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Abstract—The non-intrusive polynomial chaos (NIPC) expan-
sion method is one of the most frequently used methods for
uncertainty quantification (UQ) due to its high computational
efficiency and accuracy. However, the number of polynomial
bases is known to substantially grow as the number of random
parameters increases, leading to excessive computational cost.
Various sparse schemes such as the least angle regression method
have been utilised to alleviate such a problem. Nevertheless, the
computational cost associated with the NIPC method is still non-
negligible in systems which consist of a high number of random
parameters. This paper proposes the first versatile UQ method
which requires the least computational cost whilst maintaining
the UQ accuracy. We combine the hyperbolic scheme with the
principal component analysis method and reduce the number
of polynomial bases with the simpler procedure than currently
available, keeping most information in the system. The ridge
regression method is utilised to build a statistical parsimonious
model to decrease the number of input samples and the leave-
one-out cross-validation method is applied to improve the UQ
accuracy .

Index Terms—Non-intrusive polynomial chaos expansion
(NIPC), principal component analysis (PCA), ridge regression
(RR), uncertainty quantification, finite difference time domain
(FDTD), Debye media

I. INTRODUCTION

An abstract of a physical phenomenon can be ideally rep-
resented by a physical model consisting of a set of equations,
enabling scientists to elucidate the laws of physics such as
optics and electromagnetism. The modeling technique [1] has
become an essential tool over recent decades, being propelled
by advances in computer simulation in the design of manufac-
tured products and the numerical predictions of experimental
observations.

The finite difference time domain (FDTD) [2], [3] method
is a powerful and robust technique to model inhomogeneous
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materials, making it ideally suited for bioelectromagnetic
simulations. This paper deals with the numerical simulation
of the propagation of electromagnetic waves in the human
body. In the FDTD calculations, the one-pole Debye model
[4] is utilised to describe the frequency-dependent behaviour
of human tissues whose frequency response varies from person
to person. Such variation is termed as uncertainty.

This paper focuses on quantifying the uncertainty of the
FDTD results produced by the propagation of uncertainty of
input Debye-parameters. The methods utilised for uncertainty
quantification (UQ) can be classified as either intrusive or non-
intrusive. The intrusive UQ methods, such as the stochastic
Galerkin scheme [5], require the modification of existing
deterministic code, which take risks of introducing errors to the
well-validated simulators. On the other hand, non-intrusive UQ
methods [6]–[8], such as the Monte Carlo method (MCM) [9]–
[11], stochastic collocation based method [12]–[14] and non-
intrusive polynomial chaos (NIPC) expansion method [15]–
[17] treat the simulator as a black box without changing the
underlying simulator code.

Although the MCM is considered a gold standard technique
for UQ, it requires a large number of simulations to produce
satisfactory results, leading to computational inefficiency. The
NIPC expansion method offers an ideal alternative to MCM.
It estimates outputs of the system using a series of orthogonal
polynomials. In NIPC, the input parameters are expanded with
a certain number of polynomial chaos (PC) bases, and the
projection method [18] or the regression method [13], [19] can
be utilised to estimate the coefficients of these PC bases. In the
projection method, the coefficients in NIPC can be estimated
by the quadrature rule or MCM, while the regression method is
based on the least square minimisation of the error between the
system output and its approximation. However, both methods
are prone to the curse of dimensionality [20], whereby the
number of required simulations grows substantially as the
number of input parameters increases.

A. Related work

Many advanced UQ techniques have been proposed over the
last decade to lift the curse of dimensionality. Ideas behind
these techniques include sparse strategies, the hierarchical
approach and model order reduction.

In general, higher-order PC bases are usually less important
than the lower-order PC bases and so preservation of the latter
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is usually prioritised when it comes to the selection of PC
bases. The work in [21] builds the sparse PC expansion using
the q-quasi-norm [22], [23]. Such norms penalise the high-
order PC bases, resulting in only significant bases retained
in the PC expansion. The techniques based on the analysis of
variance (ANOVA) [24]–[29] have also been utilised to exploit
the sparsity of the generalised PC expansion. For instance,
[27] develops a hierarchical stochastic spectral simulator based
on the anchored ANOVA in which an anchor point and a
threshold are introduced to the ANOVA in order to obtain a
truncated ANOVA decomposition. [30] proposes an ANOVA-
based stochastic simulator to efficiently simulate subsystems
within a hierarchical system. This technique treats the outputs
of subsystem as new random inputs of the entire system,
thereby considerably reducing the number of input parameters.

[31] utilises the adaptive L0 regularisation to perform the
feature selection in order to ascertain a unique solution for
an underdetermined equation. [32] proposes a method based
on stochastic collocation to solve the high-dimensional UQ
problems, whereby a tensor recovery approach is adopted to
significantly reduce the cost of tensor product. [33] proposes
a model reduction technique to obtain the optimum number of
samples based on the quadrature point sampling method [34].
Such reduced models can preserve the important properties of
the original system. Furthermore, most UQ techniques assume
that the input parameters are Gaussian and correlated. The
work in [35] generalises the stochastic collocation method
to quantify the uncertainty of systems which consist of non-
Gaussian and correlated input parameters.

B. Paper contributions

This paper extends a recently developed least angle regres-
sion [21], [36]–[40] based UQ method [41] aiming to further
reduce the computational cost of UQ for FDTD computation.
Our proposed method consists of three stages; sample selec-
tion, sparsity process and UQ.
• Sample selection: An efficient sampling method is crucial

for determining the accuracy of UQ results. This paper
adopts the Latin hypercube sampling (LHS) method [42],
[43] for sample selection, making use of its property of
variance reduction and its capability to preserve the real
variability of Debye-parameters within selected samples.

• Sparsity process: This stage combines the principal com-
ponent analysis (PCA) [44], [45] method with the hyper-
bolic scheme [23] to minimise the number of PC bases
and improve the stability of UQ results. The PCA method
transforms a large set of input parameters into a smaller
set while retaining a high proportion of the information
from the original set of data. Such a procedure reduces
the number of input parameters. The transformed input
parameters are then utilised to construct the sparse PC
expansion based on the hyperbolic scheme. As a conse-
quence, only a quarter of the PC bases are required, in
comparison to the number utilised for NIPC expansion
via general truncation [20].

• Uncertainty quantification: We adopt the ridge regression
(RR) method [46], [47] to estimate the coefficients of

PC bases. Following the sparsity process, the number of
input samples may fall below the number of PC bases
leading to the NIPC expansion being underdetermined.
In this case, the ordinary least square (OLS) method
[48] is unable to provide a unique solution. However,
the RR method is capable of handling such a problem. It
introduces a penalty term to the regression method and
makes the matrix inversion function irrespective of the
number of input samples without degrading the accuracy
of UQ results.
Furthermore, the RR method can deal with the problem
of multicollinearity which exists among PC bases [49].
In statistics, multicollinearity is a phenomenon in which
PC bases correlate with one another, with the influence
of each PC basis on the UQ results hard to isolate and
distinguish [50], [41]. The coefficient estimation for these
correlated PC bases is therefore unreliable.

Due to the ease of implementation and its non-parametric
nature [51], PCA has gained high popularity in its ability to
help determine UQ over the past decade [52]–[56]. Various
extensions of PCA, such as kernel PCA [57] and non-linear
PCA [58], have been proposed to solve specific problems.
This paper adopts standard PCA for dimensionality reduction
in order to reduce the complexity of the entire UQ algo-
rithm. Although standard PCA has some limitations [51], the
influence of these limitations on UQ results is trivial. For
example, one of the limitations of PCA is that the transformed
principle components are difficult to interpret. However, such
a limitation does not impact the non-intrusive UQ method.

This paper is organised as follows: Section II explains the
principle of the hyperbolic scheme, the PCA method, the
RR method and the proposed method. Section III details the
numerical experiments for UQ by the MCM and the proposed
method. Finally, we discuss the results from these techniques
with the merits of the proposed method outlined and evaluated.

II. METHODOLOGY

The principles of the hyperbolic scheme, the PCA method,
the RR method and the proposed method are presented in
Section II. The hyperbolic scheme enables us to build a
sparse PC expansion. The PCA method is capable of reducing
a number of input parameters thereby further reducing the
number of PC bases. The RR method and the proposed method
are used for UQ based on the sparse PC expansion.

A. The hyperbolic scheme for PC expansion

The PC basis is defined as ψb1b2···bK(ξ1, ξ2, · · · , ξK), where
b1b2 · · · bK is the index of the PC basis, and ξ1, ξ2, · · · , ξK
are K input parameters. In this paper, each input parameter ξk
represents a certain Debye parameter of a certain tissue and
the electric field E is observed in the FDTD simulations. The
highest order of the PC basis in a PC expansion is denoted as
r ∈ [1,+∞). We set r to a certain finite value so that the PC
expansion is truncated from the infinite PC expansion. In this
case, bk satisfies
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K∑

k=1

bk ≤ r, bk ≥ 0 (1)

and the total number of PC bases in the PC expansion is

L =
(K + r)!

K!r! . (2)

The combination of b1b2...bK can be restricted to satisfy
( K∑

k=1

bqk

) 1
q

≤ r (3)

for 0 < q ≤ 1, and thus the number of PC bases in the PC
expansion can be reduced from (2) based on q-quasi-norm.
The details of the hyperbolic scheme is explained in [41].

B. The principal component analysis

PCA is a dimension-reduction method used to transform a
set of parameters into a number of uncorrelated parameters,
namely, principal components. The PCA starts with the stan-
dardisation of the data. We define a matrix X = (ξk

(m),m =
1 ∼ M, k = 1 ∼ K) as a sample set which consists of
M ξ(m), where the vector ξ is a combination of K Debye
parameters of interest as in ξ = [ξ1, ξ2, . . . , ξK] and ξ(m)

indicates the m-th ξ. X is presented as

X =




ξ1
(1) ξ2

(1) . . . ξK
(1)

ξ1
(2) ξ2

(2) . . . ξK
(2)

...
...

. . .
...

ξ1
(M) ξ2

(M) . . . ξK
(M)


 =




ξ(1)

ξ(2)

...
ξ(M)


 . (4)

Let ξk be a vector consisting of M samples for ξk as

in ξk =
[
ξk

(1), ξk
(2), . . . , ξk

(M)
]T

, and matrix X̃ be the

standardised X whose elements are ξ̃k
(m)

=
ξk

(m) − µk

σk
,

where µk is the average value of ξk for M samples cal-

culated as in µk =
1

M
M∑

m=1

ξk
(m), and σk is the standard

deviation of ξk for M samples calculated as in σ2
k =

1

M− 1

M∑

m=1

(
ξk

(m) − µk

)2
. The standardisation process en-

ables all the ξ̃ in X̃ to have the same measurement scale [59]
thereby improving the accuracy of PCA.

Let ξ̃k =
[
ξ̃k

(1)
, ξ̃k

(2)
, . . . , ξ̃k

(M)
]T

be a vector consisting

of M samples for ξ̃k. We construct the covariance matrix
G = (Gij , i = 1 ∼ K, j = 1 ∼ K) where Gij is the covariance

between ξ̃i and ξ̃j calculated by Gij =
1

M− 1

M∑

m=1

(ξ̃i
(m) −

1

M
M∑

m†=1

ξ̃i
(m†)

)(ξ̃j
(m)− 1

M
M∑

m†=1

ξ̃j
(m†)

). G is then decom-

posed into eigenvectors and eigenvalues as in

G = PHP−1, (5)

where P is a K×K matrix which is the combination of a set
of K eigenvectors and H is the eigenvalue matrix presented

as H =




H1 0 . . . 0
0 H2 . . . 0
...

...
. . .

...
0 0 . . . HK


 .

The K diagonal elements of H as in diag(H) =
{ H1, H2, . . . , HK} are the eigenvalues of G. The eigen-
values are also called the characteristic roots used as the
explanatory importance with respect to ξk.

The eigenvectors indicate the principal components of G.
We define the vector H̃ = {H̃1, H̃2, . . . , H̃K} as the numer-
ically sorted diag(H) in descending order of H̃1 ≥ H̃2 · · · ≥
H̃K and C = {C1, C2, . . . , CK} as a vector of variance
explained as calculated in

Ck =
H̃k

K∑

k=1

H̃k

. (6)

The vector of the cumulative variance explained Ĉ =
{Ĉ1, Ĉ1, . . . , ĈK} is the cumulative summation of the elements
of C given by

Ĉk =

k∑

i=1

Ci, k = 1 ∼ K. (7)

Ĉ indicates how much information the first K eigenvectors
carry. In PCA, we select the first D principal components
(D ≤ K) which satisfies ĈD ≥ (1 − ρ), where ρ is a certain
percentage of the information to be dropped.

Let P̂ be the K × D matrix of eigenvectors when D
principal components are kept. The original sample set is then
transformed into a new subset as in

Xsub = X̃ P̂ =
[
ξ̂
(1)
, ξ̂

(2)
, · · · , ξ̂(M)

]T
, (8)

where vector ξ̂
(m)

=
[
ξ̂1

(m)
, ξ̂2

(m)
, . . . , ξ̂D

(m)
]

is the combi-

nation of the D Debye parameters in Xsub and ξ̂
(m)

indicates
the m-th ξ̂. The K-dimensional feature space is therefore
transformed into a D-dimensional feature subspace.

C. The ridge regression method

In the NIPC method, the multicollinearlity exists among
the PC bases. For example, when considering 3 input
parameters, the Hermite polynomials ψ100(ξ1, ξ2, ξ3) =
ξ1 and ψ200(ξ1, ξ2, ξ3) = ξ1

2 − 1. The relation-
ship of ψ100(ξ1, ξ2, ξ3) and ψ200(ξ1, ξ2, ξ3) can be writ-
ten as ψ200(ξ1, ξ2, ξ3) = ψ100(ξ1, ξ2, ξ3)

2 − 1, meaning
ψ100(ξ1, ξ2, ξ3) and ψ200(ξ1, ξ2, ξ3) are in perfect correlation
because the value of ψ200(ξ1, ξ2, ξ3) is completely dependent
on the value of ψ100(ξ1, ξ2, ξ3). As a consequence, the NIPC
method is unable to accurately distinguish the influence of
ψ100(ξ1, ξ2, ξ3) on the UQ results and thereby the estimated
coefficient of ψ100(ξ1, ξ2, ξ3) is unreliable.

In the projection method, the input samples to the system
are predetermined among the vast number of random samples
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and the number of input parameters cannot be reduced in
a computationally-efficient manner [60], leading to the high
computational cost. On the other hand, the regression method
can vary the number of input samples. Hence, this paper
focuses on the regression method to estimate the coefficients
of PC bases. The regression method performs the matrix
inversion under the condition [19] that the number of input
samples exceeds the number of PC bases, i.e. oversampling.
Such a condition restricts the minimum number of input
samples. Relatively high number of input samples may hinder
the computational efficiency of the NIPC method. However,
this does not necessarily mean that the regression method
is unable to provide an optimal solution for UQ when this
condition is not met.

The RR method has the potential to analyse the data that
suffers from multicollinearity, and it also enables the NIPC
method to function irrespective of the number of samples.

In the RR method, the NIPC expansion is expressed as a
linear regression model of

T (ξ(m)) =

L∑

l=1

abl
ψbl

(ξ(m)), (9)

where T (ξ(m)) is the predicted value of |E|2 for ξ(m),
the polynomial term abl

ψbl
(ξ(m)) is called a predictor of

T (ξ(m)), bl indicates the index of the l-th ψ, and a is the
coefficient of ψ.

We define a as a vector consisting of L coefficients as

in a =
[
ab1

, · · · , abL

]T
, and the PC bases matrix Ψ =

(ψbl
(ξ(m)),m = 1 ∼ M, l = 1 ∼ L) is presented as

Ψ =




ψb1
(ξ(1)) ψb2

(ξ(1)) . . . ψbL
(ξ(1))

ψb1
(ξ(2)) ψb2

(ξ(2)) . . . ψbL
(ξ(2))

...
...

. . .
...

ψb1
(ξ(M)) ψb2

(ξ(M)) . . . ψbL
(ξ(M))



.

a is calculated by

a = (ΨTΨ + v1 )−1ΨTE, (10)

where v is a constant named as penalty factor,

E =
[
|E1|2 , · · · , |EM|2

]T
(11)

is a vector of the M |E|2 obtained by the FDTD simulation,
|Em| is |E| when ξ(m) is used for the FDTD computation and

1 is an L × L identity matrix as in 1 =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 .

When v = 0, the calculation of a is reduced to the one in the
OLS method as in

a = (ΨTΨ)−1ΨTE (12)

in which the condition ofM≥ L must be met. v is determined
by minimising the penalised sum of

M∑

m=1

(|Em|2 − T (ξ(m)))2 + v

L∑

l=1

abl

2. (13)

In (10), v exerts influence on the value of a. Different values
of v lead to different a in (10), and thus affect T (ξ(m)) in (9).
v = 0 may not minimise (13) because the condition of v = 0

may result in a larger value of
M∑

m=1

(|Em|2 − T (ξ(m)))2 in

(13) than that in case of v 6= 0. Minimising (13) is equivalent
to finding an optimum value of v that enables the estimation
of a to reach the stable status.

We use the Leave-One-Out Cross-Validation (LOOCV)
method to identify the stable status of a at which the Leave-
One-Out (LOO) error εl of T (ξ(m)) becomes minimum. At
each scanned v, a is calculated in (10), and εl is computed as
in

εl =
1

M
M∑

m=1

(
|Em|2 − T (ξ(m))

1− hm

)2

, (14)

where hm is the m-th diagonal element of the square matrix
Ψ(ΨTΨ)−1ΨT . The process of calculating a and εl using v
is called a RR iteration. After scanning v, we choose the v,
whose corresponding εl is the smallest, as the optimum value.
Once v is determined, a is calculated in (10), and the standard
deviation σ of |E|2 is calculated by

σ2 =

L∑

l=1

abl

2. (15)

The range setting of v depends upon the experimental design.
A large value of v will lead to a large value of the penalty

term of v
L∑

l=1

abl

2 in (13) and a small value of a [61]. Thus

the estimation of the variance will become smaller than its
true value. Therefore, in general, v tends to be small [47].

D. A proposed method for uncertainty quantification

This section proposes an UQ method, aiming at the quan-
tification of the uncertainty of the FDTD results with the
minimum computational cost whilst ensuring the accuracy
of the UQ results, based on the PCA and RR methods,
herein named as the PCA-RR based method. It follows the
principle of statistical parsimony [62] stating that a regression
model should be built using only significant PC bases thereby
decreasing the complexity and increasing the stability of the
regression model. The procedure of the PCA-RR based method
is as follows.

1) Initialisation.
a) Setting M to K (M = K) to minimise the com-

putational cost. For successful eigen-decomposition in
PCA, M should be no less than K.

b) Building X in (4) with K parameters, each of which
contains M samples chosen by LHS.

c) Constructing E in (11) withM |E|2 obtained fromM
FDTD simulations using M ξ(m).

2) Transformation of X to Xsub.
Utilising the PCA method to keep D parameters and
construct the sample set Xsub in (8).

3) Sparse PC expansion.
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Building the sparse PC expansion in (9) by replacing K
with D in Section II-A.

4) Calculation of a.
When M≥ L, we calculate a by the OLS method as in

a = (Ψ̂
T
Ψ̂)−1Ψ̂

TE, (16)

where the PC bases matrix Ψ̂ = (ψbl
(ξ̂

(m)
),m = 1 ∼

M, l = 1 ∼ L). Otherwise the RR method is utilised to
calculate a as in

a = (Ψ̂
T
Ψ̂ + v1 )−1Ψ̂

TE, (17)

where v is scanned and set to the one when

εl =
1

M
M∑

m=1

(
|Em|2 − T (ξ̂

(m)
)

1− ĥm

)2

(18)

reaches its minimum. ĥm is the m-th diagonal element
of the square matrix Ψ̂(Ψ̂

T
Ψ̂)−1Ψ̂

T
.

5) The average value and the standard deviation.
We calculate the average value µ of |E|2 as in

µ =
1

M
M∑

m=1

|Em|2 , (19)

and calculate σ in (15).
The PCA-RR based method is summarised in Fig. 1.

The PCA-RR method offers two advantages which allow us
to minimise the computational cost of UQ while maintaining
the accuracy of the UQ results.

1) Before building the sparse PC expansion, the PCA
method is utilised to reduce a certain number of input
parameters. As a consequence, we obtain the less number
of PC bases than in the PC expansion without using the
PCA method. The fewer number of PC bases required
for the UQ computation means the lower complexity of
the regression model thereby improving the stability and
accuracy of UQ results.

2) Although the RR method is more versatile than the
OLS method, it has a higher algorithmical complexity
compared to the OLS method and requires more com-
putational resources. The condition of M ≥ L in Fig.
1 enables to improve the computational efficiency for
UQ. When M ≥ L, the RR method is not the preferred
method to calculate a, rather the OLS method in (16)
is then best suited. As a consequence, the unnecessary
computation of using RR method is avoided and the
computational cost of the PCA-RR based method is
reduced.

III. NUMERICAL EXPERIMENTS FOR
UNCERTAINTY QUANTIFICATION

The MCM and the PCA-RR based method are utilised to
quantify the uncertainty of the FDTD results. The simulation
scenario is depicted in Fig. 2 where we place a point soft
source excitation 17 mm away from the human body and
observe E in the middle of the prostate tissue. 10 layers of the
complex frequency shifted-perfect matched layers (CFS-PML)

Initialise X , M = K

Transform X to Xsub in (8) by the PCA method

Build sparse PC expansion in (9) by
replacing K with D in Section II-A

M ≥ L Calculate a in (16)

Calculate a in (17) by the RR method

Calculate µ in (19) and σ in (15)

Stop

Yes

No

Fig. 1. Flow chart of the PCA-RR based method for UQ

[63] [64] are used to terminate the 265 × 490 × 601 FDTD
space. The digital human phantom (DHP) used in this work is
provided by RIKEN (Saitama, Japan) under the non-disclosure
agreement between RIKEN and the University of Manchester.
The usage was approved by RIKEN ethical committee.

We use |E|2 as the output of the 3-dimensional
FDTD simulation calculated as in |E|2 =
5000∑

n=1

(
|En

x(i, j, k)|2 +
∣∣En

y (i, j, k)
∣∣2 + |En

z (i, j, k)|2
)

, where

(i, j, k) is the point location of the observation in the prostate
and n is the FDTD time step. There are five influential tissues
(fat, skin, muscle, bone and prostate) between the excitation
and observation. |E|2 observed changes significantly when
one or more of the Debye parameters of the influential tissues
are changed. The Debye parameters for all human tissues
are presented in [65]. In our scenario, the input parameters
refer to the Debye parameters of interest of the influential
tissues whose complex permittivity and conductivity are
varied within ±10% in the FDTD simulations. The remaining
Debye parameters of the human tissues as well as the values
associated with the setting of the FDTD simulations, such as
temporal and spatial sampling rate, are treated as constants.

1) The Monte Carlo method
The details of utilising the MCM for UQ are explained
in [41], where µ(M) and σ(M)2 are calculated by

µ(M) =
1

M
M∑

m=1

|Em|2 (20)

and

σ(M)2 =
1

M− 1

M∑

m=1

(|Em|2 − µ(M))2 (21)
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Fig. 2. Setup for the FDTD computation

using the first M |E|2 among the 104 |E|2 varying M
from 2 to 104.

2) The PCA-RR based method
In the PCA method, 5% of information(ĈD ≥ 95%)
[21] can be safely dropped without significantly af-
fecting the accuracy of PCA. For example, in one of
numerical experiments in case of K = 10 and M =
10, 10 eigenvalues are obtained from (5) as in H̃ =
{3.2, 2.2, 1.3, 1.3, 1.0, 7.0·10−1, 2.3·10−1, 6.3·10−2, 1.4·
10−2, 1.1 ·10−16}. C and Ĉ are then calculated in (6) and
(7), respectively. The results are presented in Fig. 3.
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Fig. 3. Ck and Ĉk in case of K = 10 and M = 10.

Fig. 3 illustrates that 31.89% information can be ex-
plained by the first principal component, and contribution
of each principal component to the total information is
gradually reduced with the growth of k. Furthermore,
the first 6 (D = 6) principal components possess over
95% information (Ĉ6 = 96.93%). Therefore, the first 6
principal components are kept.
We obtain L = 12 by replacing K in Section II-A with
D in the case of D = 6 and r = 2. The condition of
M≥ L is not met. Thus the RR method is required for

the calculation of a. Fig. 4 shows the change of the first 5
abl

as v increases from 10−6 to 2 ·10−3 with an interval
of 10−6. At some point, these coefficients become stable
and gradually shrink to zero.
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Fig. 4. The change of the first 5 abl
with the increase of v from 10−6 to

2 · 10−3 with an interval of 10−6.

Fig. 5 is εl calculated using a in Fig. 4. εl is minimum
when v = 2.2 · 10−4. We therefore choose a calculated
with v = 2.2 · 10−4. The σ of |E|2 is then estimated in
(15) using the chosen a and the µ of |E|2 is estimated
in (20) using the 10 |E|2 obtained from the 10 FDTD
simulations.

 1

 10

minium value

εl

 0  400  800  1200  1600  2000

v(×10−6)

Fig. 5. The change of εl with the increase of v from 10−6 to 2 × 10−3

with an interval of 10−6.

IV. RESULTS AND DISCUSSIONS
Section IV presents µ and σ obtained from the MCM

and the PCA-RR based methods. Furthermore, a discussion
is carried out to emphasise the merit of the PCA-RR based
method.

A. Results

1) Average values:
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Fig. 6. µ(M) in (20) from the MCM, which is the same as Fig. 6 in [41].
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Fig. 7. µ from the PCA-RR based method for 1000 experiments and µ(104)
from the MCM.

The µ(M) of the first M |E|2 obtained from the MCM
is presented in Fig. 6, where M varies from 2 to 104. Fig.
7 shows µ obtained from the PCA-RR based methods for
1000 experiments. The µ from the MCM when M = 104

is presented as a straight line for comparison.
2) Standard deviations:
Fig. 8 presents σ(M) of the first M |E|2 obtained from

the MCM, where M varies from 2 to 104.
Fig. 9 shows σ obtained from the PCA-RR based method

for 1000 experiments. σ from the MCM when M = 104 is
presented as a straight line for comparison.

B. Discussions

The PCA-RR based method focuses on the improvement
of the computational efficiency while preserving the accuracy
of the UQ result. The performance of the PCA-RR based
method is analysed from the viewpoint of its accuracy and
the computational efficiency.

1) Accuracy:
We define the result from the PCA-RR based method less

than ± 5% away from the result of MCM as the satisfactory

σ
(M

)

3

3.4

3.8

4.2

4.6

M
1 10 102 103 104

Fig. 8. σ(M) in (21) from the MCM, which is the same as Fig. 8 in [41].
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Fig. 9. σ from the PCA-RR based method for 1000 experiments and σ(104)
from the MCM.

result. 875 µ out of 1000 µ in Fig. 7 and 722 σ out of 1000
σ in Fig. 9 are satisfactory. The accuracies of using PCA-
RR based method for UQ of the FDTD results are therefore
87.5% for average estimation and 72.2% for standard deviation
estimation, which outperforms one of the state-of-the-art UQ
techniques namely the least angle regression (LARS) method
whose accuracies are 86.8% for average estimation and 63.4%
for standard deviation estimation [41]. The main causes of
unsatisfactory results from the PCA-RR based method include
underfitting, outlier and unreasonable εl. The underfitting and
the outlier have been detailed in our previous work [41]. As
for the unreasonable εl, in the process of the RR method, v
is determined at which εl is minimum. We randomly choose
the 100 satisfactory σ and 100 unsatisfactory σ in Fig. 9 and
present their corresponding minimum εl in Fig. 10. It is worth
noting that minimum εl of the 100 unsatisfactory σ are about
6 times higher than those of the 100 satisfactory σ. We call the
εl larger than 0.5 as the unreasonable εl. In the RR method,
all 2000 scanned v could yield unreasonable εl. In such a
case, the minimum εl is also unreasonable. An unreasonable
εl indicates that the calculation of a in the PCA-RR based
method is not accurate and thus the UQ result deviates from
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its true value.
Furthermore, we evaluate the influence of the LHS method

on the accuracy and stability of the PCA-RR based method.
The average and the standard deviation of σ in Fig. 9, which
are obtained from the PCA-RR based method with the LHS
method, are 3.395± 0.349, while σ(104) = 3.348. Replacing
the LHS method with the random sampling (RS) method, we
conduct 1000 experiments to obtain 1000 σ using the PCA-
RR based method. The average and the standard deviation for
the 1000 σ are presented in Table I, which demonstrates that
the LHS method improves both accuracy and stability of the
PCA-RR based method.

Accuracy Stability
Average

of σ
Standard

deviation of σ
PCA-RR based

method with LHS 3.395 98.59% 0.349
PCA-RR based
method with RS 3.237 96.68% 0.475

TABLE I
COMPARISON OF THE LHS METHOD AND THE RS METHOD. THE

ACCURACY IS CALCULATED AS IN 1−

∣∣∣∣∣ 1
1000

1000∑
σ − σ(104)

∣∣∣∣∣
σ(104)

.

2) Computational efficiency:
Apart from the FDTD simulation, the computational cost

of an UQ technique is negligible. Therefore, we only take
the number of required FDTD simulations into account when
evaluating the computational efficiency of an UQ technique.
Fig. 11 shows the number of required FDTD simulations
with the increase of K in the three methods of the general
PC expansion, the sparse PC expansion and the PCA-RR
based method, where the general PC expansion refers to
the PC expansion with L calculated in (2) without utilising
the hyperbolic scheme. The PCA-RR based method demands
the smallest number of FDTD simulations among the three
techniques thereby greatly reducing the computational cost.
For example, when K = 10, the number of required FDTD
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1
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Fig. 11. The number of required FDTD simulations with the increase of K
calculated in Step 1 in Section II-D for the PCA-RR based method, (3) for
the sparse PC expansion in the case of r = 2 and q = 0.4, and (2) for the
general PC expansion in the case of r = 2.

simulations in the general PC expansion and the sparse PC
expansion are 66 and 20 respectively, whereas the PCA-RR
based method only requires 10 FDTD simulations. In general,
when q = 0.4, the computational cost with regard to the FDTD
simulations in the PCA-RR based method is half of the cost
required in the sparse PC expansion.

Though the minimum number of required FDTD simula-
tions in the PCA-RR based method is identical to the number
of input parameters, the accuracy of UQ results can be further
improved from additional input samples. Fig. 12 shows µ and
σ obtained from the PCA-RR based method varying M from
10 to 100. The µ and σ from the MCM when M = 104 are
presented as dashed lines for comparison. When M ≥ 30, σ
is stable as M increases. Fig. 13 shows the influence of v on
σ in (15) in the case of M = 10, where v varies from 10−7

to 0.5. With the increase of v, a in (17) gradually decreases
resulting in the reduction of σ in (15).

We define the PCA-RR based method with the minimum
εl in (18) less than 0.1 as the high-accuracy PCA-RR (HA-
PCA-RR) based method. Table II presents the comparisons
of the proposed method with other advanced UQ techniques
including the NIPC method, the works in [52] and [20], where
the P-PCA-RR based method refers to the parsimonious PCA-
RR based method which only uses the minimum number of
required FDTD simulations. [52] combines PCA with sparse
grid interpolation for UQ and the relative tolerance is set to 0.2
in our scenario. [20] proposes a combined uncertainty based
UQ method. It is worth noting that the accuracy of σ in HA-
PCA-RR based method outperforms other UQ methods while
it demands the second least number of FDTD simulations.
Though the performance of the P-PCA-RR based method is
relatively moderate, it requires the least number of FDTD
simulations.

V. CONCLUSION

Various sparse techniques can be utilised to alleviate the
curse of dimensionality. However, the computational cost is
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UQ methods FDTD simulations µ Accuracy of µ σ Accuracy of σ
NIPC 65 20.942 99.56% 4.083 78.11%

Work in [52] 221 21.154 98.54% 3.267 97.52%
Work in [20] 30 20.720 99.37% 4.027 79.79%

P-PCA-RR based 10 21.116 98.72% 3.844 85.25%
HA-PCA-RR based 27 20.947 99.41% 3.305 98.66%

TABLE II
COMPARISONS OF THE PROPOSED METHOD WITH THE UQ METHODS OF NIPC EXPANSION, [52] AND [20], WHERE P-PCA-RR REFERS TO THE
PARSIMONIOUS PCA-RR BASED METHOD WHICH ONLY USES THE MINIMUM NUMBER OF REQUIRED FDTD SIMULATIONS, AND HA-PCA-RR

INDICATES THE HIGH-ACCURACY PCA-RR BASED METHOD WHOSE MINIMUM εl IN (18) IS LESS THAN 0.1. THE ACCURACIES ARE CALCULATED BY

1−
∣∣µ− µ(104)∣∣
µ(104)

AND 1−
∣∣σ − σ(104)∣∣
σ(104)

, RESPECTIVELY.

 20.6
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(a) µ in (19) from the PCA-RR based method varying M from 10 to 100.
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(b) σ in (15) from the PCA-RR based method varying M from 10 to 100.

Fig. 12. Change of µ and σ from the PCA-RR based method with the increase
of M.

still non-negligible when a system has a considerable number
of input parameters. This paper proposed a versatile UQ
technique in order to overcome this problem. In contrast
to the previous works on UQ, the PCA-RR based method
significantly reduces the number of required FDTD simu-
lations by combining the PCA method and the hyperbolic
scheme. It also introduces the RR method in the calculation
of the NIPC coefficients to enable the matrix inversion to be
successfully performed irrespective of the number of input

 3.2

 3.3

 3.4

 3.5

 0  0.1  0.2  0.3  0.4  0.5

PCA-RR  based method

MCM

σ

v

Fig. 13. σ with the increase of v when M = 10.

samples. As a consequence, the PCA-RR based method is
capable of accurately quantifying the uncertainty of the FDTD
computation using only 10 FDTD simulations for 10 input
Debye-parameters, whereas at least 66 FDTD simulations are
required in the general NIPC expansion.

The main contribution of this paper lies in the significant
reduction of the computational cost for UQ. Comparing with
existing UQ techniques, the PCA-RR based method is one
of the least-costly UQ techniques. Furthermore, it presents a
better stability than other regression techniques such as the
LARS method and the least absolute shrinkage and selection
operator (LASSO) method [66] since our method reduces the
complexity of the regression model.
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APPENDIX A
MATHEMATICAL NOTATIONS

E Electric field
ψ Polynomial basis
r Order of NIPC expansion
K Number of Debye parameters of interest
ξ Debye parameters of interest
b Index of polynomial basis
b Collective form of b1b2 · · · bK
L Number of polynomial bases in the NIPC expansion
M Number of samples
X Sample set

X̃ Standardised X
G Covariance matrix
C Vector of variance explained
Ĉ Cumulative summation of the elements of C
D Number of remained Debye parameters

Xsub Transformed subset of X̃
T (ξ(m)) Predicted value of |E|2 for ξ(m)

a Coefficient of ψ
εl LOO error
v Penalty factor
µ Average value

µ(M) Average value from the MCM
σ(M) Standard deviation from the MCM
σ Standard deviation
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