
160� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

 EM Programmer’s Notebook Founded by John Volakis

David B. Davidson
Dept. E&E Engineering
University of Stellenbosch
Stellenbosch 7600, South Africa
Tel: +27 21 808 4458;
Fax: +27 21 808 4981
E-mail: davidson@sun.ac.za

Foreword by the Editor

 Many recent papers on accelerating computations (in particular for the FDTD, which lends itself readily to parallel computation)
have used GPGPUs [general-purpose graphics processing units], but contemporary CPUs offer a variety of options for performance
acceleration, too. Often, these are somewhat easier to code. This month’s contribution provides a detailed investigation of the use
of steaming SIMD extensions instructions on x86 architectures. The authors carefully ana lyze hardware aspects, in particular the
impact of cache alignment on performance, and provide interesting results.

 As always, the authors are thanked for their contribution.

Performance of Streaming SIMD Extensions
Instructions for the FDTD Computation

Matthew Livesey1, Fumie Costen2, and Xiaoling Yang3

1Accenture

Kingsley Hall, 20 Bailey Lane, Manchester Airport,Manchester,M90 4AN, UK
Tel: +44 161 435 5865; E-mail: matthew.livesey@accenture.com

2School of Electrical and Electronic Engineering
University of Manchester

Sackville Street Building, Sackville Street, Manchester, M13 9PL, UK
Tel: +44 161 306 4717; Fax: +44 161 306 4644; E-mail: fc@cs.man.ac.uk

32COMU, Inc.

200 Innovation Blvd, State College, PA 16803, USA
Tel: +1 814 4417409; Fax: +1 814 234 1829; E-mail: ybob@2comu.com

Abstract

The utilization of vector-arithmetic logic units is a promising way to speed up FDTD computations from the viewpoint of
hardware acceleration. This paper studies how a streaming SIMD extensions (SSE) implementation can be effi ciently
developed, and the situation where SSE is benefi cial for FDTD computations.

Keywords: Finite difference methods; FDTD methods; time domain analysis; hardware; acceleration; high
performance computing; parallel programming; parallel architectures; streaming SIMD extensions instructions; SSE

1. Introduction

There are multiple parallel implementations of the Finite-
Difference Time-Domain (FDTD) method [1] using the

single-program multiple-data (SPMD) paradigm. In the SPMD
paradigm, each hardware execution unit has its own instruc tion
fetch unit, and can therefore simultaneously execute a different
instruction. Shared-memory thread-based parallel programming
(e.g., using OpenMP) and message-passing-based parallel
programming (e.g., using MPI) are both instances of the SPMD
paradigm. The progressive increase in CPU clock speed over
time has recently ceased, and instead, multi- or many-core
CPUs have become the norm. The trend in high-performance
computing has thus become the utiliza tion of many-core CPUs.
An alternative method of many-core computation has been
proposed using general-purpose com putation on graphics-
processing units (GPGPU). While GPGPU is attracting much
attention in computational electro magnetics, this requires new
hardware to be purchased.

 On the other hand, most researchers engaged in FDTD
coding have access to CPUs based on the x86 architecture (those
from AMD and Intel). All recent AMD and Intel proc essors
are equipped with parallel single-instruction multiple-data
(SIMD) capabilities, offered by a single processor core with
streaming single-instruction multiple-data extensions (SSE)
instructions. In the single-instruction multiple-data paradigm,
multiple hardware execution units are simultane ously issued a
single instruction, and synchronously execute this instruction
on multiple data items [2]. SSE optimization may thus allow
performance improvement without requiring the purchase of
any new hardware.

 However, little attention is paid to using the vector-arith-
metic logic units (VALU) capability provided by SSE, as sin-
gle-instruction multiple-data is not a frequently used method
of acceleration. It is understood that the major top commercial
codes have used only the SSE speedups automatically offered
through compiler options, without the introduction of vectori-
zation of their code. The compiler does not automatically per-
form the memory allocation and alignment. The maximum
benefi t of SSE vector instructions may thus only be gained
when hand-written vectorization is introduced into the code.

 Reference [3] presented a single-precision implementa-
tion of the FDTD method using packed SSE instructions, and
reported a speedup of close to four times. In reality, for some
material parameters and implementations, calculations in dou-
ble precision may be needed. This work extends [3] to a dou-
ble-precision case using the instructions available with the
second generation of SSE, and studies the situation when SSE
is effective and how SSE should be practically used.

2. The FDTD Method

 Maxwell’s curl equations for free space without sources
yield the discretized equations, such as

 () ()1 , , , ,n n
y yH i j k H i j k+ =

 () ()1, , , ,n n
z z

t E i j k E i j k
xµ

∆  + + − ∆

 () (), , 1 , ,n n
x x

t E i j k E i j k
zµ

∆  − + − ∆
,

 (1)

where the variables and notation are the same as those in [4].
Reference [1] presents the rest of the core equations. As is seen
in Equation (1), the computation is spatially localized to the
one-cell neighbors. The FDTD method is thus well known to be
suitable for parallel computing.

3. SSE Instructions

 SSE adds eight 128-bit-wide registers to the x86 architec-
ture [5]. Each register may hold four single-precision, 32-bit
fl oating-point values. SSE also extends the x86 instruction set
with instructions that operate on the additional registers. As
Figure 1 illustrates, with packed SSE instructions [5, 6] each
32-bit section of each input register is treated as a separate
operand. Four instances of the instruction are executed on four
sets of data. SSE therefore provides a single-instruction multi-
ple-data capability. A second generation of SSE, commonly
known as SSE2 [7], provides 144 new instructions, which
include support for double-precision fl oating-point values.
Since double-precision fl oating-point values are 62 bits in
length, a single packed instruction can perform two double-
precision fl oating-point operations at once. Subsequent gen-
erations of SSE gradually add additional instructions [8]. Since
the double-precision instructions added in SSE2 provide the
required arithmetic operations for calculating the FDTD
equations in double precision, this study focuses on the SSE2
instruction set.

4. The FDTD Implementation with SSE

 The most direct method of using SSE instructions in an
implementation is to create an assembly-language sequence of
the required instructions to produce the desired result. As an

Figure 1. The behavior of a packed SSE instruction [5]. Each
rectangle has single precision. X and Y are 32-bit operands,
and OP means “operation.”

AP_Mag_Jun_2012_Final.indd 160 7/30/2012 6:56:33 PM

IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012� 161

 EM Programmer’s Notebook Founded by John Volakis

David B. Davidson
Dept. E&E Engineering
University of Stellenbosch
Stellenbosch 7600, South Africa
Tel: +27 21 808 4458;
Fax: +27 21 808 4981
E-mail: davidson@sun.ac.za

Foreword by the Editor

 Many recent papers on accelerating computations (in particular for the FDTD, which lends itself readily to parallel computation)
have used GPGPUs [general-purpose graphics processing units], but contemporary CPUs offer a variety of options for performance
acceleration, too. Often, these are somewhat easier to code. This month’s contribution provides a detailed investigation of the use
of steaming SIMD extensions instructions on x86 architectures. The authors carefully ana lyze hardware aspects, in particular the
impact of cache alignment on performance, and provide interesting results.

 As always, the authors are thanked for their contribution.

Performance of Streaming SIMD Extensions
Instructions for the FDTD Computation

Matthew Livesey1, Fumie Costen2, and Xiaoling Yang3

1Accenture

Kingsley Hall, 20 Bailey Lane, Manchester Airport,Manchester,M90 4AN, UK
Tel: +44 161 435 5865; E-mail: matthew.livesey@accenture.com

2School of Electrical and Electronic Engineering
University of Manchester

Sackville Street Building, Sackville Street, Manchester, M13 9PL, UK
Tel: +44 161 306 4717; Fax: +44 161 306 4644; E-mail: fc@cs.man.ac.uk

32COMU, Inc.

200 Innovation Blvd, State College, PA 16803, USA
Tel: +1 814 4417409; Fax: +1 814 234 1829; E-mail: ybob@2comu.com

Abstract

The utilization of vector-arithmetic logic units is a promising way to speed up FDTD computations from the viewpoint of
hardware acceleration. This paper studies how a streaming SIMD extensions (SSE) implementation can be effi ciently
developed, and the situation where SSE is benefi cial for FDTD computations.

Keywords: Finite difference methods; FDTD methods; time domain analysis; hardware; acceleration; high
performance computing; parallel programming; parallel architectures; streaming SIMD extensions instructions; SSE

1. Introduction

There are multiple parallel implementations of the Finite-
Difference Time-Domain (FDTD) method [1] using the

single-program multiple-data (SPMD) paradigm. In the SPMD
paradigm, each hardware execution unit has its own instruc tion
fetch unit, and can therefore simultaneously execute a different
instruction. Shared-memory thread-based parallel programming
(e.g., using OpenMP) and message-passing-based parallel
programming (e.g., using MPI) are both instances of the SPMD
paradigm. The progressive increase in CPU clock speed over
time has recently ceased, and instead, multi- or many-core
CPUs have become the norm. The trend in high-performance
computing has thus become the utiliza tion of many-core CPUs.
An alternative method of many-core computation has been
proposed using general-purpose com putation on graphics-
processing units (GPGPU). While GPGPU is attracting much
attention in computational electro magnetics, this requires new
hardware to be purchased.

 On the other hand, most researchers engaged in FDTD
coding have access to CPUs based on the x86 architecture (those
from AMD and Intel). All recent AMD and Intel proc essors
are equipped with parallel single-instruction multiple-data
(SIMD) capabilities, offered by a single processor core with
streaming single-instruction multiple-data extensions (SSE)
instructions. In the single-instruction multiple-data paradigm,
multiple hardware execution units are simultane ously issued a
single instruction, and synchronously execute this instruction
on multiple data items [2]. SSE optimization may thus allow
performance improvement without requiring the purchase of
any new hardware.

 However, little attention is paid to using the vector-arith-
metic logic units (VALU) capability provided by SSE, as sin-
gle-instruction multiple-data is not a frequently used method
of acceleration. It is understood that the major top commercial
codes have used only the SSE speedups automatically offered
through compiler options, without the introduction of vectori-
zation of their code. The compiler does not automatically per-
form the memory allocation and alignment. The maximum
benefi t of SSE vector instructions may thus only be gained
when hand-written vectorization is introduced into the code.

 Reference [3] presented a single-precision implementa-
tion of the FDTD method using packed SSE instructions, and
reported a speedup of close to four times. In reality, for some
material parameters and implementations, calculations in dou-
ble precision may be needed. This work extends [3] to a dou-
ble-precision case using the instructions available with the
second generation of SSE, and studies the situation when SSE
is effective and how SSE should be practically used.

2. The FDTD Method

 Maxwell’s curl equations for free space without sources
yield the discretized equations, such as

 () ()1 , , , ,n n
y yH i j k H i j k+ =

 () ()1, , , ,n n
z z

t E i j k E i j k
xµ

∆  + + − ∆

 () (), , 1 , ,n n
x x

t E i j k E i j k
zµ

∆  − + − ∆
,

 (1)

where the variables and notation are the same as those in [4].
Reference [1] presents the rest of the core equations. As is seen
in Equation (1), the computation is spatially localized to the
one-cell neighbors. The FDTD method is thus well known to be
suitable for parallel computing.

3. SSE Instructions

 SSE adds eight 128-bit-wide registers to the x86 architec-
ture [5]. Each register may hold four single-precision, 32-bit
fl oating-point values. SSE also extends the x86 instruction set
with instructions that operate on the additional registers. As
Figure 1 illustrates, with packed SSE instructions [5, 6] each
32-bit section of each input register is treated as a separate
operand. Four instances of the instruction are executed on four
sets of data. SSE therefore provides a single-instruction multi-
ple-data capability. A second generation of SSE, commonly
known as SSE2 [7], provides 144 new instructions, which
include support for double-precision fl oating-point values.
Since double-precision fl oating-point values are 62 bits in
length, a single packed instruction can perform two double-
precision fl oating-point operations at once. Subsequent gen-
erations of SSE gradually add additional instructions [8]. Since
the double-precision instructions added in SSE2 provide the
required arithmetic operations for calculating the FDTD
equations in double precision, this study focuses on the SSE2
instruction set.

4. The FDTD Implementation with SSE

 The most direct method of using SSE instructions in an
implementation is to create an assembly-language sequence of
the required instructions to produce the desired result. As an

Figure 1. The behavior of a packed SSE instruction [5]. Each
rectangle has single precision. X and Y are 32-bit operands,
and OP means “operation.”

AP_Mag_Jun_2012_Final.indd 161 7/30/2012 6:56:33 PM

162� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

alternative, there is a library of functions available allowing
packed SSE instructions to be expressed entirely in C. These
are known as intrinsic functions. This report focuses on intrin-
sic functions as the method for implementing the FDTD
method using SSE, because it was found that manually coded
assembly-language sequences could not easily be ported
between machines with different variations of the x86 archi-
tecture.

 The intrinsic library provides the data type _m128d,
which represents a pair of 64-bit double-precision values stored
in a 128-bit register. This greatly simplifi es loading and storing
to the SSE processor registers from the matrices repre senting
the FDTD problem space in memory. A pointer of type _m128d
pointing to the address of ()2,1,1xE covers the data at this
location and ()3,1,1xE . A single increment of this pointer
changes its target to the 128-bit location of ()4,1,1xE and

()5,1,1xE , stepping over two elements. The code sample in
Figure 2 shows how Equation (1) is represented using intrinsic
functions. Since the _m128d data type holds two double-
precision values, this code simultaneously performs the
equation for two elements of yH .

 As with many scientifi c computations, the original FDTD
program was written in FORTRAN rather than C. It was desir-
able to avoid a wholesale rewrite of the existing implementa-
tion. It was necessary to use C code to produce the intrinsic
sequences, but procedures written in C could be called from a
FORTRAN program by following a particular naming conven-
tion and using the GCC compiler to link together the compila-
tion units. The compiler option for integration of FORTRAN
and C code was -O2 -msse2 -mfpmath=sse. Prior to this
integration, -c -std=c99 was used for compiling C code.
Porting the standard code to the SSE version was not trivial,
mainly because of lack of documentation on it. Par ticular

attention was required for the pointer arithmetic at the end of
the triply nested loops.

5. Numerical Experiments

5.1 Computational Environment

 The experiments were performed on four machines.
Table 1 gives the specifi cations of each machine. Each had a
varying number of available cores, but only the single-instruc-
tion multiple-data hardware available on a single core was
used in these experiments. The number of cores was therefore
not expected to impact the results. Figure 3 shows the cache
organization of each processor presented in Table 1.

 Figure 4 generalizes the correspondence of the memory
address to the level-1 cache-line address when a computer had
an N-byte level-1 cache, and there was an M-way set associ ated
in the level-1 cache. Each matrix was assigned to a 122 B (122
byte) boundary in memory. Each level-1 cache-line could hold
a contiguous 62 B block from main memory. The level-1 cache-
line address into which each 62 B block in mem ory was copied
was a whole number of

 6memory address modulo 2N
M

  
    

.

Since each set in level-1 cache had identical cache-line
addresses, there were M locations for each cache-line address
and M competing blocks could reside in cache together, one in
each set. When the ()1M + th competing block was loaded, one
of the existing blocks had to be evicted from its cache-line to
make room for the new block.

5.2 Expectation

 Figure 4 with () ()16, 2, 2M N = and ()158,2 represents

the AMD processor and the Intel processor, respectively. With
the AMD processors, if memory addresses of the beginning of
each of the six matrices xE , yE , zE , xH , yH , and zH hap-

pened to be congruent modulo 152 , the matrices could be said
to be aligned with respect to the level-1 data-cache. Since all six
matrices were identical in size and structure, any two ele ments
with the same indices but from different matrices would
compete for the same position in cache when the matrices were
aligned with respect to the level-1 data-cache. Figure 5 shows
how the cache-line eviction could occur in the level-1 cache of
the AMD processors when executing a calculation for

(), ,yH i j k . The memory addresses of (), ,xE i j k and

(), ,zE i j k resolved to the fi rst cache-line, and therefore each
was loaded into one of the two sets available. When the value of

(), ,yH i j k was subsequently required to complete the cal-

Figure 2. The implementation of SSE using intrinsic func-
tions.

Figure 3. The cache organization of the processors in Table 1. SA stands for “set associative.”

Table 1. The details of the architectures used for the numerical experiments. The cache details are in Figure 3.
SL stands for “Scientifi c Linux.”

AMD Athlon
Dual-Core 4200+

AMD Opteron
6168

Intel Core2Duo
E8400 Intel Xeon E5620

Type 64 Bit 64 Bit 32 Bit 64 Bit
Operating System Kernel OpenSuse 10.2 2.6.18.8 CentOS5.5 2.6.18 Fedora11 2.6.30.10 SL 5.5 2.6.18
Core number 2 48 2 8
Core speed 2.2 GHz 1.9 GHz 3 GHz 2.4 GHz
GCC version 4.3.0 4.1.2 4.4.1 4.1.2
Level of SSE support SSE2 SSE4a SSE4.1 SSE4.2

AP_Mag_Jun_2012_Final.indd 162 7/30/2012 6:56:33 PM

IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012� 163

alternative, there is a library of functions available allowing
packed SSE instructions to be expressed entirely in C. These
are known as intrinsic functions. This report focuses on intrin-
sic functions as the method for implementing the FDTD
method using SSE, because it was found that manually coded
assembly-language sequences could not easily be ported
between machines with different variations of the x86 archi-
tecture.

 The intrinsic library provides the data type _m128d,
which represents a pair of 64-bit double-precision values stored
in a 128-bit register. This greatly simplifi es loading and storing
to the SSE processor registers from the matrices repre senting
the FDTD problem space in memory. A pointer of type _m128d
pointing to the address of ()2,1,1xE covers the data at this
location and ()3,1,1xE . A single increment of this pointer
changes its target to the 128-bit location of ()4,1,1xE and

()5,1,1xE , stepping over two elements. The code sample in
Figure 2 shows how Equation (1) is represented using intrinsic
functions. Since the _m128d data type holds two double-
precision values, this code simultaneously performs the
equation for two elements of yH .

 As with many scientifi c computations, the original FDTD
program was written in FORTRAN rather than C. It was desir-
able to avoid a wholesale rewrite of the existing implementa-
tion. It was necessary to use C code to produce the intrinsic
sequences, but procedures written in C could be called from a
FORTRAN program by following a particular naming conven-
tion and using the GCC compiler to link together the compila-
tion units. The compiler option for integration of FORTRAN
and C code was -O2 -msse2 -mfpmath=sse. Prior to this
integration, -c -std=c99 was used for compiling C code.
Porting the standard code to the SSE version was not trivial,
mainly because of lack of documentation on it. Par ticular

attention was required for the pointer arithmetic at the end of
the triply nested loops.

5. Numerical Experiments

5.1 Computational Environment

 The experiments were performed on four machines.
Table 1 gives the specifi cations of each machine. Each had a
varying number of available cores, but only the single-instruc-
tion multiple-data hardware available on a single core was
used in these experiments. The number of cores was therefore
not expected to impact the results. Figure 3 shows the cache
organization of each processor presented in Table 1.

 Figure 4 generalizes the correspondence of the memory
address to the level-1 cache-line address when a computer had
an N-byte level-1 cache, and there was an M-way set associ ated
in the level-1 cache. Each matrix was assigned to a 122 B (122
byte) boundary in memory. Each level-1 cache-line could hold
a contiguous 62 B block from main memory. The level-1 cache-
line address into which each 62 B block in mem ory was copied
was a whole number of

 6memory address modulo 2N
M

  
    

.

Since each set in level-1 cache had identical cache-line
addresses, there were M locations for each cache-line address
and M competing blocks could reside in cache together, one in
each set. When the ()1M + th competing block was loaded, one
of the existing blocks had to be evicted from its cache-line to
make room for the new block.

5.2 Expectation

 Figure 4 with () ()16, 2, 2M N = and ()158,2 represents

the AMD processor and the Intel processor, respectively. With
the AMD processors, if memory addresses of the beginning of
each of the six matrices xE , yE , zE , xH , yH , and zH hap-

pened to be congruent modulo 152 , the matrices could be said
to be aligned with respect to the level-1 data-cache. Since all six
matrices were identical in size and structure, any two ele ments
with the same indices but from different matrices would
compete for the same position in cache when the matrices were
aligned with respect to the level-1 data-cache. Figure 5 shows
how the cache-line eviction could occur in the level-1 cache of
the AMD processors when executing a calculation for

(), ,yH i j k . The memory addresses of (), ,xE i j k and

(), ,zE i j k resolved to the fi rst cache-line, and therefore each
was loaded into one of the two sets available. When the value of

(), ,yH i j k was subsequently required to complete the cal-

Figure 2. The implementation of SSE using intrinsic func-
tions.

Figure 3. The cache organization of the processors in Table 1. SA stands for “set associative.”

Table 1. The details of the architectures used for the numerical experiments. The cache details are in Figure 3.
SL stands for “Scientifi c Linux.”

AMD Athlon
Dual-Core 4200+

AMD Opteron
6168

Intel Core2Duo
E8400 Intel Xeon E5620

Type 64 Bit 64 Bit 32 Bit 64 Bit
Operating System Kernel OpenSuse 10.2 2.6.18.8 CentOS5.5 2.6.18 Fedora11 2.6.30.10 SL 5.5 2.6.18
Core number 2 48 2 8
Core speed 2.2 GHz 1.9 GHz 3 GHz 2.4 GHz
GCC version 4.3.0 4.1.2 4.4.1 4.1.2
Level of SSE support SSE2 SSE4a SSE4.1 SSE4.2

AP_Mag_Jun_2012_Final.indd 163 7/30/2012 6:56:33 PM

164� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

Figure 4. The relationships between the addresses in main memory and the N-byte Level-1 cache with M-way set associative.

Figure 5. The cache behavior of the AMD Athlon proces sor.

Figure 6. The performance of FDTD implementations on AMD architectures: (a) AMD Athlon; (b) AMD Opteron.

Figure 7. The performance of FDTD implementations on AMD architectures, following the memory-alignment fi x: (a) AMD
Athlon; (b) AMD Opteron.

AP_Mag_Jun_2012_Final.indd 164 7/30/2012 6:56:34 PM

IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012� 165

Figure 4. The relationships between the addresses in main memory and the N-byte Level-1 cache with M-way set associative.

Figure 5. The cache behavior of the AMD Athlon proces sor.

Figure 6. The performance of FDTD implementations on AMD architectures: (a) AMD Athlon; (b) AMD Opteron.

Figure 7. The performance of FDTD implementations on AMD architectures, following the memory-alignment fi x: (a) AMD
Athlon; (b) AMD Opteron.

AP_Mag_Jun_2012_Final.indd 165 7/30/2012 6:56:35 PM

166� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

implementation, respectively. As expected, both the standard
FORTRAN implementation and the SSE implementation
showed frequent and signifi cant drops in performance at vari-
ous problem sizes on both AMD machines. Since the drops in
performance happened at particular problem sizes, but the
performance returned to normal for subsequent problem sizes,
this was not related to the scalability of the algorithm. Calcu-
lating the matrix size but adjusting for memory alignment to the
next 122 B boundary, we found that those dimensions that led to
a dramatic loss in throughput perfectly correlated with those
dimensions calculated to be aligned on a 152 B bound ary. This
proved our expectation that alignment in memory – leading to
excessive eviction of cache-lines – was the cause of the drop in
performance.

5.3.3 Poor Performance on AMD Athlon

 The AMD Athlon is based on the K8 micro-architecture,
which features a 64-bit data path. This means that 128-bit SSE
instructions must be split in two, effectively removing all con-
currency from double-precision execution. In contrast, the
AMD Opteron is based on the K10 micro-architecture, and
both Intels are based on the Core micro-architecture, both of
which feature a 128-bit data path. This difference is the most
likely cause of the lack of performance on the AMD Athlon. All
processors that are SSE capable but have a 64-bit data path are
likely to suffer from a similar lack of speedup when exe cuting
double-precision SSE vector instructions.

5.4 Remedy for
Localized Performance Deterioration

 One solution to the memory-alignment problem is to
introduce memory-allocation logic into the code, in order to
increase the space between each matrix and ensure that align-
ment does not occur. Having calculated that a particular prob-
lem size would cause alignment and required adjustment, a
simple solution was to add redundant elements to the begin ning
of each matrix. The extra space was given negative indi ces and

Figure 8. The performance of FDTD implementations on Intel architectures.

culation, it had to be placed in the fi rst cache-line of one of the
two sets. This led to either the values of (), ,xE i j k to

()7, ,xE i j k+ or (), ,zE i j k to ()7, ,zE i j k+ being evicted,
even though these values would be required in several calcu-
lations immediately following the calculation of (), ,yH i j k .
The resulting cache misses led to main memory accesses. A
performance deterioration was thus expected, depending on the
FDTD grid size, on AMD architectures.

 This memory alignment should not have been an issue on
the Intel machines for our simple FDTD algorithm. Since the
level-1 cache was eight-way set associative, each cache-line
address corresponded to eight slots in the cache. Since there
were only six matrices in this simple FDTD algorithm, the 62
B cache-lines containing the elements indexed by a particu lar
(i,j,k) index from each matrix could all simultaneously
reside in cache, using six of the available eight positions for that
cache-line address.

5.3 Results on AMD Architectures

5.3.1 Performance Measurement

 The standard FORTRAN implementation and the SSE
implementation were each executed with an FDTD grid num-
ber of ()32l , where l is an integer from eight to 128. The
execution was run for 1000 FDTD time steps, and each result
was taken four times to produce an average. The timing result
measured was the overall execution time of the 1000 time steps
without initialization and data output. The performance, P , is
defi ned as the execution time in seconds for 1000 time steps
divided by the number of FDTD grids, ()32l . A smaller P thus
represents better performance.

5.3.2 Intermittent Performance Degradation

 Figure 6 shows the performance results from the AMD
machines. The 侟 and  symbols are the execution time with
the standard FORTRAN implementation and with the SSE

7. References

 1. A. Tafl ove and S. Hagness, Computational Electrody-
namics: The Finite-Difference Time-Domain Method, Third
Edition, Norwood, MA, Artech House Publishers, 2005.

2. D. A. Patterson and J. L. Hennessy, Computer Organization
and Design, Third Edition: The Hardware/Software Interface,
Burlington, MA, Morgan Kaufmann, 2004.

3. W. Yu, X. Yang, Y. Liu, R. Mittra, D. Chang, C. Liao, A.
Muto, W. Li, and L. Zhao, ``New Development of Parallel
Conformal FDTD Method in Computational Electromagnetic
Engineering,” IEEE Antennas and Propagation Magazine, 53,
3, June 2011, pp. 15-41.

4. F. Costen, J.-P. Berenger, and A. Brown, “Comparison of
FDTD Hard Source with FDTD Soft Source and Accuracy
Assessment in Debye Media,” IEEE Transactions on Anten nas
and Propagation, AP-57, 7, July 2009, pp. 2014-2022.

5. S. Thakkur and T. Huff, ``Internet Streaming SIMD Exten-
sions,” Computer, 32, 12, December 1999, pp. 26-34.

6. J. Huynh, “The AMD Athlon MP Processor with 512KB L2
Cache,” Technical Report, AMD, May 2003.

7. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, and P. Roussel, “The Microarchitecture of the Pentium
4 Processor,” Intel Technology Journal, 5, 2001.

8. Intel Corporation, “Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 1: Basic Architecture,”
March 2012.

Introducing the Authors

 Matthew Livesey graduated from the University of Man-
chester in 2005 with a BEng Software Engineering (First Class
Honors). He subsequently joined Accenture, working as an IT

therefore was ignored by the code, which traversed the matrices
using positive indices. Figure 7 shows the perform ance results
for the standard and SSE implementations on the AMD
machines after the memory alignment fi x was in place.
Compared with Figure 6, there were many fewer instances of
loss of throughput in Figure 7. Where the drop in performance
still occurred, this was caused by problem sizes where adding
an extra layer altered the size of the matrices by an exact 152 B
amount. A more-practical solution may be to be aware of the
FDTD grid sizes that cause cache contention due to alignment
on a particular machine, and to avoid those sizes.

5.5 Results on Intel Architectures

 Figure 8 shows the performance results on the Intel Xeon
and Intel Core 2 Duo machines. On both Intel machines, the
differences between the performance of the standard FORTRAN
implementation and the SSE implementation rep resented a
speedup of around two, the ideal speedup achiev able when
using the packed SSE instructions to perform two arithmetic
operations at once. As expected, the Intel machines did not
exhibit the same pattern of performance drops seen with the
AMD machines.

6. Conclusion

 This paper investigated the application of SSE to double-
precision computation and its effi ciency in commonly avail able
computer architectures. It was found that using intrinsic
functions, an SSE implementation could accelerate the double-
precision computation on machines that featured a 128-bit data
path. When a level-1 cache was M-way set associate and
computational equations required more than M matrices with
an identical size, we needed to consider memory alignment
leading to cache collisions in order not to suffer sporadic dips in
performance. This paper proposed and demonstrated one of the
ways to avoid this when 2M = . An alternative approach could
be an application of memory interleaving to reduce the cache
misses. Introduction of boundary conditions, Huygens
excitation, and more complex situations such as handling fre-
quency-dependent material will produce more computation
locally and in the entire FDTD space. These computations can
also use SSE instructions. While we expect similar speedups
can be achieved if the issues of memory allocation and code
structure are observed, performance will vary on a case-by-case
basis.

AP_Mag_Jun_2012_Final.indd 166 7/30/2012 6:56:35 PM

IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012� 167

implementation, respectively. As expected, both the standard
FORTRAN implementation and the SSE implementation
showed frequent and signifi cant drops in performance at vari-
ous problem sizes on both AMD machines. Since the drops in
performance happened at particular problem sizes, but the
performance returned to normal for subsequent problem sizes,
this was not related to the scalability of the algorithm. Calcu-
lating the matrix size but adjusting for memory alignment to the
next 122 B boundary, we found that those dimensions that led to
a dramatic loss in throughput perfectly correlated with those
dimensions calculated to be aligned on a 152 B bound ary. This
proved our expectation that alignment in memory – leading to
excessive eviction of cache-lines – was the cause of the drop in
performance.

5.3.3 Poor Performance on AMD Athlon

 The AMD Athlon is based on the K8 micro-architecture,
which features a 64-bit data path. This means that 128-bit SSE
instructions must be split in two, effectively removing all con-
currency from double-precision execution. In contrast, the
AMD Opteron is based on the K10 micro-architecture, and
both Intels are based on the Core micro-architecture, both of
which feature a 128-bit data path. This difference is the most
likely cause of the lack of performance on the AMD Athlon. All
processors that are SSE capable but have a 64-bit data path are
likely to suffer from a similar lack of speedup when exe cuting
double-precision SSE vector instructions.

5.4 Remedy for
Localized Performance Deterioration

 One solution to the memory-alignment problem is to
introduce memory-allocation logic into the code, in order to
increase the space between each matrix and ensure that align-
ment does not occur. Having calculated that a particular prob-
lem size would cause alignment and required adjustment, a
simple solution was to add redundant elements to the begin ning
of each matrix. The extra space was given negative indi ces and

Figure 8. The performance of FDTD implementations on Intel architectures.

culation, it had to be placed in the fi rst cache-line of one of the
two sets. This led to either the values of (), ,xE i j k to

()7, ,xE i j k+ or (), ,zE i j k to ()7, ,zE i j k+ being evicted,
even though these values would be required in several calcu-
lations immediately following the calculation of (), ,yH i j k .
The resulting cache misses led to main memory accesses. A
performance deterioration was thus expected, depending on the
FDTD grid size, on AMD architectures.

 This memory alignment should not have been an issue on
the Intel machines for our simple FDTD algorithm. Since the
level-1 cache was eight-way set associative, each cache-line
address corresponded to eight slots in the cache. Since there
were only six matrices in this simple FDTD algorithm, the 62
B cache-lines containing the elements indexed by a particu lar
(i,j,k) index from each matrix could all simultaneously
reside in cache, using six of the available eight positions for that
cache-line address.

5.3 Results on AMD Architectures

5.3.1 Performance Measurement

 The standard FORTRAN implementation and the SSE
implementation were each executed with an FDTD grid num-
ber of ()32l , where l is an integer from eight to 128. The
execution was run for 1000 FDTD time steps, and each result
was taken four times to produce an average. The timing result
measured was the overall execution time of the 1000 time steps
without initialization and data output. The performance, P , is
defi ned as the execution time in seconds for 1000 time steps
divided by the number of FDTD grids, ()32l . A smaller P thus
represents better performance.

5.3.2 Intermittent Performance Degradation

 Figure 6 shows the performance results from the AMD
machines. The 侟 and  symbols are the execution time with
the standard FORTRAN implementation and with the SSE

7. References

 1. A. Tafl ove and S. Hagness, Computational Electrody-
namics: The Finite-Difference Time-Domain Method, Third
Edition, Norwood, MA, Artech House Publishers, 2005.

2. D. A. Patterson and J. L. Hennessy, Computer Organization
and Design, Third Edition: The Hardware/Software Interface,
Burlington, MA, Morgan Kaufmann, 2004.

3. W. Yu, X. Yang, Y. Liu, R. Mittra, D. Chang, C. Liao, A.
Muto, W. Li, and L. Zhao, ``New Development of Parallel
Conformal FDTD Method in Computational Electromagnetic
Engineering,” IEEE Antennas and Propagation Magazine, 53,
3, June 2011, pp. 15-41.

4. F. Costen, J.-P. Berenger, and A. Brown, “Comparison of
FDTD Hard Source with FDTD Soft Source and Accuracy
Assessment in Debye Media,” IEEE Transactions on Anten nas
and Propagation, AP-57, 7, July 2009, pp. 2014-2022.

5. S. Thakkur and T. Huff, ``Internet Streaming SIMD Exten-
sions,” Computer, 32, 12, December 1999, pp. 26-34.

6. J. Huynh, “The AMD Athlon MP Processor with 512KB L2
Cache,” Technical Report, AMD, May 2003.

7. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker, and P. Roussel, “The Microarchitecture of the Pentium
4 Processor,” Intel Technology Journal, 5, 2001.

8. Intel Corporation, “Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual Volume 1: Basic Architecture,”
March 2012.

Introducing the Authors

 Matthew Livesey graduated from the University of Man-
chester in 2005 with a BEng Software Engineering (First Class
Honors). He subsequently joined Accenture, working as an IT

therefore was ignored by the code, which traversed the matrices
using positive indices. Figure 7 shows the perform ance results
for the standard and SSE implementations on the AMD
machines after the memory alignment fi x was in place.
Compared with Figure 6, there were many fewer instances of
loss of throughput in Figure 7. Where the drop in performance
still occurred, this was caused by problem sizes where adding
an extra layer altered the size of the matrices by an exact 152 B
amount. A more-practical solution may be to be aware of the
FDTD grid sizes that cause cache contention due to alignment
on a particular machine, and to avoid those sizes.

5.5 Results on Intel Architectures

 Figure 8 shows the performance results on the Intel Xeon
and Intel Core 2 Duo machines. On both Intel machines, the
differences between the performance of the standard FORTRAN
implementation and the SSE implementation rep resented a
speedup of around two, the ideal speedup achiev able when
using the packed SSE instructions to perform two arithmetic
operations at once. As expected, the Intel machines did not
exhibit the same pattern of performance drops seen with the
AMD machines.

6. Conclusion

 This paper investigated the application of SSE to double-
precision computation and its effi ciency in commonly avail able
computer architectures. It was found that using intrinsic
functions, an SSE implementation could accelerate the double-
precision computation on machines that featured a 128-bit data
path. When a level-1 cache was M-way set associate and
computational equations required more than M matrices with
an identical size, we needed to consider memory alignment
leading to cache collisions in order not to suffer sporadic dips in
performance. This paper proposed and demonstrated one of the
ways to avoid this when 2M = . An alternative approach could
be an application of memory interleaving to reduce the cache
misses. Introduction of boundary conditions, Huygens
excitation, and more complex situations such as handling fre-
quency-dependent material will produce more computation
locally and in the entire FDTD space. These computations can
also use SSE instructions. While we expect similar speedups
can be achieved if the issues of memory allocation and code
structure are observed, performance will vary on a case-by-case
basis.

AP_Mag_Jun_2012_Final.indd 167 7/30/2012 6:56:35 PM

168� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

consultant. In 2011, he returned to the University of Manchester
and received an MSc with distinction in Computer Science,
and was awarded the Peter Jones prize as the highest achiever
in the year. Matthew continues to work at Accenture as an IT
Project Manager and Solution Architect. Matthew is interested
in parallel and distributed systems, and is currently working
with Big Data in Hadoop.

 Fumie Costen received the BSc and MSc in Electrical
Engineering, and the PhD in Informatics, all from Kyoto Uni-
versity, Japan. From 1993 to 1997, she was with Advanced
Telecommunication Research International, Kyoto, where she
was engaged in research on direction-of-arrival estimation
based on the Multiple SIgnal Classifi cation (MUSIC) algo-
rithm for three-dimensional laser microvision. She received an
academic invitation from Kiruna Division, Swedish Institute
of Space Physics, Sweden, in 1996, and received three patents
from the research in 1999. From 1998 to 2000, she was with
Manchester Computing in the University of Manchester, UK,
where she was engaged in research on metacomputing and
has been a Lecturer since 2000. Her research interests include

computational electromagnetics for such topics as a variety of
the Finite-Difference Time-Domain methods for the micro-
wave frequency range, and high spatial resolution and FDTD
subgridding and boundary conditions. Her work extends to
hardware acceleration of the computations using general-pur-
pose computing on graphics processing units, streaming sin-
gle-instruction multiple-data-extension (SSE) and advanced-
vector-extensions instructions. Dr. Costen received an ATR
Excellence in Research Award in 1996, and a best paper award
from the 8th International Conference on High Per formance
Computing and Networking Europe in 2000.

 Xiaoling Yang received his BS and BE from Tianjin
University in 2001, and his MS from Tianjin University in
2004. He worked in the ECL and MRL of the Pennsylvania
State University for more than seven years. He has published
three books and a dozen papers in computational electromag-
netics. He has been an IEEE Senior Member since 2010. His
major research interests include parallel computing, the FDTD
method, and computer graphics.

Application areas:
• Antenna diagnostics:
	 Identification	of	array	element	failure,	surface	errors,	feeding	network	and		
	 radome	imperfections,	leaking	cables	and	unexpected	bright	spots,	all	of		
	 which	cause	unexpected	anomalies	in	the	radiation	pattern

• Filtering of undesired radiation:
	 Computation	of	clean	antenna	patterns	where		currents	on	cables,		 	
	 mounting	fixture	or	selected	areas	of	the	reconstruction	surface	are	
	 suppressed	–	essential	for	measurements	of	small	antennas	

• Enhancement of measured patterns:
	 Compute	noise-free	patterns	radiated	by	the	reconstructed	
	 currents	–	the	conformal	reconstruction	surface	acts	as	a	physics-based	
	 filter	that	includes	the	shape	of	the	AUT

DIATOOL reconstructs the extreme near-field and surface
currents of an antenna under test (AUT), based on the
radiated field measured in anechoic chambers. The recon-
struction is performed on an arbitrary surface conformal to
the AUT or on a plane in the extreme near-field region.

Application	of	the	planar	reconstruction	technique:	the	co-polar	component	

of	the	radiated	electric	field	is	reconstructed	on	a	plane	in	the	measurement	

coordinate	system.	A	bump	on	the	reflector	surface	is	clearly	visible.	The	

bump	caused	numerous	ripples	in	the	side	lobes	of	the	measured	far-field	

pattern,	while	the	main	lobe	did	not	show	any	anomaly.

Application	of	the	3D	reconstruction	technique:	

the	cross-polar	component	of	the	radiated	electric	

field	is	reconstructed	on	a	closed	surface	conformal	to	

the	AUT.	The	figure	shows	an	unexpected	asymmetry	

which	is	due	to	an	error	in	the	horn	feeding	network	

and	which	causes	a	high	cross-polar	component	

in	the	measured	pattern.	

 The invaluable tool for
 advanced antenna diagnostics
 and processing of measured fields

www.ticra.comTICRA is an antenna engineering company with world leading expertise in software tools
and consultancy services within design, analysis and measurement techniques for antennas.
Based in the centre of Copenhagen, Denmark, TICRA employs highly skilled professionals
with over 240 man-years of expertise in their fields.Pioneering Antennas

AP_Mag_Jun_2012_Final.indd 168 7/30/2012 6:56:36 PM

