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Abstract—The Huygens subgridding (HSG) relies on the con-
nection of two FDTD grids by means of Huygens surfaces. An
earlier work has presented that the Huygens surfaces can be
reduced to one sheet of current in place of the usual two sheets.
This letter shows that the resulting simplified HSG may be
at the origin of inaccuracy in the computed results because
of the singularity of the field at edges of perfect electric or
magnetic conductors. The difficulty can be easily overcome in
two dimensions but not easily in three dimensions where it is
preferable to use the one sheet implementation only for the outer
Huygens surface.

Index Terms—Maxwell equations, FDTD, subgridding, Huy-
gens surface.

I. INTRODUCTION

THE Huygens Subgridding (HSG) technique [1]–[3] relies
on the connection of two Finite-Difference Time-Domain

(FDTD) grids by means of Huygens surfaces [4]. The Inner
Surface (IS) radiates the field from the main grid into the
subgrid, and the Outer Surface (OS) radiates the field from
the subgrid into the main grid. The set composed of IS, OS
and the two grids is equivalent to the physical problem to be
solved [1], [3]. The method has some advantages, such as the
possibility of using large ratios of FDTD steps. It may suffer
from late time instability in some cases. This drawback can
be removed by using an unconditionally stable method in the
subgrid, for instance the ADI-FDTD [5].

The implementation of the HSG in a computer code is
complex, which is a feature it shares with most subgridding
techniques. It is thus highly desirable to simplify it as much
as possible. Such a simplification has been proposed in [3].
While usually a Huygens surface [4] requires impressing both
electric and magnetic current sheets, in the case of the HSG
one sheet of IS or OS can be removed. This is possible because
the principle of the HSG involves two non-physical regions
refereed to as the non-working regions [1], [3]. They can be
replaced with either a Perfect Electric Conductor (PEC) or a
Perfect Magnetic Conductor (PMC). This forces one of the
two sheets of IS and OS to vanish, which in turn results in
one-sheet IS and OS. The encoding of the HSG is thus halved
whilst the equivalence of the numerical problem to the initial
physical problem is preserved. We denote the simplified HSG
[3] as the one-sheet HSG.
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Although the one-sheet HSG and the two-sheet HSG are
in theory equivalent, we show in this letter that in practice
the accuracy of the one-sheet HSG may be a little lower.
This is due to the singularity of the E or H fields at the
edges of the PEC or PMC which replace the non-working
region of the main grid. This renders the Inner Surface (IS)
inaccurate. The problem is demonstrated by a significantly
wider range of investigations than in previous studies [3]. We
show numerical simulations which demonstrate the order of
magnitude of the errors which may result from the singularity
problem. In two dimensional (2D) computational domains, the
singularity problem can be removed by an adequate choice of
the location of IS, rendering the one-sheet HSG as accurate as
the two-sheet HSG. However, in 3D, there is no evident and
simple solution to this question.

II. THE SINGULARITY PROBLEM WITH THE ONE-SHEET
HSG

We demonstrate the problem which results from the singu-
larity of the field near a PEC or PMC edges in the 2D TMz

case which has Hx, Hy , Ez . Parts of the main grid and
subgrid are depicted in Fig. 1 where IS radiates the field from
the main grid to the subgrid. In Fig. 1(a), IS is placed aside a
PEC whilst in Fig. 1(b) it is aside a PMC. In both cases, either
the PEC or the PMC replaces the non-working region of the
main grid [1]–[3]. We use the same notations and variables as
the ones used in [1]–[3].

With the PEC in Fig. 1(a), the implementation of the y-
directed part of IS consists of correcting the FDTD advance
of Ebz at nodes ib of the subgrid using H∗

ay on fictitious ia∗

of the main grid [2], [4]. This can be written, omitting index
the in y-direction as
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)
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where ∆tb and ∆xb are the steps in the subgrid, ia and ib
are the IS location in the main and subgrid respectively and
H∗

ay(ia∗) is the fictitious field set equal to the field Hay at
node ia− 1

2 (with interpolation in y-direction for the fictitious
nodes absent at ia− 1

2 ). No correction is applied to the advance
of Hby at ib− 1

2 because Eaz at ia is zero (zero current sheet).
What should be noticed is that the component impressed as
a current sheet in the subgrid, i.e. Hay , is perpendicular to
the z-directed edge of PEC which is reduced to a corner in
the 2D grid. This Hay is proportional to the density of the
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surface current flowing in direction parallel to the edge and
the density tends to infinity when the distance from the edge
vanishes. More precisely, from [6], [7], Hay can be written as

Hay(r, θ) =
A(θ)

r
1
3

, (2)

where r and θ are polar coordinates centered at the edge which
is Eaz node at the corner of the PEC in Fig. 1(a). A(θ) is a
coefficient from [6], [7]. In the case of the implementation of
IS in Fig. 1(b), Hby(ib) must be corrected with a fictitious
E∗

az(ia∗), i.e. advanced with an equation in the form of

H
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2

by (ib) = H
n− 1

2

by (ib)
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µ0∆xb

(
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bz (ib+ 1) −En+1
bz (ib) + E∗

az(ia∗)
)
. (3)

Here, the component impressed as a current sheet Eaz is
parallel to the edge of PMC, which means that it is not sin-
gular. This is an essential difference from the implementation
in Fig. 1(a), as demonstrated in the following.

Concerning the Outer Surface (OS) which radiates the field
from the subgrid to the main grid, there is no singularity near
the edges of the PEC or PMC which replace the non-working
region of the subgrid. This is because the wedges formed
by the two PEC or PMC walls are re-entrant. In this case,
it is known that both E and H fields are not singular [6],
[7]. Therefore it is expected that the one-sheet OS remains
as accurate as the two-sheet one. This was confirmed by
numerical simulations as the one reported in Section III.

Fig. 2 depicts a 2D TMz numerical simulation scenario
where the surface IS is 4 × 50 cells in size in the main
grid. The ratio of steps of the two grids ns is 5. An incident
wave propagating in x direction is generated in the main grid
and its waveform is the Gaussian pulse Hy(t) = 100e−

t−3θ
θ

A/m, where θ = 20∆ta. Fig. 3 shows Hy at four observation
nodes in the subgrid, computed with implementations of IS
in Fig. 1(a) and Fig. 1(b). No object is present in both grids
which means that the field should be a copy of the incident
field. The Hy field with a PEC non-working region (Fig. 3
(a)) agrees with the incident field (magnitude 100 A/m) at
node 4 in the middle of the IS region, but as the observation
approaches the upper corners of IS the magnitude of the
pulse decreases. At observation node 1, the error is about
30%. On the other hand, with the PMC non-working region
(Fig. 3(b)), the field matches the incident field regardless of
the observation location in the subgrid. The results in Fig. 3
are in close agreement with what was expected. With the PEC
implementation in Fig. 1(a) the H component involved in the
sheet of IS is singular at the corner, resulting in a significant
error in the estimates used to compute H∗

ax and H∗
ay radiated

into the subgrid. In the case of the PMC implementation in
Fig. 1(b) the Eaz component used in the sheet of IS is parallel
to the edge of PMC and thus no significant error is produced.

Fig. 4 shows results of a numerical simulation with the same
simulation settings as in Fig. 2, but with a rectangular PEC
object of size 10 × 230 cells in the subgrid. Component Hy

at node 3 in Fig. 2, which is at the top of the PEC object, is
compared with a reference solution computed within a single
FDTD domain with the same mesh as that of the subgrid.
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Fig. 1. The two implementations of the one-sheet IS in the 2D TMz case. (a)
with the non-working region replaced with a PEC, (b) with the non-working
region replaced with a PMC. Nodes E∗

az , H∗
ax, H∗

ay are fictitious nodes
where estimates of Ez , Hx, Hy are needed to impress the current sheet of
IS in the subgrid.
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Fig. 2. A 2D TMz numerical simulation scenario with main grid steps 1 mm
and 1.9 ps. The gap between OS and IS is 3 main grid steps. The size of IS is
4× 50 main cells and 20× 250 sub cells. Nodes 1, 2, 3, 4 are 2, 5, 10, 125
subcells from the top of IS, respectively, and 4 subcells from the left-hand
side of IS. In the numerical simulations reported in Fig. 4, a 10 × 230-cell
object is placed within IS in the subgrid.
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Fig. 3. Hy field at the nodes 1, 2 ,3 and 4 of the subgrid shown in Fig. 2.
Results were computed with the non-working region of the main grid replaced
with either (a) a PEC (Fig. 1(a)) or (b) a PMC (Fig. 1(b)). The one-sheet OS
was used in both numerical simulations.

Fig. 4 shows that the HSG result computed with a PMC
non-working region in the main grid agrees very well with
the reference solution, while the result computed with a PEC
non-working region is significantly erroneous because of the
singularity of the field used in the Huygens sheet.

The 2D TEz case, with components Ex, Ey and Hz , is the
dual of the TMz case. As is the 2D TMz case we have both
PMC and PEC implementations. Numerical simulations yield
similar results as in the TMz case. The situation is reversed,
i.e. in the TEz case the singularity is present when using a
PMC non-working region. It can be removed by using a PEC
non-working region.

III. 3D NUMERICAL SIMULATIONS

Fig. 5 reports the results of the numerical simulation for a
problem similar to the one in Fig. 2, with a PEC object inside
the subgrid. The simulation settings are identical to those in
[Fig. 9, 3], with a 1 × 1 × 150-cell object in the subgrid.
With the one-sheet IS and OS, the non-working regions are
filled with a PEC in the main grid and a PMC in the subgrid,
as in [3]. The Ex and Ez components normal to the physical
interface between the air and the PEC object (same observation
location as in [3]) are plotted in Fig. 5. In addition to the
reference solution in [3], three results are reported in the figure.
The first one is computed with the one-sheet IS and the two-

-600

-500

-400

-300

-200

-100

 0

 50  100  150  200  250  300  350

Using Fig 1.b

Reference
Using Fig 1.a

H
y
(A

/
m
)

Time (∆ta)

Fig. 4. Hy field at the top of a 10× 230-cell PEC object in the subgrid in
Fig. 2, computed with either a PMC or a PEC in the non-working region of
the main grid. The one-sheet OS was used in both numerical simulations.

TABLE I
ERROR PERCENTAGE CALCULATED FROM FIG. 5.

HSG Error
One-sheet IS and Two-sheet OS 13.1%
Two-sheet IS and One-sheet OS 0.32%
One-sheet IS and One-sheet OS 11.5%

sheet OS, the second one with the two-sheet IS and the one-
sheet OS, and the third one with both the one-sheet IS and
the one-sheet OS.

As is observed, the calculation with the one-sheet IS sig-
nificantly disagrees with the reference solution. On the other
hand, the one-sheet OS with two-sheet IS does not degrade
the accuracy of the results. With the one-sheet IS and the
one-sheet OS the results are intermediate. The presence of the
PMC of the one-sheet OS reduces the spurious effect of the
one-sheet IS, but the results remain unacceptable.

In 3D as well as in 2D, it is possible to fill the non-
working region of the main grid with either a PEC, as in the
simulation in Fig. 5, or with a PMC. However, the components
used to produce the one-sheet IS are always perpendicular
to the edges. These are H components with a PEC region
or E components with a PMC region. In both cases the
components used in IS are then singular, which means that
the field radiated into the subgrid suffers from inaccuracy.
Contrary to the 2D case where the problem can be removed by
using the adequate location of IS, there is no trivial solution to
solve the singularity problem in 3D. There is thus a significant
irreducible error when using both the one-sheet IS and the one-
sheet OS. However, a combination of the two-sheet IS with the
one-sheet OS preserves accuracy, as demonstrated in Fig. 5.
Table I shows the error of each type of the HSG in Fig.5. The
error is quantified by calculating the difference between each
HSG method and the reference solution using [(10), [8]].

The difference of the computational time of the four calcu-
lations in Fig. 5 is less than 1%. As stated in the introduction
the objective of the one-sheet HSG is the reduction of the
complexity of encoding, not the reduction of computational
time which may be a few percent in the best case.
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Fig. 5. Comparison of the one-sheet HSG with the conventional two-sheet
HSG for the 3D numerical simulation defined in [Fig. 9, 3]. The plotted Ex
and Ez components are perpendicular to the surface of the PEC wire at its
end.

IV. CONCLUSION

The one-sheet HSG proposed in [3] to reduce the encoding
effort of the HSG method may suffer from inaccuracy of the
field radiated by the Inner Huygens Surface into the subgrid.
The inaccuracy is due to the singularity of the field at the edges
of the PEC or PMC with which the non-working region of the
main grid is replaced. In 2D the singularity can be removed by
using a PEC non-working region in the TEz case and a PMC
non-working region in the TMz case, rendering the one-sheet
HSG effective. In 3D the singularity is present with both PEC
and PMC non-working regions in the main grid. Reduction
of the effect of the singularity may be possible [9], but this
would reduce the interest of the one-sheet HSG, whose main
purpose is the reduction of the encoding effort in comparison
with the normal two-sheet HSG. However, a combination of a
one-sheet Outer Surface (OS) with a two-sheet Inner Surface
(IS) is possible in 3D.
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