV)
method [28] is utilized to quantify the accuracy.

D. Leave-one-out cross-validation

For a given dataset of M samples, the LOOCV method
splits the dataset into the training data X (Mtr), the val-
idation data X (M− 1−Mtr), and the test data, where
Mtr is an integer which satisfies 0 < Mtr < M − 1

and the test data contains one sample ξ̃
(m)

. ANN is trained
in Section II-C using X (Mtr) instead of X (M). At each
ANN iteration, ANN updates its weights in (3). These up-
dated weights are utlised to calculate the output of ANN for
X (M− 1−Mtr) at the j-th ANN iteration as in Êv

(j)
=

fp

(
fp

(
X (M− 1−Mtr)W1

(j)
)
·W2

(j)
)
·W3

(j), where

Êv

(j)
=

[
Êv

(j)(1)

, · · · , Êv
(j)(M−1−Mtr)

]
is the output of
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ANN of Êv
(j)(m)

using X (M− 1−Mtr) at the j-th ANN
iteration. Let Lv(j) be the validation error Lv as in

Lv(j) =

M−1−Mtr∑
m=1

(
Êv

(j)(m)

−
∣∣∣E(m)

∣∣∣2)2

M− 1−Mtr
(5)

at the j-th ANN iteration.
The aim of using the validation data is prevention of the

overfitting. Lv starts decreasing during the ANN iteration
and later on increases when overfitting occurs. Therefore, we

terminate the ANN iteration when
Lv(j+1)

Lv(j)
is larger than a

certain value $ in order to prevent the potential overfitting in
ANN. This method is also known as early stopping.

Apart from the early stopping, other techniques, such as
the dropout [29], can be utilized to avoid the overfitting as
well. Since this paper deals with a two-hidden layer ANN with
a linear activation function, the architecture of our ANN is
relatively simple. Using the technique of early stopping solely
is capable of detecting the overfitting.

The training of the ANN completes at the termination of
the ANN iteration and we obtain Wi

(j) for i = 1 ∼ 3 as the
trained ANN model. The test data is utilized to quantify the
error of the trained ANN model. When ξ̃

(m)
is used as the

test data composed of one element, the test error Lts(m) is
calculated as in

Lts(m) =
(
fp

(
fp

(
ξ̃
(m)W1

(j)
)
W2

(j)
)
W3

(j)

−
∣∣∣E(m)

∣∣∣2)2

.
(6)

We call the process of generation of the trained ANN model
and calculation of Lts(m) a leave-one-out (LOO) iteration.
Since we scan m from 1 to M, there are M LOO iterations
in total. After the M LOO iterations, the LOO error Ll is
calculated as in

Ll =
1

M
M∑
m=1

Lts(m). (7)

E. Uncertainty quantification of the FDTD computation

Section II-E introduces the proposed adaptations, including
the polynomial activation function in Section II-B and the
LOOCV method, into the ANN method described in Section
II-C to quantify the uncertainty of the FDTD computation.
The procedure of ANN for UQ for the FDTD computaion is
as follows.

A) Calculation of Ll
Given the dataset X (M), we train the ANN using
X (Mtr) in Section II-C to obtain a trained ANN model.
Varying m from 1 toM, Ll in (7) is calculated when all
ξ̃
(m)

in X (M) are used as the test data.
B) The final ANN model

We re-train the ANN in Section II-C using the entire M
sets of input samples as the training data from scratch.

After I ANN teration, the training error Ltr(j) for the
final ANN model is calculated as in

Ltr(j) =
1

M
M∑
m=1

(
Ê

(j)(m)

−
∣∣∣E(m)

∣∣∣2)2

(8)

at the end of each ANN iteration, where I is an integer

and Ê
(j)(m)

indicates m-th element of Ê in (2) at j-th
ANN iteration.
The ANN iteration is terminated when the conditions of

a) j ≥ I
b) Ltr(j) ≤ Ll
c) ∣∣∣Ltr(j) − Ltr(j−1)∣∣∣

Ltr(j−1)
≤ b (9)

and ∣∣∣Ltr(j−1) − Ltr(j−2)∣∣∣
Ltr(j−2)

≤ b, (10)

where 0 < b < 1

are all met.
These proposed conditions are inspired by the early
stopping scheme. The Condition B)a aims at improving
the computational efficiency. In the training process, the
ANN needs some iterations to learn from the data and up-
dates its weights accordingly. During the first I iterations,
we do not calculate Ltr. In general [22], Ltr should be
less than Ll when the ANN model is well trained. Ll in
Condition B)b is a constant throughout the ANN iteration.
On the other hand, Ltr(j) always decreases monotonously
as the ANN iteration increases. Ltr > Ll means that the
ANN developed with the entire M sets of input samples
is not fully trained and the accuracy of the system output
via ANN can be further improved. The Condition B)b
shall be met at a certain j when the model is fully
trained. Condition B)c involves two inequalities of (9)
and (10), which are utilized to detect the stable status of
Ltr. Satisfying (9) and (10) means that the accuracy of
the estimation of the system output via ANN may not
be improved with the further increase of the number of
ANN iterations and that it induces a risk of overfitting
if the ANN iteration continues. When the ANN iteration
is terminated, we save Wi

(j) for i = 1 ∼ 3 as the final
ANN model.

C) Uncertainty quantification using synthetic FDTD outputs
The final ANN model is utilized to make the predictions
of |E|2. Let the matrix X̃ (N ) = (ξ̃k

(n)
, n = 1 ∼ N , k =

1 ∼ K) be a normalised sample set consisting of N sets
of ξ̃

(n)
, where ξ̃

(n)
indicates the n-th ξ̃.

We use X (M) to produce the final ANN model, then
utilize some of X̃ (N ) as inputs to the final ANN model to

predict |E|2.
∣∣∣E(m)

∣∣∣2 corresponding to ξ(m) is obtained
from the FDTD simulation, whereas we do not run the
FDTD simulation to acquire

∣∣∣E(n)
∣∣∣2 corresponding to

ξ(n).
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We calculate Ê in (2) using the final ANN model of
Wi

(j) for i = 1 ∼ 3 obtained in StepB) of Section
II-E, replacing X (M) with X̃ (N ). Ê consists of N
predictions Ê

(n)
of |E|2. These predictions are utilized

to estimate the mean µ̂(N ) of |E|2 as in

µ̂(N ) =
1

N
N∑
n=1

Ê
(n)

(11)

and the standard deviation σ̂ (N ) of |E|2 as in

σ̂ (N )2 =
1

N − 1

N∑
n=1

(
Ê

(n) − µ̂(N )

)2

. (12)

III. NUMERICAL EXPERIMENTS SETTING FOR
UNCERTAINTY QUANTIFICATION

The MCM and the proposed method are utilized to quantify
the uncertainty of the FDTD computation.

A. Radio environment setting
The simulation scenario is depicted in Fig. 2 where the

FDTD space is 265×490×601 voxels each with a resolution
of 1 mm3. The excitation is located 17 mm away from the
human body and the observation location is in the middle
of the prostate tissue. 10 layers of the complex frequency
shifted-perfect matched layers (CFS-PML) [30], [31] are used
to terminate the three-dimensional FDTD space. The DHP
used in this work is provided by RIKEN (Saitama, Japan) [32]
under the non-disclosure agreement between RIKEN and the
University of Manchester. The usage was approved by RIKEN
ethical committee.

A given human tissue is considered influential when the
|E|2 at the observation location varies significantly due to
variations of one or more of its four Debye parameters i.e.
σS , ε∞, εS , τ . The influential tissues for our scenario follows
[33] wherein the influence of each of the four Debye param-
eters on |E|2 was investigated i.e. a sensitivity analysis was
performed. The five influential tissues to be considered are:
fat, skin, muscle, bone and prostate. Furthermore, the work
in [33] indicates that the influences of σS and τ on |E|2 are
negligible. As previously observed in [34], even though the
conductivity variation has a negligible effect on |E|2, it has
a clear impact on the SAR which is directly proportional to
the product of the conductivity and |E|2. Our computation
with the one-pole Debye model changes the conductivity by
varying ε∞. Thus, only two out of the four Debye parameters
i.e. ε∞ and εS − ε∞ , ∆ε, are required for the simulations
yielding a total of 10 (=2×5) uncertain input parameters. The
procedures of generating samples for the 10 uncertain input
parameters are as follows.

a) Generate 104 random ε∞ and ∆ε for each of 5 tissues
yielding the normal distribution. Based on the work
in [35], the variation of the relative permittivity and
conductivity of each tissue should not exceed 10%. Thus,
we consider the relative permittivity and the conductivity
of each tissue vary within ±10%. The probability de-
scriptions of the 10 Debye parameters are presented in
Table I.

ξ Meaning of ξ Average Standard deviation
ξ1 ε∞ of bone 6.80 0.68
ξ2 ∆ε of bone 7.37 0.74
ξ3 ε∞ of skin 18.07 1.81
ξ4 ∆ε of skin 29.87 2.99
ξ5 ε∞ of muscle 28.93 2.88
ξ6 ∆ε of muscle 28.02 2.81
ξ7 ε∞ of fat 1.53 0.15
ξ8 ∆ε of fat 4.01 0.40
ξ9 ε∞ of prostate 32.82 3.28
ξ10 ∆ε of prostate 27.73 2.78

TABLE I
THE AVERAGE VALUES AND STANDARD DEVIATIONS OF THE 10 DEBYE

PARAMETERS AND THEIR CORRESPONDING NOTATION

b) Randomly choose one sample out of the 104 samples
for each uncertain Debye parameter and combine these
chosen samples to produce 1 ξ composed of the 10 Debye
parameters.

c) Repeat Stepb) 104 times to produce 104 ξ. We do not
choose the same samples as those chosen earlier.
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Fig. 2. Numerical simulation setup.

B. Numerical experiments for uncertainty quantification

a) The Monte Carlo method
The details of utilising the MCM for UQ can be found in
[36], where the mean µ(M) and the standard deviation
σ(M) for |E|2 are calculated by

µ(M) =
1

M
M∑
m=1

∣∣∣E(m)
∣∣∣2 (13)

and

σ(M)2 =
1

M− 1

M∑
m=1

(
∣∣∣E(m)

∣∣∣2 − µ(M))2 (14)

using the firstM |E|2 among 104 |E|2 varyingM from
2 to 104.

b) The ANN for UQ
Prior to the training of the ANN, we set its hyperparame-
ters in order to maximize the accuracy of ANN, where the
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number of layers of ANN is set to 2 and G1 = G2 are set
to 5 = (K2 ). Details regarding the hyperparameter tuning
can be found in [37]. Mtr is set to 7, which makes the
ratio of the size of the training set and the validation set
close to the most commonly exercised 4:1 [38] in ANN.
In our scenario, this ratio enables the ANN to have a
stable performance and the potential overfitting problem
can be properly detected.
We run the ANN iteration as described in Section II-C.
When j ≥ I , Lv(j) is calculated in (5). There is
no overfitting occurring during the first 200 ANN it-
erations. Thus, the ANN iteration is terminated when
Lv(j+1)

Lv(j)
≥ $, where I and $ are set to 200 and 1.01,

respectively. The setting of I is application-dependent
and it can be influenced by many factors, such as the
learning rate η and the size of dataset M. A large value
of η, such as η > 0.01, make the ANN learn from
the data fast, resulting in the overfitting within a small
number of ANN iterations, i.e. j ≤ 50. Furthermore, the
overfitting might occur when Lv stops decreasing. Setting
$ to 1.01 allows us to detect the potential overfitting.

When j = 325,
Lv(j+1)

Lv(j)
becomes greater than 1.01.

Therefore, we terminate the ANN iteration at the 325th
ANN iteration and calculate Lts(1) in (6) using Wi

(325)

for i = 1 ∼ 3 as the trained ANN model of the first LOO
iteration.
Ll is calculated in (7) after 10 LOO iterations. The ANN
is then re-trained using X (10) as the training data. We
terminate the ANN iteration when Ltr(j) ≤ Ll and both
(9) and (10) are met, where b is set to 0.01. The setting
of b is application-dependent. 0.01 of b in our scenario is
a reasonable value enabling us to detect the stable status
of Ltr. (9) and (10) are met when j = 415. Thus, we
save Wi

(415) for i = 1 ∼ 3 as the final ANN model.
The final ANN model is utilized to make the predictions
of |E|2. We use 104 sets of input samples in the MCM
method. Therefore, we set N to 104 for comparison.
Ê is calculated in (2) using Wi

(415) for i = 1 ∼ 3.
µ̂(N ) and σ̂ (N ) are obtained in (11) and (12), respec-

tively.

IV. RESULTS AND DISCUSSIONS

We call the ANN with proposed adaptations as adaptive
ANN. Section IV present µ(M), σ(M), µ̂(N ), and σ̂ (N )
obtained from the MCM and the adaptive ANN. In order
to evaluate the performance of the adaptive ANN, the input
samples X̃ (N ), which are utilized to make predictions of |E|2
in the adaptive ANN, are the same as those used in the MCM
of X (M).

A. Results

1) Mean
Fig. 3 presents the µ(M) in (13) of the first M |E|2
obtained from the MCM and µ̂(N ) in (11) of the first
N predictions of |E|2 obtained from the adaptive ANN

varying M and N from 2 to 104. The accuracy of the
estimation of the system output via the adaptive ANN

can be calculated as 1−
∣∣ µ̂(104)− µ(104)

∣∣
µ(104)

= 0.9963.

Fig. 4 shows µ̂(104) obtained from the adaptive ANN
for 1000 experiments when M = 10 and K = 10. Each
experiment produces a final ANN model using 10 sets of
input samples to an ANN, which are chosen from 104

sets of input samples of the MCM based on the LHS
method. The µ(104) from the MCM is presented as a
straight line for comparison. The average and standard
deviation of µ̂(104) in Fig. 4 are 20.927± 0.098, while
µ(104) = 20.925.

1 10 102 103 104

M, N

21

22

23

24

25

µ
(M

)
a
n
d
µ̂
(N

)

Adaptive ANN
MCM µ(M)

µ̂(N )

Fig. 3. µ(M) in (13) from the MCM and µ̂(N ) in (11) from the adaptive
ANN.
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4
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Fig. 4. µ̂(104) in (11) from the adaptive ANN for 1000 experiments and
µ(104) in (13) from the MCM.

2) Standard deviations
Fig. 5 presents σ(M) in (14) of the first M |E|2
obtained from the MCM and σ̂ (N ) in (12) obtained
from the adaptive ANN varying M and N from 2
to 104. The accuracy of the estimation of the system
output via the adaptive ANN can be calculated as 1 −∣∣ σ̂ (104)− σ(104)

∣∣
σ(104)

= 0.9883.
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Fig. 5. σ(M) in (14) from the MCM and σ̂ (N ) in (12) from the adaptive
ANN.
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Fig. 6. σ̂ (104) in (12) from the adaptive ANN for 1000 experiments and
σ(104) in (14) from the MCM.

Fig. 6 shows σ̂ (104) obtained from the adaptive ANN
for 1000 experiments whenM = 10 and K = 10. σ(104)
from the MCM is presented as a straight line for com-
parison. The average and standard deviation of σ̂ (104)
in Fig. 6 are 3.375± 0.222, while σ(104) = 3.348.

B. Discussions

For the ANN based UQ techniques, the accuracy of UQ
depends on the accuracy of the prediction of system output
via ANN. The novelty of this paper is that we modify the
activation function and the termination criteria of the ANN
to maximize the accuracy in predicting the system output
via ANN while maintaining a low computational cost. The
following experiment is conducted to compare the proposed
adaptive ANN with the traditional ANN from the viewpoint
of the accuracy of the prediction of system output. We define
the traditional ANN for regression analysis as the architecture
which comprises of two hidden layers. The traditional ANN
utilises the linear activation function of fl (T ) = T and

0 20 40 60 80 100

0.1

0.3

0.5

0.7

0.9

AlnAp

A
p
a
n
d
A
ln

Number of Experiments

Fig. 7. 100 Ap from the adaptive ANN and 100 Aln from the traditional
ANN

terminates the ANN iteration when the training error becomes
stable.
(a) Form the test data X ts(100) by randomly choosing 100

ξ out of the 104 ξ which are produced in Section III-A
and obtain 100 |E|2 from the FDTD simulations using
chosen ξ.

(b) Randomly choose 10 ξ from the remaining 9900 ξ. These
chosen samples paired with their corresponding |E|2
from the FDTD simulations are used to build a surrogate
model for the FDTD simulation using the adaptive ANN
or the traditional ANN.

(c) Make predictions for X ts(100) from the two surro-
gate models obtained in (b). The accuracy of the
adaptive ANN is calculated as in Ap = 1 −

1

100

100∑
m̃=1

∣∣∣∣Êp(m̃) −
∣∣∣E(m̃)

∣∣∣2∣∣∣∣∣∣∣E(m̃)
∣∣∣2 , where Êp

(m̃)
is the pre-

diction of
∣∣∣E(m̃)

∣∣∣2 based on the adaptive ANN for
m̃ ∈ [1, 100]. The accuracy of the traditional ANN is cal-

culated as in Aln = 1− 1

100

100∑
m̃=1

∣∣∣∣Êln(m̃) −
∣∣∣E(m̃)

∣∣∣2∣∣∣∣∣∣∣E(m̃)
∣∣∣2 ,

where Êln
(m̃)

is the prediction of
∣∣∣E(m̃)

∣∣∣2 based on the
traditional ANN.

We repeat the procedures of (b) and (c) 100 times to acquire
100 Ap and 100 Aln, each of which uses different 10 ξ
to build the surrogate model based on the adaptive ANN or
traditional ANN. 100 Ap and 100 Aln obtained are presented
in Fig. 7. The average and standard deviation of the 100 Ap
and 100 Aln are 89.94% ± 4.18% and 44.21% ± 24.65%,
respectively. This indicates that the proposed adaptations have
the potential to significantly improve the accuracy of ANN in
predicting the output of FDTD simulation while maintaining
low computational cost.

Furthermore, we compare the proposed adaptive ANN
with the state-of-the-art ANN-based UQ method proposed
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in [39]. The work in [39] estimates the uncertainty of the
SAR calculation through two neural networks, where the first
neural network is designed based on the autoencoder neural
network [40] for dimensionality reduction and the second
neural network is a traditional ANN for UQ. We conduct
the experiment to build surrogate models for the FDTD
simulation using the proposed ANN and [39]. Fig. 8 shows
the prediction accuracy of the surrogate model against the
number of training data for these two methods, where the
number of training data is varied from 10 to 1000 as inMtr =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 1000}. For
each value of Mtr, we construct a surrogate model using
the proposed ANN and [39], respectively, and evaluate the
prediction accuracy of the surrogate model on the test data
X ts(100). From Fig. 8, it is observed that our proposed
ANN outperforms [39], especially when the quantity of the
training data is relatively small. It is important to note that
generating one training data requires one system run. For the
compute-intensive systems, it is impractical to utilize a large
amount of training data for UQ. Accordingly, the proposed
ANN demonstrates a high potential in efficiently handling the
UQ problem for compute-intensive systems.
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Fig. 8. Comparisons between the proposed ANN and [39] with the
number of training data Mtr = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
200, 500, 1000}

1) Comparisons with other UQ techniques:
The proposed adaptive ANN is utilized in UQ for the FDTD

computation. We compare the proposed method with other
state-of-the-art or classical UQ methods, which include the
works in [39], [41] and [18], the NIPC expansion method
and the traditional ANN, from the viewpoints of accuracy
in UQ estimations and the computational efficiency. In the
NIPC expansion method, we utilize the regression method to
estimate the coefficients of polynomials, where the highest
order of polynomials is set to 2. The work published in [41]
builds a surrogate model using the sparse grid interpolation.
We implement [41] using the sparse grid toolbox from the
MATLAB [42], where the relative tolerance is set to 0.2 in
our scenario. µ and σ obtained from these UQ techniques are
presented in Table II, where the accuracy of µ and σ estimation

is calculated by 1 −
∣∣µ− µ(104)

∣∣
µ(104)

and 1 −
∣∣σ − σ(104)

∣∣
σ(104)

,

respectively.
The adaptive ANN outperforms other UQ techniques in

terms of accuracy and computational efficiency which is
measured by the number of FDTD simulations required. In
our scenario, generating one set of input samples requires one
run of the FDTD simulation with 5000 FDTD iterations, which
takes about 1.4 hours to complete. Our in-house FDTD code
was implemented based on the openMP and was executed on
the Intel Xeon computer at 2.40 GHz with 128 GB of memory
operating Red Hat Enterprise Linux 7.3 system, where the
number of threads was set to 8 and the memory usage of one
FDTD simulation was 9.0 GB .

The computational cost of an UQ technique is regarded
as negligible compared with the one taken for FDTD sim-
ulation. The training process of ANN with 10 sets of input
samples takes less than 10 seconds to complete. Therefore,
when we evaluate the efficiency of UQ techniques, only the
number of FDTD simulations required is taken into account.
In Table II, the NIPC expansion method demands 66 FDTD
simulations and achieves an accuracy of 78.11% for the σ
estimation. Comparatively, our proposed method requires 10
FDTD simulations and achieves an accuracy of 98.83% for the
σ estimation, which is about 6.6 times faster and 20% more
accurate than the NIPC expansion method.

V. CONCLUSION

This paper proposes a number of adaptations for ANN
to improve the accuracy of ANN in UQ for the FDTD
computation while maintaining a low computational resources.
We offer a versatile activation function to enable the ANN
to effectively learn from the limited information. A series of
termination criteria of ANN are proposed in order to maximize
the accuracy of UQ. The main contribution of this paper lies in
the significant improvement of the accuracy and the stability of
UQ compared with the existing UQ techniques as alternatives
to MCM.
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