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Abstract—The non-intrusive polynomial chaos (NIPC) expan-
sion method is used to quantify the uncertainty of a stochastic
system. It potentially reduces the number of numerical simu-
lations in modelling process, thus improving efficiency, whilst
ensuring accuracy. However, the number of polynomial bases
grows substantially with the increase of random parameters,
which may render the technique ineffective due to the excessive
computational resources. To address such problems, methods
based on the sparse strategy such as the least angle regression
(LARS) method with hyperbolic index sets can be used. This
paper presents the first work to improve the accuracy of the
original LARS method for uncertainty quantification (UQ). We
propose an adaptive LARS method in order to quantify the
uncertainty of the results from the numerical simulations with
higher accuracy than the original LARS method. The proposed
method outperforms the original LARS method in terms of
accuracy and stability. The L2 regularisation scheme further
reduces the number of input samples while maintaining the
accuracy of the LARS method.

Index Terms—Non-intrusive polynomial chaos (NIPC) expan-
sion, least angle regression (LARS), uncertainty quantification
(UQ), finite difference time domain (FDTD), Debye media

I. INTRODUCTION

Benefiting from the rapid development of communication
technology, wireless communication devices such as mobile
phones [1], [2] have grown in popularity, raising concern
about the potential dangers of exposure to electromagnetic
radiation [3], [4]. Tissues in the immediate vicinity absorb
the radio frequency (RF) energy emitted from the wireless
devices, which may potentially be hazardous [5]. To evaluate
the energy absorption when the human body is exposed to an
RF electromagnetic field, the specific absorption rate (SAR)
[6], [7] is measured using a standard dosimetric test facility.
However, since the SAR test is expensive and time-consuming,
the use of electromagnetic simulation to model the RF energy
exposure is a preferred alternative.

The finite difference time domain (FDTD) [8], [9] method
has a powerful and robust performance in modeling inhomo-
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geneous materials and the simulation of wideband antennae,
which makes it a suitable method for bioelectromagnetic
simulations. To explore the propagation of the electromagnetic
waves in human body, a digital human phantom (DHP) is
introduced into the FDTD space. One of the main advantages
[10] of utilising a DHP is that it allows researchers to test the
electromagnetic response without exposing human body to the
electromagnetic radiation.

In the FDTD calculations, the one-pole Debye model [11]
is utilised to describe the complex frequency-dependent be-
haviour of biological tissues. Each tissue in the DHP is
associated with four Debye parameters and these parameters
differ between people. Such variation is taken into account
by introducing uncertainty. In the numerical simulations, the
Debye parameters are considered as the input parameters of
the system used to determine the electromagnetic response of
the human body. The uncertainty of these input parameters can
be described by their probabilistic description [12]. However,
uncertainty also exists in the system response, due to the
propagation of the randomness of the input parameters.

This paper focuses on the uncertainty quantification (UQ)
of the FDTD method. The traditional approach for UQ is the
Monte Carlo method (MCM) [13], [14], yet this technique
requires a large number of simulations resulting in com-
putational inefficiency. Although methods such as the Latin
Hypercube sampling (LHS) method [15] and the Markov
Chain Monte Carlo (MCMC) method [16] are capable of
speeding up the convergence rate of the MCM method, the
applications of MCM are very limited because the computa-
tional requirements are still excessive.

The non-intrusive polynomial chaos (NIPC) expansion
method [17], [18] is one of the most frequently used methods
for UQ as an alternative to MCM. We obtain the coefficients of
the NIPC method mainly from the Galerkin projection method
[19] or the regression method [20]. Nevertheless, both methods
are prone to the curse of dimensionality, whereby the number
of calculations grows with the increase of the number of input
parameters, leading to the rise of the computational cost. A
solution to this problem was proposed in [18] wherein each
parameter is considered one at a time.

To circumvent the curse of dimensionality, a truncation
scheme known as the hyperbolic polynomial chaos expansion
[21] is applied in this work. This reduces the number of
polynomial bases, based on the sparsity-of-effects principle.
When we have multiple variables, the higher-order Hermite
polynomials may be less significant than the lower-order ones
[22]. Thus, the sparse polynomial chaos (PC) expansion can
be built by discarding less important polynomial bases without
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sacrificing accuracy. To quantify the uncertainty of the FDTD
results using only significant Hermite polynomial bases, a
classical model selection method, known as the least angle
regression (LARS) method [21], [23], is undertaken. Given a
set of possible polynomial bases, the LARS method aims to
select those polynomial bases which possess high correlation
with the output of the system. The LARS procedure consists
of a number of iterations, each of which is concerned with
the selection of the most correlated polynomial bases. A
termination criterion is usually set in order to control the
LARS procedure, thereby resulting in the selection of only a
limited number of polynomial bases. Such features render the
LARS method computationally efficient. However, the LARS
method has never been applied to quantify the uncertainty of
the FDTD results.

This paper proposes an adaptive LARS method for our in-
house FDTD code mainly focusing on the improvement of
the accuracy of the LARS method. To successfully perform
the matrix inversion in the LARS method, the number of
input samples must exceed the number of polynomial bases.
Such a condition restricts the minimum number of input
samples. However, when the condition is not met, this does
not necessarily imply that the LARS method underperforms
or is excessively inaccurate. To explore the relationship be-
tween the accuracy of the LARS method and the required
number of input samples, the L2 regularisation scheme [24]
is incorporated into the LARS method to enable the technique
to function irrespective of the number of input samples. As a
result, the number of input samples may be further reduced
without degrading the accuracy of the LARS method. The
paper is organised as follows: Section II explains the principle
of the hyperbolic scheme, the LARS method and proposes
the adaptive LARS method. Section III details the numerical
experiments for UQ by MCM, LARS and the adaptive LARS
methods. Finally, we analyse the results from these techniques
and emphasise the merit of the adaptive LARS method.

II. METHODOLOGY

The hyperbolic scheme enables us to build a sparse PC
expansion. The LARS and adaptive LARS methods are used
to quantify the uncertainty of the FDTD results.

A. The non-intrusive polynomial chaos expansion

The NIPC method approximates the random outputs of the
system using a series of orthogonal polynomials. In the NIPC
method, quantifying the uncertainty of a system is equivalent
to the calculation of the coefficients of polynomial bases [25].
The polynomial basis is defined as ψα1α2···αK(ξ1, ξ2, · · · , ξK),
where α1α2 · · ·αK is the index of the polynomial basis, and
ξ1, ξ2, · · · , ξK are K variables. In this paper, each variable ξk
represents a certain Debye parameter of interest of a certain
tissue and we observe the electric field E in the FDTD
simulations. The highest order of the polynomial basis in a
PC expansion is denoted as r ∈ [1,+∞). r is set to a certain

finite value so that the PC expansion is truncated from the
infinite PC expansion. In this case, αk satisfies

K∑
k=1

αk ≤ r, αk ≥ 0 (1)

and the total number of polynomial bases in the NIPC expan-
sion is

L =
(K + r)!

K!r!
. (2)

For example, in the case of r = 2 and K = 3, the number
of polynomial bases in the PC expansion is L = 10 in (2),
and the Hermite polynomials ψα1α2α3(ξ1, ξ2, ξ3) are shown in
Table I.

Hermite polynomials The order of ψ
ψ000(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ0(ξ2)ψ0(ξ3) = 1 0
ψ100(ξ1, ξ2, ξ3) = ψ1(ξ1)ψ0(ξ2)ψ0(ξ3) = ξ1

1ψ010(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ1(ξ2)ψ0(ξ3) = ξ2
ψ001(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ0(ξ2)ψ1(ξ3) = ξ3
ψ200(ξ1, ξ2, ξ3) = ψ2(ξ1)ψ0(ξ2)ψ0(ξ3) = ξ21 − 1

2

ψ020(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ2(ξ2)ψ0(ξ3) = ξ22 − 1
ψ002(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ0(ξ2)ψ2(ξ3) = ξ23 − 1
ψ110(ξ1, ξ2, ξ3) = ψ1(ξ1)ψ1(ξ2)ψ0(ξ3) = ξ1ξ2
ψ101(ξ1, ξ2, ξ3) = ψ1(ξ1)ψ0(ξ2)ψ1(ξ3) = ξ1ξ3
ψ011(ξ1, ξ2, ξ3) = ψ0(ξ1)ψ1(ξ2)ψ1(ξ3) = ξ2ξ3

TABLE I
THE HERMITE POLYNOMIALS ψα1α2α3 (ξ1, ξ2, ξ3) AND THE

CORRESPONDING ORDERS

B. The hyperbolic scheme for PC expansion

The hyperbolic scheme restricts the combination of
α1α2...αK in the PC expansion to satisfy( K∑

k=1

αqk

) 1
q

≤ r (3)

for 0 < q ≤ 1, and thus the number of polynomial bases in
the PC expansion in (2) can be reduced, based on q-quasi-
norm [21]. When q equals 1, (3) becomes the usual truncation
scheme as shown in (1). When we set q to 0.4, the number of
retained polynomial bases is reduced to 7 based on (3). The
retained polynomial bases are presented in Table II for q = 1
and q = 0.4.

q α1α2α3 in ψα1α2α3 (ξ1, ξ2, ξ3)
1 000, 100, 010, 001, 200, 020, 002, 110, 101, 011

0.4 000, 100, 010, 001, 200, 020, 002

TABLE II
RETAINED POLYNOMIAL BASES WHEN q = 1 AND q = 0.4

C. The least angle regression

1) The linear regression model:
Assuming there are K Debye parameters of interest and
M sets of input samples, we define the vector ξ =
{ξ1, ξ2, · · · , ξK} as the combination of these Debye param-
eters, and ξ(m) as the m-th ξ for 1 ≤ m ≤ M. The LARS
method is a classic model-selection method [21]. It aims to
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select the polynomial bases ψ that highly correlate with the
output of the linear regression model of

T (ξ(m)) =

L∑
l=1

aαl
ψαl

(ξ(m)), (4)

where T (ξ(m)) is the predicted value of |E|2 for ξ(m),
the polynomial term aαl

ψαl
(ξ(m)) is called a predictor of

T (ξ(m)), αl indicates the index of the l-th ψ, and a is the
coefficient of ψ.

Let a be a vector which consists of L coefficients as in
a = {aα1

, · · · , aαL}T , T̂ (ξ(m)) be the current LARS update
of T (ξ(m)) and the vector T̂ = {T̂ (ξ(1)), · · · , T̂ (ξ(M))}T .
The matrix Ψ = (ψαl

(ξ(m)),m = 1 ∼ M, l = 1 ∼ L)
formed by the polynomial bases is presented as

Ψ =


ψα1

(ξ(1)) ψα2
(ξ(1)) . . . ψαL(ξ(1))

ψα1
(ξ(2)) ψα2

(ξ(2)) . . . ψαL(ξ(2))
...

...
. . .

...
ψα1

(ξ(M)) ψα2
(ξ(M)) . . . ψαL(ξ(M))

 .

2) The LARS iteration:
At the start of the LARS method, a is initialised to 0. Let C =
{C1, C2, · · · , CL}T be the vector of the correlation between ψ
and (E − T̂ ) calculated as in

C = ΨT (E − T̂ ), (5)

where E = {|E1|2 , · · · , |EM|2}T is a vector of the M |E|2
obtained from the FDTD simulations, and |Em| is |E| when
ξ(m) is used for the FDTD computation and the difference
between E and T̂ is called the residual vector. The value of
T̂ (ξ(m)) is also initialised to zero at the start of LARS method.
Each element in C such as Cl refers to the correlation between
ψαl

and the residual vector. When k̃ satisfies

|Ck̃| = max
1≤l≤L

|Cl|, (6)

the ψα
k̃
, which has the highest correlation with the residual

vector, and its corresponding coefficient aα
k̃

are chosen as
a predictor of T (ξ). We put the chosen aα

k̃
ψα

k̃
into a set

Q as in Q = {aα
k̃
ψα

k̃
} and put k̃ into a set A as in A =

{k̃, k̃ ∈ [1,L]}, where the number of elements in A increases
with the iteration. A matrix Ψ̂ represents the chosen ψ as in
Ψ̂ = (ψα

k̃
(ξ(m)),m = 1 ∼ M, k̃ ∈ [1,L]) and a vector â

indicates the coefficients of the chosen ψ as in â = {aα
k̃
, k̃ ∈

[1,L]}T . At the first LARS iteration, for example, when k̃ = 6,
we form Ψ̂ = {ψα6

(ξ(1)), · · · , ψα6
(ξ(M))}T from Table I

and calculate â as in

â = (Ψ̂
T
Ψ̂)−1Ψ̂

TE. (7)

As â = {aα6
}T , (7) practically calculates the value of aα6

and a thus becomes {0, · · · , 0, aα6 , 0, · · · , 0}T . T̂ (ξ(m)) is
updated as in

T̂ (w+1)(ξ(m)) = T̂ (w)(ξ(m)) + γ̂ k̃(w)aα
k̃(w)

ψα
k̃(w)

, (8)

where T̂ (w)(ξ(m)) and k̃(w) are T̂ (ξ(m)) and k̃ at w-th LARS
iteration and γ̂ k̃ indicates the update coefficient of the LARS

method corresponding to the k̃-th polynomial basis. γ̂ k̃ can
be calculated by

γ̂ k̃ = min+

{
|Ck̃| − Ck̃
AA − aα

k̃

,
|Ck̃|+ Ck̃
AA + aα

k̃

}
, (9)

where ”min+” indicates that γ̂ k̃ only takes the positive
minimum component in (9) and AA is given by

AA =
(

1TAΨ̂
T
Ψ̂1A

)− 1
2

, (10)

where 1A is a vector of 1 of length equaling the size of A
as in 1A = {1, 1, · · · , 1}T . When A includes one element
A = {6}, 1A equals 1A = {1}T . In the successive iteration,
k̃(w) meets (6) and k̃(w) 6= k̃(w

†) where 1 ≤ w† < w.
Such a process of determining a predictor, adding it into
Q, and updating T̂ (ξ(m)) is called a LARS iteration. At each
LARS iteration, one non-zero form of aαl

ψαl
is included

into Q. As a result, the number of elements in Q is the same
as the LARS iteration number. The maximum number of the
LARS iteration equals L, in which case all ψ are incorporated
in Q.

3) The leave-one-out cross-validation method:

After each LARS iteration, we calculate T (ξ(m)) in (4) and
use the leave-one-out cross-validation (LOOCV) method [26]
to evaluate the accuracy of T (ξ(m)). The leave-one-out (LOO)
error εl of T (ξ(m)) quantifies its accuracy as in

εl =
1

M
M∑
m=1

(
|Em|2 − T (ξ(m))

1− hm

)2

, (11)

where hm is the m-th diagonal element of the square matrix
Ψ̂(Ψ̂

T
Ψ̂)−1Ψ̂

T
. Note that we use T (ξ(m)), not T̂ (ξ(m)),

to calculate εl. They have different meanings in the LARS
method. T̂ (ξ(m)) enables us to select a set of predictors out
of the L predictors, whereas T (ξ(m)) is used as the estimate
of |Em|2 for 1 ≤ m ≤M.

We control the LARS procedure by setting a threshold
named as target error εt and calculate εl after each LARS
iteration, and then compare εl with εt. When εl is less
than or equal to εt, the LARS procedure is terminated. The
termination of the LARS procedure may happen before all ψ
are selected.

D. The adaptive LARS method

1) The potential problems of the LARS method:

Comparing with other model selection methods such as
the least absolute shrinkage and selection operator (LASSO)
method [27], the LARS method is more stable and computa-
tionally efficient. Nevertheless, there are some factors that may
negatively influence the performance of the LARS method
with respect to the accuracy and the stability.

1) The LARS method fails to capture the relations between
ξ(m) and T (ξ(m)).
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When the number of input samples is limited, the
LARS method may not be able to capture the relations
between ξ(m) and T (ξ(m)). This phenomenon is called
underfitting. When underfitting occurs, T (ξ(m)) usually
shows a low accuracy.

2) Some chosen samples negatively impact the accuracy of
T (ξ(m)).
It is possible that some chosen ξ yields values of |E|2
which are substantially larger or smaller than the |E|2
values corresponding to all other ξ. This sort of |E|2
is called an outlier which may negatively impact the
accuracy of T (ξ(m)).

3) Unreasonable setting of εt.
In the LARS method, we calculate εl in (11) after each
LARS iteration and stop the LARS procedure when εl
is less than εt or the number of LARS iterations equals
L. The setting of εt exerts a crucial influence on the
final result of LARS method. An unreasonable setting
of εt may cause unsatisfactory results. When εl is higher
than εt throughout all the LARS iterations, the LARS
procedure does not stop until all ψαl

are incorporated
into Q. In such cases, the optimal result, which is most
close to the result of MCM, may have already appeared
in the earlier LARS iterations. However, due to the
high value of εl, the LARS procedure does not stop
at this iteration. Similarly, it is possible that the LARS
procedure stops too early when εl is less than εt after
a few number of LARS iterations. As a result, only a
limited number of ψαl

participate in the calculation of
T (ξ) and thus the estimated standard deviation becomes
unreliable.

4) Lack of flexibility on the required number of input
samples.
To successfully perform the matrix inversion in (10),
the total number of the chosen a should not exceed
M. In the LARS method, M should satisfy L ≤ M.
Such a condition restricts the minimum number of input
samples.

2) Methods to improve the LARS method:

Four techniques are proposed aiming to circumvent these
obstacles. In this paper, the LARS method with these four
techniques is called as the adaptive LARS method.

1) In the LARS method, we can observe the possible
underfitting phenomenon by detecting the change of εl.
If εl obtained at the w-th LARS iteration is higher than
the (w − 1)th εl, the underfitting situation might have
occurred. We prevent underfitting by stopping the LARS
procedure if εl of the w-th LARS iteration exceeds that
of the (w − 1)th LARS iteration by a certain threshold
value and taking the chosen polynomial bases obtained
at the (w − 1)th LARS iteration as the final chosen
polynomial bases.

2) We set the minimum number of the LARS iterations to
prevent the LARS procedure from being terminated too
early by

a) Setting the maximum number of the LARS itera-

tions to L.
b) Reducing εt by a certain percentage at each LARS

iteration when εl is less than εt before ζ LARS
iterations so as to continue the LARS procedure
until at least ζ polynomial bases are included in Q,
where ζ is a certain number of the LARS iterations
for 1 ≤ ζ < L.

3) In the LARS method, we obtain M |E|2 from the M
FDTD simulations. The variance of theM |E|2 is called
sample variance. Since the LHS method has the property
of spreading the sample points evenly across all possible
values, it is likely that the sample variance obtained by
LHS method is able to reflect the population variance to
a certain degree [28]. We make use of this feature as an
auxiliary condition to help us optimise the LARS result
by taking the following steps.

a) Calculate the sample variance σ̂ 2 of M |E|2 in

σ̂ 2 =
1

M− 1

M∑
m=1

(
|Em|2 −

1

M
M∑
i=1

|Ei|2
)2

. (12)

b) Calculate εl at each LARS iteration. When εl is
less than εt and the number of LARS iterations
is larger than ζ and less than ς , we run further ι
LARS iterations instead of stopping LARS proce-
dure, where ι ≤ (L − ς) and ζ < ς < L. When
εl ≤ εt, the variance

(
σ(M)

)2
is calculated by(

σ(M)
)2

=

{∑
Q
aαl

2, 1 ≤ l ≤ L
}

(13)

at the end of each LARS iteration.
c) Compare the sample variance in (12) with the

variance calculated at each LARS iteration in (13).
We consider

(
σ(M)

)2
closest to σ̂ 2 as the final

result.
4) The restriction of L ≤ M is lifted by applying the L2

regularisation scheme to the LARS method. This enables
the LARS method to get a reasonable pseudoinverse by
introducing a regularisation factor % into (10). Therefore,
when the number of the chosen a is larger than M, we
calculate AA by

AA =
(

1TAΨ̂
T
Ψ̂1A + 1TA%1A

)− 1
2

. (14)

With the L2 regularisation scheme, the LARS method is
capable of functioning even whenM < L. Such feature
of the L2 regularisation scheme is used to identify the
optimal value of M by running the LARS method
varying M from 1 to a certain number (≤ L). M is
determined when σ(M) in (13) reaches the stable status.
When ϑ =

|σ(M−1)−σ(M−2)|
σ(M−1) and ϑ† =

|σ(M)−σ(M−1)|
σ(M)

are less than a certain small value $, σ(M) has no
obvious change with the increase of M, and thus σ(M)

can be regarded as stable, and M at this point is
regarded as the optimal.

The adaptive LARS method is summarised in Fig. 1.
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a) M = 1

b) Initialisation a, T̂ (ξ) and εt

c) Calculate C in (5)

d) Determine k̃ which
satisfies |Ck̃| = max

1≤l≤L
|Cl|

e) Calculate aα
k̃

in (7)
and γ̂ in (9)

f) Update T̂ (ξ(m)) in (8)

M
=
M

+
1

g) Calculate T (ξ(m)) in (4)
and εl in (11)

h) εl ≤ εt

i) Calculate σ(M) in (13)

j) M≥ 3, ϑ and ϑ† ≤ $

Run b)-h) by replacing h) with the
termination criterion in Section II-D2
and calculate σ(M) in (13)

No

Yes

No

Yes

Fig. 1. The flow chart of the adaptive LARS method

III. NUMERICAL EXPERIMENTS SETTING FOR
UNCERTAINTY QUANTIFICATION

The MCM, the LARS method and the adaptive LARS
method are utilised to quantify the uncertainty of the FDTD
results.

A. Radio environment setting
In the FDTD space, we place a point soft source excitation

outside the human body and observe E in the middle of the
prostate tissue. 10 layers of the complex frequency shifted-
perfect matched layers (CFS-PML) [29] [30] are utilised to

terminate the FDTD space. The DHP used in this work is 1mm
spatial resolution and provided by RIKEN (Saitama, Japan)
under the non-disclosure agreement between RIKEN and the
University of Manchester. The usage was approved by RIKEN
ethical committee.

This simulation scenario is depicted in Fig. 2. The excitation
location is 17 mm away from the human body and the
observation location is in the middle of the prostate tissue.

There are five influential tissues (fat, skin, muscle, bone
and prostate) between the excitation and observation. |E|2
observed changes significantly when one or more of the Debye
parameters of the influential tissues are changed. In the FDTD
calculations, the relationship between E and the electric flux
density D in one-pole Debye model is written as

D = ε0

[
ε∞ +

∆ε

1 + ωτ
+

κS
ωε0

]
E, (15)

where ε0 is the permittivity of a vacuum (8.8541 × 10−12

F/m), ω is the angular frequency,  is the imaginary unit satis-
fying  =

√
−1, κS is the static conductivity, ε∞ is the optical

relative permittivity, εS is the static relative permittivity, τ is
the relaxation time, and ∆ε satisfies ∆ε = εS − ε∞. Each
tissue in the DHP is associated with four Debye parameters
(κS , ε∞,∆ε, τ ). The Debye parameters for all human tissues
are presented in [31]. The ε∞ and ∆ε are the influential Debye
parameters for the five influential tissues.

Distance(×∆x)

D
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∆
y
)

50

150

250

50

150

250

450

350

17∆x

excitation

←→

O
b
se
rv
a
tio

n

Fig. 2. Numerical simulation setup.

B. Numerical experiments for uncertainty quantification

1) The Monte Carlo method
a) Generate the 104 random ε∞ and ∆ε for each of 5

influential tissues yielding the normal distribution.
In our scenario, 104 input samples enable the
MCM method to reach convergence. K(= 10)
variables and their average and the corresponding
standard deviation are listed in Table III. When
we generate 104 samples for each variable, the
relative permittivity and the conductivity of each
tissue vary within ±10 percent.

b) Randomly pick one sample out of 104 samples for
each variable and combine these chosen samples
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ξ Meaning of ξ Average Standard deviation
ξ1 ε∞ of fat 6.80 0.68
ξ2 ∆ε of fat 7.37 0.74
ξ3 ε∞ of skin 18.07 1.81
ξ4 ∆ε of skin 29.87 2.99
ξ5 ε∞ of muscle 28.93 2.88
ξ6 ∆ε of muscle 28.02 2.81
ξ7 ε∞ of bone 1.53 0.15
ξ8 ∆ε of bone 4.01 0.40
ξ9 ε∞ of prostate 32.82 3.28
ξ10 ∆ε of prostate 27.73 2.78

TABLE III
THE AVERAGE VALUES AND STANDARD DEVIATIONS OF THE 10

VARIABLES AND THEIR CORRESPONDING NOTATION

to produce 1 combination of the 10 variables as in
ξ = {ξ1, ξ2, · · · , ξ10}.

c) Repeat Step 1b 104 times to produce 104 ξ. In Step
1b, we do not choose the same samples as those
chosen earlier.

d) Run 104 FDTD simulations each with a different
ξ to obtain 104 |E|2.

e) Calculate

ν(M) =
1

M
M∑
m=1

|Em|2 (16)

and

σ(M)2 =
1

M− 1

M∑
m=1

(|Em|2 − ν(M))2 (17)

of the first M |E|2 among the 104 |E|2 varying
M from 2 to 104

2) The LARS method
In the LARS method, the setting of εt is crucial.
Empirically, εt = 10−3 is a reasonable value in our
scenario enabling the LARS method to have a stable
performance. Fig. 3 and Fig. 4 show the σ(M) and the
εl varying LARS iterations respectively in case when
q = 0.4, K = 10, M = 20 and L = 20. The εl is
less than εt at the 14th LARS iteration and the LARS
procedure is therefore terminated at the 14th iteration.
Thus, there are 14 aαl

ψαl
in total in Q, in the order

of l = {6, 14, 7, 3, 1, 2, 20, 11, 13, 9, 4, 8, 12, 19}.
We set % in (14) to 10−8 in order to obtain an accurate
pseudoinverse. In the case of 10 Debye parameters of
interest as shown in Table III, σ(M) is calculated in
(13) when q = 0.4, r = 2, and εt = 10−3.

3) The adaptive LARS method
The same parameters as the LARS method are used
for the adaptive LARS method. In the adaptive LARS
method, the LARS method is run first to determine the
optimal value ofM. We determine the optimalM under
the condition that ϑ and ϑ† are less than $. The setting
of $ is application-specific. In our scenario, $ of 0.03
enables us to identify the stable σ(M). The condition of
ϑ and ϑ† less than 0.03 is satisfied when M = 15.
Fig. 5 shows σ(M) varying M from 1 to 20(= L).
σ(104) in (17) from 104 FDTD results in MCM is
presented as a dashed line for comparison. The results of

LARS

MCM

LARS Iterations

2 6 10 14

σ
(
M

)

0

1

2

3

4

Fig. 3. σ(M) in (13) from the LARS method and σ(104) in (17) from
MCM is presented as a dashed line for comparison.

El
Et

LARS Iterations

E
rr
o
r

2 6 1410

10

1

10−2

10−3

10−4

10−1

Fig. 4. The LOO error varying the LARS iterations.

σ(M) are neither stable nor accurate whenM < 15 and
the accuracy of σ(M) shows no obvious improvement
when M ≥ 15. This proves that M = 15 is a optimal
value in our scenario. We use 15 samples for UQ in
the adaptive LARS methods leading to the adaptive
LARS method which only requires 75% of the FDTD
simulations needed by the original LARS method. We
run the LARS iteration again with the determined M
until one of the conditions which is described in Table
IV is triggered. Table IV lists the conditions which may
happen in the LARS procedure and the corresponding
steps to calculate σ(M) of |E|2. Empirically, we set
ζ = L

4 , ι = 5L
6 , and ς = L

6 .
The adaptive LARS method mainly focuses on deter-
mining σ(M). The calculation of ν is identical for both
the adaptive LARS method and the LARS method. We
calculate ν in (16) with the determined M.
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1 10 102 103 104

21

22

23

24

25

M

ν
(M

)

Fig. 6. ν(M) in (16) from MCM.

LARS

MCM

σ
(
M

)

M

2

3

4

1

5

0
0 5 10 15 20

Fig. 5. σ(M) in (13) from the LARS method varying M from 0 to 20.
σ(104) in (17) from MCM is presented as a dashed line for comparison
purpose.

IV. RESULTS AND DISCUSSIONS

We show ν and σ(M) obtained from the MCM, the LARS
and the adaptive LARS methods. Some results obtained from
the LARS method are not satisfactory. We present these results
and their corresponding results obtained from the adaptive
LARS method as a demonstration of the merit of the adaptive
LARS method.

A. Results

1) Average values
The ν(M) of the firstM |E|2 obtained from the MCM
is presented in Fig. 6, where M varies from 2 to 104.
Fig. 7 shows ν obtained from the LARS method when
M = 15, K = 10 and r = 2. The ν(104) from the
MCM is presented as a straight line for comparison.

2) Standard deviations
Fig. 8 is σ(M) in (17) of the first M |E|2 obtained
from the MCM, where M varies from 2 to 104.
Fig. 9 presents σ(M) obtained from the LARS method
when M = 15, K = 10 and r = 2. σ(104) from the
MCM is presented as a straight line for comparison.
We call the results of the LARS method more than ±

LARS

MCM

Number of Experiments

200 400 600 800 10000
17

19

25

21

23

ν
(1
5
)

Fig. 7. 1000 ν(15) from the LARS method and ν(104) from MCM.

σ
(M

)

3

3.4

3.8

4.2

4.6

M
1 10 102 103 104

Fig. 8. σ(M) in (17) from the MCM.

5% away from the result of MCM as unsatisfactory as
shown in Fig. 10a. These unsatisfactory results are then
improved by the adaptive LARS method as shown in
Fig. 10b.

LARS

MCM

200 400 600 800 1000

σ
(1
5
)

1

3

7

5

0
Number of Experiments

Fig. 9. 1000 σ(15) from the LARS method and σ(104) in (17) from MCM.
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Conditions Steps to calculate σ(M)

εl of the w-th LARS iteration is more than twice
that of the (w − 1)th LARS iteration.

a) Terminate LARS procedure.
b) Calculate σ(M) in (13) using the elements in Q obtained at the (w − 1)th LARS iteration.

εl ≤ εt before L
4

LARS iterations.

a) Set εt to half of its originally set εt.
b) Repeat Step 3a until at least L

4
polynomial bases are included in Q.

c) Calculate σ(M) in (13) using the elements in Q.

εl ≤ εt and the number of LARS iterations is larger
than L

4
and less than 5L

6
.

a) Calculate σ̂ 2 of the 15 |E|2 in (12).
b) Let the LARS procedure execute further L

6
LARS iterations and calculate

(
σ(M)

)2
in (13) whose

corresponding εl is less than εt at each LARS iteration .
c) Compare σ̂ 2 with the variance calculated at each LARS iteration and choose the closest

(
σ(M)

)2
to the sample variance as the final result.

εl ≤ εt and the number of LARS iterations is larger
than 5L

6
or equal to 5L

6
.

Calculate σ(M) in (13) using the elements incorporated in Q.
εl > εt and the number of LARS iterations equals
L.

TABLE IV
THE POSSIBLE CONDITIONS IN THE LARS PROCEDURE AND THE CORRESPONDING STEPS TO CALCULATE σ(M)

LARS

MCM

Number of Experiments

σ
(1
5
)

50 100 150 200 250 300
2

3

4

6

5

(a) 300 σ(15) from Fig. 9 more than ±5% of the σ(104) of MCM.

adaptive LARS
MCM

50 100 150 200 250 300
2

3

4

6

5

σ
(1
5
)

Number of Experiments

(b) σ(15) from the adaptive LARS method.

Fig. 10. (a) Unsatisfactory σ(15) obtained from the LARS method. (b) the
corresponding σ(15) from the adaptive LARS method.

B. Discussions

300 σ(15) out of 1000 σ(15) in Fig. 9 are improved by the
adaptive LARS method as shown in Fig. 10.

The numerical experiments for UQ involve 10 Debye pa-
rameters which can be expanded with 65 polynomial terms
by the general full PC truncation scheme. By using the
hyperbolic scheme, the number of polynomial terms is reduced
from 65 to 20, and thus the required number of the FDTD
simulations is reduced to 20 as well. By determination of the
optimal value ofM applying the L2 regularisation scheme, the
number of the required FDTD simulations is further reduced
to 15, thereby optimally reducing the computational cost.
Although the process of determining M makes the adaptive
LARS method more complex than the conventional LARS
method, the computational cost of the entire process of the
adaptive LARS method is still significantly lower than the
conventional LARS method due to reduction of the required
FDTD simulations and we achieve higher accuracy than the
original LARS method.

V. CONCLUSIONS

The curse of dimensionality recurs in almost all UQ tech-
niques in circumstances which involve a high number of input
parameters. To overcome this problem, this paper introduced
the hyperbolic scheme in the NIPC expansion to create a
sparse NIPC expansion. The L2 regularisation scheme was
applied to the LARS method to enable the matrix inversion
to be performed irrespective of the number of samples. This
allowed the LARS method to be successfully completed using
only 15 FDTD simulations for 10 input variables, whereas
the required number of FDTD simulations would be at least
65 in the conventional LARS method. As a consequence, the
computational cost was only 23.1% of the general NIPC ex-
pansion. The proposed adaptive LARS method mainly focuses
on the optimisation of the LARS method with respect to the
accuracy. Its contribution lies in the analysis of the termination
criterion of the LARS procedure. However, it also shows a
better stability than the LARS method since it reduces the
impact of the inadequate samples.
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APPENDIX A
MATHEMATICAL NOTATIONS

ψ Polynomial basis
r Order of NIPC expansion
K Number of Debye parameters of interest
ξ Debye parameters of interest
α Index of polynomial basis
α Collective form of α1α2 · · ·αK
L Number of polynomial bases in the NIPC expansion
M Number of samples

T (ξ(m)) Predicted value of |E|2 for ξ(m)

T̂ (ξ(m)) Current LARS update of T (ξ(m))
a Coefficient of ψ
C Correlation between ψ and the residual vector
E Vector of M |E|2
Ψ̂ Matrix of the chosen ψ
â Vector of the coefficients of the chosen ψ
k̃ Index of the most correlated polynomial basis
Q A set containing the chosen aα

k̃
ψα

k̃

γ̂ Update coefficient of the LARS method
w Index of LARS iteration
εt Target error
εl LOO error
% Regularisation factor
ζ Minimum number of polynomial bases in Q
ι Number of additional LARS iterations
ς Intermediate upperlimit of the number of LARS iterations

ν(M) Average value from the MCM
σ(M) Standard deviation from the MCM
σ(M) Standard deviation from the LARS and adaptive LARS

methods with M samples

 http://i.riken.jp/download/sites/2/HOKUSAI_system_overview_en.pdf 
 http://i.riken.jp/download/sites/2/HOKUSAI_system_overview_en.pdf 
http://cfd-duo.riken.jp/cbms-mp/
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