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Abstract—A subcell modelling technique for frequency depen-
dent thin layers in finite-difference time-domain (FDTD) method
is introduced. The proposed method is based on the application
of the integral form of the Maxwell-Ampere equation and the
solution of a set of auxiliary equations to advance the field
components. It has the ability to handle one or several frequency
dependent thin layers embedded in a frequency dependent
medium without solving high-order differential equations. To
validate our proposed method, we compare the obtained results
with analytical solutions and with numerical references in both
time domain and frequency domain.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) method [1]
relying on sampling the space and time is widely used for

numerical simulations of electromagnetic wave propagation.
The resolution of the sampling tends to be set under the
Nyquist limit to retain the frequency components of interest
in the system. However, when a very finely detailed geometry
such as the Human-Body is in the FDTD space, the FDTD
space has to be sampled in conformity with the thickness
of the smallest details. This spatial sampling may be signifi-
cantly shorter than the one needed for retaining the necessary
frequency components. Furthermore, the overall number of
FDTD cells and time steps may be excessively large with
the very fine spatial resolution, rendering the computation
impracticable.

In the past years, many works were conducted on accel-
erating the FDTD method by means of subcell techniques
[1] that permit objects or structures thinner than the FDTD
cell to be accounted for. The thin wire formalisms [2], [3]
and thin slot formalisms [4], [5] have been the early subcell
techniques. Later, several thin layer techniques [6]–[10] were
published almost simultaneously to allow the FDTD method to
deal with arbitrarily thin layers, without reducing the cell size
in proportion. They can address dielectric and lossy materials
where the real permittivity and the conductivity are not fre-
quency dependent, and they assume that the layer is thin with
respect to the wavelength and the skin depth. More recently,
methods relying on the same assumption have been reported
[11], [12] to account for layers where the permittivity and
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the permeability are frequency dependent complex numbers.
And to address the opposite situation of [6]–[12], that is the
case where the skin depth in the layer is shorter than its
thickness, there exist other thin layer methods based on the
surface impedance boundary condition concept, as the recent
work [13].

In this paper, we present a method which permits one or
several frequency dependent thin layers to be embedded in
a frequency dependent background. This is a situation cur-
rently encountered in bioelectromagnetism where thin layers
are placed between thick media. Such problems cannot be
addressed with [11], [12] that deal with only one dispersive
layer surrounded with a vacuum. The proposed method relies
on the application of the integral form of the Maxwell-Ampere
equation and the solution of a set of auxiliary equations.

Section II describes the principle of the method. Section III
derives the FDTD equations for the advance of the electric and
magnetic fields in the cells traversed by the layers. Section IV
is devoted to numerical experiments. Comparisons with ana-
lytical solutions and with numerical references, in both time
domain and frequency domain and in one dimension(1D) and
three dimensions(3D), clearly demonstrate the accuracy of the
method. Finally, Section V proposes a simplified version of the
thin layer method that can yield an acceptable approximation
of the rigorous solution in some Human-Body applications.

II. THE PRINCIPLE OF THE THIN LAYER TECHNIQUE FOR
DEBYE MEDIA

A. The Debye Media in the FDTD Method

In bioelectromagnetism, the electrical properties of the
human tissues are in general described by the Debye model
where the relative permittivity is complex and frequency
dependent. The one-pole Debye model reads

εr(ω) = ε∞ +
εS − ε∞
1 + ωτ

+
σ

ωε0
(1)

where ε0 is the vacuum permittivity, ε∞ is the optical relative
permittivity, εS is the static relative permittivity, τ is the
relaxation time, σ is the conductivity and ω is the angular
frequency of 2πf . The relationship that connects the electric
field component Eu and the electric flux density Du is then

Du(ω) = ε0

[
ε∞ +

εS − ε∞
1 + ωτ

+
σ

ωε0

]
Eu(ω), (u = x, y, z). (2)

Equation (2) can be written as

(ω)2τDu + (ω)Du =

(ω)2ε0ε∞τEu + ω(ε0εS + στ)Eu + σEu. (3)
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The time domain counterpart of (3) can be obtained by

replacing ω with the derivative on time
∂

∂t
. This yields

τ
∂2Du

∂t2
+
∂Du

∂t
=

ε0ε∞τ
∂2Eu

∂t2
+ (ε0εS + στ)

∂Eu

∂t
+ σEu. (4)

Equation (4) is used as an auxiliary equation in the FDTD
method in Debye media. More precisely, at each time step
the Du component is advanced by means of the discretised
Maxwell-Ampere equation, and then Eu is obtained from Du

by the discretised form of (4) in [14].

B. The Previous Thin Layer Methods

The methods [6]–[10], presented independently, are all
based on the same principle. They consist of computing the
electric components parallel to the layer by discretising the
integral form of the Maxwell-Ampere equation∫∫

S

∂D

∂t
ds =

∮
C

Hdl (5)

in place of its differential form usually employed in the FDTD
method. In (5), C is the contour that surrounds a surface S
which is that of one cell in the FDTD discretisation. Use of
the integral form permits cells filled with several media to
be accounted for, which is not possible with the differential
form. The methods [6]–[10] are fundamentally similar in their
assumptions. Only [7] significantly differs from the others
because it assumes that the electric component normal to the
layer is present in the layer, which results in a special FDTD
advance of this component in addition to special advances
of the other two components. The rationale to do this is
not provided in [7], it is just reported in [9] that in special
cases where the parallel components are negligible, the results
are slightly improved by this additional treatment. The thin
layer method presented in the following also relies on the
disretisation of (5) for the advance of the electric components
parallel to the layer. There is no special treatment of the
component normal to the layer. The method can then be
viewed as an extension of methods [8] and [10] which are
identical, even if there are more theoretical investigations of
the accuracy in [10].

C. The Equations to be solved in the FDTD cells crossed by
the thin layer

Let us consider a layer of thickness d perpendicular to
direction x and placed between two frequency dependent
media as represented in Fig. 1. The components Ey and Ez

are parallel to the layer and located inside it. This is the
same arrangement as in [6]–[10]. Fig. 2 shows a x-y plane
with a layer in the middle of a FDTD cell, with Ez node
inside the layer and the H components surrounding it. The
tangential Dz is not continuous at the interfaces between the
three media, so that three different Dz must be considered in
the cell. Let us denote them as Dz1 , Dz2 and Dz3 . Assuming
that E and D are computed at time n and H at time n+ 1
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Fig. 1. Thin layer and the field components in the three-dimensional FDTD
grid.

in the grid, applying the Maxwell-Ampere equation (5) to the
surface ∆x∆y in Fig. 2 yields[

∂Ψz(i,j,k)

∂t

]n+ 1
2

∆x∆y = Cn+ 1
2 (6)

where

Cn+ 1
2 = H

n+ 1
2

x (i,j− 1
2 ,k)∆x−Hn+ 1

2
x (i,j+ 1

2 ,k)∆x

+H
n+ 1

2
y (i+ 1

2 ,j,k)∆y −Hn+ 1
2

y (i− 1
2 ,j,k)∆y

and Ψz(i,j,k) is an auxiliary quantity homogeneous to D,
defined as the sum of the Dz components weighted with the
partial surfaces in the cell

Ψz(i,j,k) = s1Dz1 (i,j,k) + s2Dz2 (i,j,k) + s3Dz3 (i,j,k) (7)

with
s2 =

d

∆x
, s1 = s3 =

1

2
− d

2∆x
.

Assuming that Ψz is known at the same time n as Ez and Dz ,
it can be advanced to time n+ 1 by discretising the derivative
in (6). This gives

Ψn+1
z = Ψn

z +
Cn+ 1

2

∆x∆y
∆t. (8)

The final objective is to find the Ez component at time n+ 1
in the FDTD cell, because it is needed for the advance of
the H field at the next half-step of the FDTD time stepping.
The tangential Ez component is continuous at the interfaces
between the media. Therefore, it can be assumed as uniform
in the cell in Fig. 2, as in any other cell of the FDTD space.
In theory, finding Ez at time n+ 1 can be done by means of
two methods. They are described in the following:
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Fig. 2. A cross-section of a ∆x×∆y ×∆z FDTD cell with a frequency
dependent layer of thickness d placed between two frequency dependent
media.

1) Advance of the E field by solving a (M + 1)-order
differential equation for M different Debye materials in the
cell : The method consists of writing (7) in frequency domain,
which reads

Ψz(ω) = s1Dz1(ω) + s2Dz2(ω) + s3Dz3(ω) (9)

where the location (i, j, k) has been omitted. Since Ez is the
same in the three media and also Dz(ω) = ε(ω)Ez(ω) holds
in each medium, (9) can be written as

Ψz(ω) = ε0[s1εr1(ω) + s2εr2(ω) + s3εr3(ω)]Ez(ω). (10)

This expression is general i.e., valid with any media. In the
special case of Debye media (1), it can be explicitly written
as

Ψz(ω) = ε0

[
3∑

m=1

smε∞m
+

3∑
m=1

sm
εSm
− ε∞m

1 + ωτ
m

+

3∑
m=1

sm
σ
m

ωε0

]
Ez(ω) (11)

where ε∞m
,εSm

, τ
m

and σ
m

are the Debye parameters of
medium m. Equation (11) is in the same form as (2) that holds
at every Ez node in the Debye medium, with just Ψz(ω) in
place of Dz(ω) and the bracket in (11) in place of permittivity
εr(ω) in (2). From this, En+1

z is the function of the known
Ψn+1

z . Let us first consider the case where only medium 2 is
a Debye medium, the other two being pure dielectric or lossy
media. Then (11) reduces to

Ψz(ω) = ε0

[
〈ε∞〉+ s2

εS2 − ε∞2

1 + ωτ
2

+
〈σ〉
ωε0

]
Ez(ω) (12a)

where

〈ε∞〉 = s1εr1 + s2ε∞2 + s3εr3 , (12b)
〈σ〉 = s1σ1 + s2σ2 + s3σ3 . (12c)

Equation (12a) is the same as (2), with just other coefficients.
Its time domain counterpart can be written as

τ
2

∂2Ψz

∂t2
+
∂Ψz

∂t
= ε0〈ε∞〉τ2

∂2Ez

∂t2

+ (ε0〈εS〉+ 〈σ〉τ
2
)
∂Ez

∂t
+ 〈σ〉Ez (13a)

with
〈εS〉 = s1εr1 + s2εS2 + s3εr3 (13b)

which is identical to (4) rigorously, with just the permittivities
and the conductivity replaced with the weighted averaged
values of (12b), (12c) and (13b), and with the relaxation time
τ
2

of the thin layer. Thus, when a thin layer is placed between
two dielectric or lossy media, and especially in a vacuum,
En+1

z can be obtained using the same equation as at any
regular node of the grid, with (12b), (12c), (13b) and τ = τ2 .

In the case where several Debye media are present, replac-

ing ω with
∂

∂t
in (11) yields a differential equation connecting

Ψz and Ez . Its order is M + 1 when M Debye media
are present. For example (11) becomes a 4-order differential
equation when three Debye media are present. It could be
discretised to provide us with En+1

z in function of Ψn+1
z .

However, the high-order discretisation would be complicated.
This is why we used this method only with M = 1 which
yields (13). For M > 1 we used the other solution presented
in the next section.

2) Advance of the E field by solving a set of 2-order
differential equations: This method to find En+1

z from Ψn+1
z

requires expressing Dzm (1 ≤ m ≤ M ) in function of the
common Ez by using M relationships of Dzm = εm(ω)Ez(ω)
which hold in the media

Dzm(ω) = ε0

[
ε∞m +

εSm
− ε∞m

1 + ωτ
m

+
σm
ωε0

]
Ez(ω) (14)

which are identical to (2) used at the regular nodes of the
FDTD space to find En+1

z from Dn+1
z . Their time domain

counterparts are the same as well, which read

τ
m

∂2Dzm

∂t2
+
∂Dzm

∂t
= ε0ε∞mτm

∂2Ez

∂t2

+ (ε0εSm + σmτm)
∂Ez

∂t
+ σmEz, (1 ≤ m ≤M). (15)

Discretisation of (15) provides us with M equations connect-
ing Dn+1

zm to En+1
z . These equations with (7) and (8) form

simultaneous equations for the unknowns En+1
z and Dn+1

zm .
Therefore, the advance to time step n+1 can be completed in
the cell. Notice that in the special case where a thin layer is
placed in a vacuum, M−1 out of M equations in (15) reduce
to Dn+1

zm = ε0E
n+1
z and thus only one 2-order differential

equation is used, as in the previous method with (13a).
In summary, two approaches can be used to advance the

E components parallel to the layer when M Debye media
are present in the cell. One approach by discretising one
(M + 1)-order differential equation, the other by discretising
M 2-order differential equations identical to the auxiliary
equation used at the regular nodes of the Debye medium.
In the experiments reported in this paper, we used the latter
solution relying on a set of M 2-order differential equations.
The actual FDTD algorithm corresponding to this solution is
provided with details in Section III. In the case of a thin layer
in a vacuum, we also performed the calculations with (13a).
Section V shows that equation (13a), exact when only one
Debye medium is present in the FDTD cell, can provide us
with an acceptable approximation of the solution when several
Human-Body Debye media are present in the cell.
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III. THE THIN LAYER FDTD UPDATE EQUATIONS

A. The Update Equations for the Components Inside the Thin
Layer

We formulate the update equations for Ey , Ez and Hx

inside the layer. If we consider Ez , M equations for Dn+1
zm

(1 ≤ m ≤ M ) can be obtained by discretising (15) in time
domain as in

Dn+1
zm = α1mE

n+1
z − α2mE

n
z + α3mE

n−1
z

+ β1mD
n
zm − β2mDn−1

zm (16)

where

α1m =
2ε0ε∞m

τ
m

+ 2(ε0εSm
+ σ

m
τ
m

)∆t+ σ
m

(∆t)2

2(∆t+ τ
m

)
,

α2m =
−σ

m
(∆t)2 + 4ε0ε∞m

τ
m

+ 2(ε0εSm
+ σ

m
τ
m

)∆t

2(∆t+ τ
m

)
,

α3m =
ε0ε∞mτm
∆t+ τ

m

,

β1m =
∆t+ 2τm
∆t+ τ

m

, β2m =
τm

∆t+ τ
m

.

Utilising (7) and (16), Ψn+1
z can be rewritten as

Ψn+1
z =

M∑
m=1

sm(α1mE
n+1
z − α2mE

n
z + α3mE

n−1
z

+ β1mD
n
zm − β2mDn−1

zm ). (17)

When M = 3, by making En+1
z the subject of (17), we obtain

En+1
z = γ1(Ψn+1

z + γ2E
n
z − γ3En−1

z − γ4Dn
z1 + γ5D

n−1
z1

− γ6Dn
z2 + γ7D

n−1
z2 − γ8Dn

z3 + γ9D
n−1
z3 ) (18)

where
γ1 = (α11s1 + α12s2 + α13s3)−1, γ4 = s1β11 , γ7 = s2β22 ,

γ2 = (α21s1 + α22s2 + α23s3), γ5 = s1β21 , γ8 = s3β13 ,

γ3 = (α31s1 + α32s2 + α33s3), γ6 = s2β12 , γ9 = s3β23 .

After the calculation of En+1
z in (18), we can use En+1

z to
compute Dn+1

z1 , Dn+1
z2 and Dn+1

z3 in (16).
En+1

y is obtained from (18) and Dn+1
ym (m = 1 ∼ 3) from

(16) with z replaced with y.
The update equation for Hx is obtained via the Maxwell-

Faraday equation of∮
C

Edl = −
∫∫
S

µ
∂H

∂t
ds, (19)

which yields, at node Hx(i,j− 1
2 ,k) in Fig. 2. Therefore,

Ey(i,j− 1
2 ,k−

1
2 )∆y + Ez(i,j,k)∆z − Ey(i,j− 1

2 ,k+
1
2 )∆y

− Ez(i,j−1,k)∆z = −∂Hx(i,j− 1
2 ,k)

∂t

∫∫
S

µds. (20)

With
∫∫
S

µds = µ∆y∆z in mind, (20) can be manipulated as

Ey(i,j− 1
2 ,k−

1
2 )− Ey(i,j− 1

2 ,k+
1
2 )

∆z

+
Ez(i,j,k)− Ez(i,j−1,k)

∆y
= −µ∂Hx(i,j− 1

2 ,k)

∂t
(21)

which is the regular FDTD update equation.
In the case when the thin layer is perpendicular to y or z

direction, the update equations are (16), (18) and (21) with
circular permutations of coordinates.

The advance of the fields inside the layer can be summarised
as follows:

1) Compute Hn+ 1
2 using the normal FDTD equation

2) Compute quantity Ψn+1 using (8),
3) Compute En+1 using (18) and then Dn+1 using (16).
The updates (16) and (18) can be applied as well as a special

case with a thin Debye layer surrounded with a vacuum where
εS = ε∞ = 1 and σ = 0. In this case, (16) yields the trivial
solution Dn+1

zm = ε0E
n+1
z .

B. The Update Equations for the Components Adjacent to
the Thin Layer

For Ex, Hy and Hz which are located half-cell away
from the thin layer, the FDTD equations are left unchanged.
Consider, for example, the calculation of the Hy(i− 1

2 ,j,k) as
illustrated in Fig. 3.
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2,j,k+

1
2)

Ex(i−1
2,j,k−1

2)

∆
z Ez(i,j,k)
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2,j,k)

Ez(i−1,j,k) E
′
z

z

ǫ r
2
(ω
)

ǫ r
1
(ω
)

x

d

∆x

Fig. 3. The field components for calculation of Hy

The standard FDTD equation can not be applied in this
area, since Hy and Ex are discontinuous at the physical
interface. However, Ez is continuous at the interface. Hence,
Ez at the interface, denoted as E

′

z , can be calculated by linear
interpolation as

E
′

z(i,j,k) = Ez(i,j,k)− (Ez(i,j,k)− Ez(i−1,j,k))
d

2∆x
. (22)

Then, applying (19) to the contour yields

Ez(i−1,j,k)∆z + Ex(i− 1
2 ,j,k+

1
2 )(∆x− d

2
)− E′

z(i,j,k)∆z

−Ex(i− 1
2 ,j,k−

1
2 )(∆x−d

2
) = −µ∂Hy(i− 1

2 ,j,k)

∂t
∆z(∆x−d

2
).

(23)

Substituting E
′

z in (22) into (23) gives the regular FDTD
update equation

Ex(i− 1
2 ,j,k+

1
2 )− Ex(i− 1

2 ,j,k−
1
2 )

∆z
− Ez(i,j,k)− Ez(i−1,j,k)

∆x

= −µ∂Hy(i− 1
2 ,j,k)

∂t
. (24)
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For the advance of Hz , we can follow the same logic and
find the same update equations as in a vacuum. In addition,
the advance of Ex involves only Hy and Hz . As they remain
outside the layer, applying (5) to Ex gives the regular update
equation.

It is worth pointing out that no instability was observed
in the numerous 1D and 3D calculations we performed with
either one or several Human Body layers in the FDTD cell.
This is in accordance with the stability of previous thin layer
methods [6]–[12] where instability is not mentioned.

IV. NUMERICAL EXPERIMENTS

In this section, results computed with the thin layer tech-
nique are compared with analytical solutions and reference
solutions computed with the FDTD method. The FDTD ref-
erences were computed using a fine FDTD grid whose space
step was equal to the thickness of the layer. In all cases, the
thin layer results were computed using the set of (15), i.e. with
the update equations (16) and (18). The permeability, µ, was
set to the vacuum permeability. In the case of one Debye layer
in a vacuum, in addition to the solution from (16) and (18)
with εS = ε∞ = 1 and σ = 0 in two media, we report the
solution computed with the discretised form of (13), denoted
as ”Thin layer using (13)” in the figures. We also report in
some figures a result computed with the same coarse grid as
the one used with the thin layer calculation, but with a thick
layer whose thickness equals the space step. This result is
denoted as ”Thick layer in coarse grid”. It demonstrates the
error which would result from the assumption that a thin layer
is one cell in thickness when its physical thickness is shorter
than the FDTD cell.

A. 1D Numerical Experiments

We considered a plane wave with x-directed propagation
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Fig. 4. Simulation settings for the one-dimensional experiments.

and z-directed E field. In this case, only Ez and Hy exist
along x direction. The excitation waveform for all experiments
was a Gaussian pulse g(t) = 100[exp−((t− 5T)/T)2] where
T = 0.1 ns and the frequency range of interest is up to 5 GHz.
We considered three different simulation scenarios as depicted
in Fig. 4. Debye media parameters of the human tissues used
in the experiments and their skin depths, δ, and wavelengths,
λ, at 5 GHz are provided in Table I.

TABLE I
MEDIA PARAMETERS, SKIN DEPTHS AND WAVELENGTHS

Media σ (S/m) εS ε∞ τ (ps) At 5 GHz
δ (mm) λ (mm)

Fat 0.037 5.53 4.00 23.6 49.4 26.8
Skin 0.540 47.9 29.9 43.6 10.9 9.88
Muscle 0.747 56.9 28.0 18.7 8.88 8.43

For the thin layer technique, the FDTD steps were ∆x = 1
mm and ∆t = 1.7 ps. For the fine grid reference, we set
∆x = 0.2 mm and ∆t = 0.34 ps. The wave was introduced
in the FDTD space using the total-field/scattered-field method.
In each simulation, Ez was recorded to observe the reflected
wave at A and the transmitted wave at B.

1) Thin layer in vacuum: Fig. 5 shows results for the simple
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Fig. 5. For the problem in Fig. 4(a) with a thin layer in vacuum, comparison
of the thin layer technique relying on (16) and (18), the thin layer technique
relying on the discretised form of (13), a fine grid reference solution, and a
layer one cell in thickness in the coarse grid, which means a layer 1 mm in
thickness in place of its physical thickness of 0.2 mm.
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case in Fig. 4(a) where a 0.2-mm-thick Skin layer is placed
in vacuum. The thin layer results are plotted for calculations
performed with equations (16) and (18), and with the 1-layer
equation (13). The two results are superimposed and they
agree very well with the reference solution computed with a
fine grid. Conversely, the result computed with a layer whose
thickness equals the space step of the coarse grid, that is five
times its physical thickness, is strongly erroneous.

2) One thin layer in a Debye medium: In this experiment
the thin Debye layer was embedded within another Debye
medium that fills the whole computational domain. In the cell
where the thin layer is situated, there are three Debye media.
Two are identical. The reported results in Fig. 6 were obtained
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Fig. 6. For the problem in Fig. 4(b) with a thin layer in a Debye medium
comparison of the fine grid reference solution with the thin layer technique
relying on (16) and (18).

using the general solution (16) and (18). Equation (13) was not
used as it is invalid with three Debye media. As with the layer
in a vacuum, with the layer in a Debye medium background
an excellent agreement is observed with the fine grid reference
solution, for both the reflected and the transmitted fields.

3) Several thin layers in vacuum: We considered the pres-
ence of three layers in vacuum, 0.4-mm-thick Skin, 0.2-
mm-thick Fat and 0.4-mm-thick Muscle layers, as shown in
Fig. 4(c). The total thickness equals the FDTD space step
of 1 mm. Therefore, there are three Debye layers in the cell
and the equations (16) and (18) can be used. The reflected
and transmitted fields plotted in Fig. 7 agree very well with

the fine grid reference. Notice that if the total thickness of
the three layers were thinner than the FDTD cell, four layers
would be present in the cell, which would require use of a set
of 4 equations, i.e. (15) with M = 4.
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Fig. 7. For the problem in Fig. 4(c) with three thin layers in the FDTD cell,
comparison of the fine grid reference solution with the thin layer technique
relying on (16) and (18).

B. 1D Numerical vs. Analytical Results
We calculated the reflection and transmission coefficients

from the FDTD simulations and compared with analytical
solutions for the case where one Debye medium was inserted
in vacuum as depicted in Fig. 4(a). The division of the
spectrum of each reflected and transmitted waves by the
spectrum of the incident Gaussian pulse, F{g(t)}, gives the
reflection coefficient |R(f)| and the transmission coefficient
|T (f)| as a function of frequency. The analytical reflection
and transmission coefficients are given by

R(f) = r − r(1− r2)v2

1− r2v2 , (25)

T (f) =
(1− r2)v

1− r2v2 (26)

where

r =
(1− n)

(1 + n)
, v = e−j

2π
c f d n, n =

√
εr(f)

where c is the speed of light, d is the layer thickness and
εr(f) is (1). Fig. 8 shows |R(f)| and |T (f)| from the FDTD
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Fig. 8. The analytical solutions compared with the thin layer calculations
for two layer-thickness/cell-size ratios.

simulation and the analytical solution for Skin layers of
thicknesses 0.2 mm and 0.01 mm.

The computed results and the analytical solutions agree very
well for both layer thicknesses. In most experiments in the
paper, the ratio of the cell size to the layer thickness is only
5, because this is a realistic ratio in view of Human Body
applications. However, the accuracy of the method is preserved
when the ratio is larger, as demonstrated with the experiment
reported in Fig. 8 with ratio 100.

C. 3D Numerical Experiment

A 18-mm × 13-mm × 10-mm Bone surrounded by 0.4-
mm-thick Fat and 0.2-mm-thick Skin layers was placed in
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Fig. 9. Simulation settings for the three-dimensional experiment.

2

4

6

-2

-4

-6

8

0

In
ci
d
en
t+

R
efl
ec
te
d
E
z
(V

/m
)[
×
10

−
4 ]

Fine grid reference
Thin layer

Thick layer in coarse grid

0.2 0.4 0.6 0.8 1 1.2

Time (ns)
0

(a) Ez(A)

0.2 0.4 0.6 0.8 1 1.2 1.4

Time (ns)

2

0

-2

-4T
ra
n
sm

it
te
d
E
z
(V

/m
)
[×

10
−
4 ]

1

3

-3

-1

-5

Fine grid reference
Thin layer

Thick layer in coarse grid

(b) Ez(B)

Fig. 10. Observations at A and B in Fig. 9.

vacuum as depicted in Fig. 9. The Debye media parameters,
skin depths and wavelengths at 5 GHz (σ, εS, ε∞, τ , δ, λ)
of Bone are (0.104 S/m, 14.2, 7.36, 34.1 ps, 16.7 mm, 18.2
mm).

Reference solution was obtained by setting ∆x = ∆y =
∆z = 0.2 mm and ∆t = 0.34 ps. In the thin layer technique,
the sampling was ∆x = ∆y = ∆z = 1 mm and ∆t = 1.7
ps. The size of the FDTD space was 380 × 380 × 380 cells
with the fine grid calculation whereas it was 92×92×92 cells
with the thin layer technique. The FDTD space was excited
using the Gaussian pulse defined in Section IV-A as a point
soft source. The object and the observation points, A and B,
were on a line parallel to x axis.

Fig. 10 shows the observations for the scenario depicted in
Fig. 9. The thin layer technique results are superimposed on
the fine grid reference. On the contrary, the result computed
with the layers whose thicknesses equal the space step of the
coarse grid is substantially different.

V. AN APPROXIMATE THIN LAYER TECHNIQUE FOR
HUMAN BODY MEDIA

In the case of one Debye medium in the FDTD cell, (13) is
equivalent to a set of (15). For more than one Debye medium,
(11) in time domain becomes a higher order differential
equation, e.g. a 4-order differential equation for three Debye
media. However, if we assume that the relaxation time τ is
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the same for all the media, then (11) yields (13) with 〈ε∞〉
and 〈εS〉 equal to weighted averages of ε∞ and εS in the three
media. Therefore, we tried (13) with several human tissues in
the FDTD cell, using the same simulation settings shown in
Fig. 4(c), and with a unique relaxation time τ set equal to the
minimum, maximum or weighted average of τ among those
tissues. This approximate method is compared in Fig. 11(a)
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Fig. 11. Comparison of the approximated solution with the averaged τ ,
the minimum value of τ , the maximum value of τ , the thin layer technique
relying on (16) and (18), and the fine grid reference solution. The incident
wave is a 0.1-ns wide Gaussian pulse.

and Fig. 11(b) with the fine grid reference and the solution
obtained using (15), i. e. (16) and (18). Fig. 11(a) shows the
case with a Fat layer between Skin and Muscle in the cell
with values of common τ equal to the Skin τ , the Muscle τ ,
and the averaged τ . The approximate solution with averaged
τ gives a good agreement with the fine grid reference in
that case. The same test was conducted with different tissues,
Eye Ball, Optical Nerve and Cerebellum, whose Debye media
parameters, skin depths and wavelengths at 5 GHz, (σ, εS, ε∞,
τ , δ, λ), correspond to (1.44 S/m, 67.7, 10.3, 8.27 ps, 8.06
mm, 7.41 mm), (0.359 S/m, 34.7, 21.0, 36.5 ps — 12.3 mm,
11.4 mm) and (0.826 S/m, 58.2, 35.2, 68.3 ps, 10.3 mm, 9.47
mm), respectively. As seen from Fig. 11(b), the approximate
solution with the averaged τ slightly deviates from the fine
grid reference. However, for the calculations which do not
require the high accuracy, the approximate solution (12)-(13),
especially with the averaged τ , could be used.

VI. CONCLUSION

A subcell modelling technique has been presented for the
inclusion of frequency dependent thin layers in the FDTD
grid. The layers can be embedded in a frequency dependent
background and can be arbitrarily thin. Numerical experiments
have demonstrated that the proposed method yields results in
close agreement with analytical and reference solutions.

The thin layer method has the potential of providing dra-
matic reductions of the computational requirements in com-
parison with calculations with the FDTD cell size equal to
the thickness of the layers. More importantly, it will permit to
account for more details in calculations with the Human-Body.
As an example, at some places of the body the Skin is only
0.1 mm in thickness. With a 0.1-mm FDTD cell, modelling
the entire body would require a FDTD domain of the order of
1012 cells. Using the subcell technique will allow the FDTD
domain to be reduced to a reasonable size, while preserving
the exact thickness of the Skin.
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