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Abstract—Unconditional stability of the Crank-Nicolson Finite
Difference Time Domain (CN-FDTD) method permits us to use time
steps over the Courant-Friedrich-Lewy (CFL) limit of conventional
FDTD method. However, in this work it was realized that,
when the time step is set above CFL limit the coefficient matrix
arising from Crank-Nicolson method is no longer diagonally dominant
and iterative solvers require longer solution time in each FDTD
iteration. Frequency dependent CN-FDTD (FD-CN-FDTD) scheme
for Debye media is formulated and numerical tests are performed
with two widely used sparse iterative solvers, Bi-Conjugate Gradient
Stabilised (BiCGStab) and Generalised Minimal Residual (GMRES),
for comparison. BiCGStab outperforms GMRES in every aspect of the
study.
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1. INTRODUCTION

The Finite Difference Time Domain (FDTD) [1] method is one of
the most widely used numerical techniques used in computational
electrodynamics. FDTD is straightforward, robust, versatile and
widely applicable for broadband systems. In such systems applications
can involve numerical modeling of interaction with frequency-
dispersive materials [2] with the modification of the original FDTD
scheme [3-6]. However, for many problems of interest it may become
computationally inefficient, due to the upper limit for the time step
imposed by the Courant-Friedrich-Lewy (CFL) stability condition [7].
This typically happens when a high spatial resolution is required to
model fine geometries. This leads to spatial sampling much shorter
than the minimum wavelength of interest, enforcing an unnecessarily
large FDTD iteration numbers [8,9]. There is a growing interest
in overcoming this limitation by employing unconditionally stable
implicit FDTD methods, for which time and space steps can be
independently chosen [10,11]. This trend will continue because high
accuracy in modeling is increasingly in demand with the massive
improvement of computational resources. An alternative to the explicit
FDTD is the Crank-Nicolson [13] FDTD (CN-FDTD) method which
is unconditionally stable beyond the CFL limit. As in the classical
FDTD, CN-FDTD replaces the time and space derivatives by second
order centred differences, but unlike FDTD, the fields affected by the
curl operators are also averaged in time. The resulting scheme is
an unconditionally stable fully implicit marching-on-in-time algorithm
with high accuracy and low anisotropy [14].

There have been works attempting to simplify or approximate
CN-FDTD such as, alternating direction implicit (ADI-FDTD)
method [15], CN Douglas-Gunn method [16], CN cycle-sweep
method [17] and CN approximate factorization splitting method [18].
These approximations suffer up to some extent of numerical errors,
which may become severe for some practical applications [19-21].
Recently, both iterative preconditioned/non-preconditioned [22,23]
and direct solving of CN-FDTD [24] have been developed.

Selection of the matrix solver to handle the implicit system of
equations arising in CN-FDTD is the critical part to fully harness the
advantages of using larger time-step, since the computational costs
associated with the solver must be kept as low as possible. Either
direct or iterative solvers can be employed. Direct solvers are not the
preferred choice for large problems of practical importance because
of their enormous memory requirements [24]. Iterative solvers based
on Krylov subspace theory have proven to be suitable for practical
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problems [22, 23]. However the computational efficiency of an iterative
solver is application-dependent and therefore determination of the
effectiveness of each method is essential.

In this paper, we present a new method to solve the 3D CN-
FDTD method for frequency-dependent media (FD-CN-FDTD), based
on Krylov-subspace solvers for sparse systems. One of the future
objectives of this work is to observe the interaction of electromagnetic
waves with human body. As human tissues have frequency dispersive
characteristics [2], frequency dependent media have to be introduced
into CN-FDTD. Two most appropriate mathematical models for
biological tissues are the Cole-Cole model and the Debye model. Out
of these, the Debye model is chosen because it is widely used and
easy to implement. Single-pole Debye media have been introduced
into CN-FDTD by means of an auxiliary differential formulation [25].
The scheme results in a sparse system of linear equations involving
the three components of the electric field, from which all the
remaining field quantities are explicitly found. The remaining of this
paper is organized as follows: Section 2 introduces FD-CN-FDTD
mathematically. The techniques to solve the system and numerical
results are presented in Section 3. Section 4 presents the conclusion
and discuss on open issues for future work.

2. THEORY OF FD-CN-FDTD

Maxwell’s curl equations in material independent form are

0B
VxEB = - (1)
oD

where E, H, D and B are the electric field, magnetic field, electric
flux density and magnetic flux density, respectively. The constitutive
relationships for isotropic, linear, non-magnetic, single-pole Debye
electrically-dispersive media are, in frequency domain,

B = uoH (3)
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where €y and pg are the free-space permittivity and permeability, eg

is the static permittivity, €., is the optical permittivity, mp is the

relaxation time and o is the static conductivity. Eq. (4) can be re-
written as

(jw)QTDD + jwD = (jw)zegeooTDE + jw(epes + om)E + oE (5)
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By mapping (yw)™, in frequency domain, into gt—z, in time domain,
Eq. (5) can be written as

62D+6D_ 62E+( N >8E+ E 6)
7'])—6252 W = GOGOOTDW €0ES OTD a g

Application of the Crank-Nicolson method [24, 26] to Egs. (1), (2),
(3), and (6), after algebraic manipulation, yields an equation only with
electric field E"™! terms:
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where &1, &9, &3, &4, &5, & are space dependent and functions of the
Debye parameters and At [24].

Cyclic permutation of z, y and z in Eq. (7) yields the remaining
two E-field equations. By applying them to each Yee-grid position, a
system of linear equations of AN = C is set up. A is the coefficient
matrix, IN represents a vector with the electric field components to
be solved, and C is the excitation vector. The system of equations
AN = C s solved first to find the E field. D and H fields are calculated
in an explicit manner from the E field. In order to terminate the
computational space Mur first order boundary conditions are employed
in this work.

3. SOLUTION OF FD-CN-FDTD

3.1. Sparse Matrix

The coefficient matrix A generated by FD-CN-FDTD is highly sparse.
The size of A is 9(N;)*(Ny)?(N.)? where N, N,, N, are the size
of the computational space in z, y and z directions. When the
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problem space is homogeneous, the coefficient matrix is symmetric
and otherwise asymmetric. Fig. 1 shows the sparsity pattern of A
in the case where the entire computational space is filled with Debye
parameters eg = 6.2, €5, = 3.5, 0 = 0.029S/m and T = 39.0ps. The
sparsity pattern of Fig. 1 is similar to that of three dimensional Finite
Difference Frequency Domain (FDFD) method [27], and therefore the
discussions in this paper could also be useful to the FDFD researchers.

Figure 1. Sparsity pattern of coefficient matrix A of FD-CN-FDTD.
The pixel in white has highest value. One in light gray has the value
of 1/16 of the one in white. One in dark gray has the value of zero.
One in black has the negative value of the value in light gray.

80
80 3 o s Medium| €s | €w | T(ps)|c(S/m)
. ; Medium1|71.66|34.58 | 5.65 | 0.021
: Medium2| 6.2 | 35 | 39.0 | 0.020
: Medium3| 9.5 | 42 | 77.0 | 0.037
. Medium4|87.34|49.13 | 26.89 | 0.045
— N ] Medium5| 4.8 | 28 | 7.0 | 0.053
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Figure 2. Computational environment for numerical studies using
FD-CN-FDTD.
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In this paper, two cases are considered for study. The first one
consists of an inhomogeneous medium, in a cubic space of size 803 cells,
with 5 different media as shown in Fig. 2. The second one involves the
same cubic space of the previous case, now filled with a homogeneous
medium with Debye parameters eg = 6.2, €5, = 3.5, 0 = 0.029S/m
and 7p = 39.0ps. In both cases a z-directed dipole hard source with
a time variation given by a Gaussian pulse centered at 6.9 GHz, with
4.94 GHz bandwidth (—3dB decay) was placed at the centre of the
computational space. Spatial sampling was uniform: Az = Ay =
Az = A = 1072 m. The time step is taken equal or above the CFL
stability condition of the explicit FDTD: At = CFLN x A/(cV3)
with CFLN henceforth referred to as CFL number, and ¢ the free-
space light-speed. The level of accuracy in waveform compared with
explicit frequency-dependent FDTD is the same as the one presented
in Fig. 2 in [24].

3.2. Condition Number and Diagonal Dominance

The ease of solution of a linear system of equations can be measured
by the condition number of A. [28] reports that the condition number
of the coefficient matrix A for frequency-independent Crank-Nicolson
scheme increases with the CFL number, which naturally also applies
to our FD-CN-FDTD method. Hence for high CFLN, the matrix
becomes severely ill-conditioned, requiring high computation time to
be solved by iterative methods.

Similar conclusions are found by realizing that the diagonal
dominance of the coefficient matrix’ improves when CFLN decreases,
leading to matrices which are easier to solve. Fig. 3 shows how the
absolute values of diagonal and the sum of absolute values of off-
diagonal elements of A vary with CFLN, both for the homogeneous
and inhomogeneous cases previously described. A representative row
of A has been taken, corresponding to the interior computational
space, which comprises nearly the whole coefficient matrix (except
the boundary-contributed rows). For low CFLN all the rows of
the coefficient matrix are strictly diagonally dominant except a very
few which are contributed by the boundary cases, whereas high
CFLN deteriorates this property. Fig. 3 shows that the advantageous
diagonal property of the coefficient matrix is lost with increased C F'LN
irrespective of the media parameters or homogeneity, The diagonal-
dominance criterion is simpler to handle than the condition-number
one, which is intensive to compute in practice. An additional advantage

T A matrix is said to be diagonally dominant if |a; ;| > Y. 5=1laq,j| for all the i rows.
J#i
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Figure 4. Residual error versus
number of average iteration re-
quired by BiCGStab and GMRES
for homogeneous and inhomoge-
neous cases when CFLN = 20.

of the diagonal dominance criterion is that it points us a direction to
research in the building of appropriate preconditioners to alleviate this
problem.

3.3. Iterative Solvers

To solve FD-CN-FDTD either direct or iterative solvers can be
used. Although direct solvers are robust and reliable [24], they
are computationally more expensive than iterative solvers, unless
parallelized, and require excessively large memory. For example, a 303
cells computational space solved by the direct solver in double precision
using sparse Gaussian elimination requires 2.4 GB of memory whereas
iterative solvers like Bi-Conjugate Gradient Stabilised (BiCGStab)
and Generalised Minimal Residual (GMRES) require only 62 MB and
65 MB, respectively. Thus for practical problems iterative solvers
should be used [29].

Depending on the homogeneity of the computational space FD-
CN-FDTD yields symmetric and asymmetric matrices. Since for
homogeneous problems the coefficient matrix is symmetric, iterative
solvers like Conjugate Gradient (CG) method can be used. However
practical problems are inhomogeneous and we have to resort to
iterative solvers for asymmetric matrices. Usual ones are GMRES,
BiCGStab or Conjugate Gradient Squared (CGS) (Appendix D
of [30]). CGS suffers from irregular convergence, which may lead to
substantial build-up of rounding errors, because it is based on squaring
the residual polynomial [29, 30]. Therefore, this study focuses only in
GMRES and BiCGStab. An advantage of BiCGStab method is that
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its computational cost per iteration is similar to that of CGS but it
avoids the irregular convergence patterns of CGS while maintaining
about the same rate of convergence. GMRES is said to be a very robust
solver for nonsymmetric matrices. It leads to the smallest residual for
a fixed number of iteration steps. But these steps become increasingly
expensive and in order to limit the increasing storage requirements
and work per iteration step, restarting is necessary. In this work
GMRES(m) that restarts every m iterations [31] and BiCGStab of [32]
were used.

3.4. Performance Study of BiCGStab and GMRES

In this section we compare the performance of BiCGStab and GMRES
both for the homogeneous and inhomogeneous media cases described
earlier. Fig. 4 shows the convergence pattern for CFLN = 20, plotting
the residual error as a function of the average number of iterations
required to achieve a specified accuracy. For example, to make the
residual error lower than 10~® BiCGStab requires about 45 iterations
whereas GMRES requires about 97 iterations in both homogeneous and
inhomogeneous cases. The convergence rate of the solvers is weakly
affected by homogeneity. For a modest value of CFLN iteration
numbers would certainly be lowered than those showed in Fig. 4
(CFLN = 20).

Figure 5 shows how the average number of iterations, required by
BiCGStab and GMRES to converge, increases with the CFL number.
Stopping criteria in this case was 107!3 and the reason for selecting
this small value of convergence tolerance is, in FD-CN-FDTD, unlike

c 250 —<BiCGStab (inhomogeneous media) R 400 L Eﬁgé’g’? (ir?homogeneous mded;a) ¥
kel e i ; o inhomogeneous media)
T 200 ++ GMRES (inhomogeneous media) R 3501, BiCGStab (inhomogeneous media) =
@ ~*-BICGStab (inhomogeneous media) i = o, GMRES (inhomogeneous media) -+
= -0~ GMRES (inhomogeneous media) .,
S 150
o} 5
Qo
§ 100
c
S
© 50
]
2
0

CFLN

Figure 5. Average number of Figure 6. CPU time required
iterations required for different by BiCGStab and GMRES for
CFL numbers with residual error different CFLN.

of 10713
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frequency-independent CN-FDTD, D = €E is used and therefore D
can have a value of such small order because of e (permitivitty).
GMRES stagnates when convergence tolerance is below 1073 while
BiCGStab can work even at a lower convergence tolerance. Both
solvers require more iterations to converge as C'F' LN goes up but the
rate of increase of iteration numbers with CF LN is higher for GMRES
than for BiCGStab. Homogeneity does not affect significantly this
rate, particularly, for BiCGStab. The change of iteration number with
CFLN for convergence tolerance values from 107!? to 1073 can be
assumed from Fig. 4. In FD-CN-FDTD, the total number of iterations
required to complete the simulation decreases with CF LN, but the
increase of computational costs per iteration with CF LN, as shown
in Fig. 5, can undermine this positive effect unless the solution is very
efficient.

Figure 6 plots the CPU time required by BiCGStab and GMRES
as a function of CFLN. The case of stopping criterion of 10713 was
employed and simulated to reach a fixed time instant by letting the
code run for 1200/CFLN time steps on a dual AMD Opteron 280
with 8 GB of memory. Observe that the CPU-time decreases with
CFLN, for both solvers, although GMRES requires more CPU time
than BiCGStab.

Table 1 presents the memory required by the two solvers for three
different computational space sizes. GMRES always requires more
memory than BiCGStab.

From all the above, we can conclude that BiCGStab outperforms
GMRES in computational efficiency. This finding is in contrary to
that of [28] which reports GMRES is the fastest for the frequency-
independent CN-FDTD scheme presented there. The work of [28]
is based on Egs. (1) and (2) while FD-CN-FDTD additionally
involves Eq. (6) which has 2nd order time derivative terms. The
FD-CN-FDTD involves nine field components in place of six for CN-
FDTD and the sparsity pattern of the former has more bands than
the latter [23]. Apart from this, the concerned problem of simulation,
implementation, optimization and parameters tuning have an obvious
influence in concluding which solver is the most efficient.

Table 1. Memory required by BiCGStab and GMRES for different
computational spaces.

Computational Size (cells) 403 603 803
BiCGStab 145MB | 487MB | 1.1GB
GMRES 151 MB | 507MB | 1.2GB
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Finally, we have also implemented two preconditioners to solve for
FD-CN-FDTD: Incomplete LU with no fill-in or ILU(0) and Sparse
Approximate Inverse (SAI). ILU(0) did not give any improvement
in convergence (rather convergence deteriorated). However SAI gave
slight improvement in reducing the number of iterations to converge
but there were two major setbacks making it unsuitable for use.
The time to compute the approximate inverse preconditioner is too
large which makes the total CPU time longer than that without any
proconditioner. [23] showed SAI can reduce iteration numbers but did
not mention the total CPU time. A second problem is that memory
requirements of SAI restricted the maximum computational space to
only 303 cells. SAI also showed lack of robustness in our case.

4. CONCLUSION

In this paper, we have presented a new Krylov-based approach to solve
the three dimensional CN-FDTD method for frequency-dependent
Debye dispersive media. Two best-known iterative methods, GMRES
and BiCGStab, were compared in terms of the number of iteration
requirements for convergence with different CF LN, CPU-time and
memory requirements. BiCGStab outperforms GMRES when used
with FD-CN-FDTD in every aspect of the study. It has also
been pointed out that the degradation of diagonal-dominance of the
coefficient matrix with increased CFLN is a main reason for the
increase of the CPU time needed by the solvers. Furthermore it
was found that ILU(0) and SAI preconditioners can not improve the
computational efficiency of FD-CN-FDTD. Many of these findings
about frequency-dependent CN-FDTD do not match with the existing
literature on frequency-independent CN-FDTD and possible reasons
for this are also mentioned. Further work is needed to tailor suitable
preconditioners to improve the iterative solver convergence.
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