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Foreword by the Editor

Many recent papers on accelerating computations (in particular for the FDTD, which lends itself readily to parallel computation)
have used GPGPUs [general-purpose graphics processing units], but contemporary CPUs offer a variety of options for performance
acceleration, too. Often, these are somewhat easier to code. This month’s contribution provides a detailed investigation of the use
of steaming SIMD extensions instructions on x86 architectures. The authors carefully analyze hardware aspects, in particular the
impact of cache alignment on performance, and provide interesting results.

As always, the authors are thanked for their contribution.
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Abstract

The utilization of vector-arithmetic logic units is a promising way to speed up FDTD computations from the viewpoint of
hardware acceleration. This paper studies how a streaming SIMD extensions (SSE) implementation can be efficiently
developed, and the situation where SSE is beneficial for FDTD computations.
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1. Introduction

There are multiple parallel implementations of the Finite-
Difference Time-Domain (FDTD) method [1] using the
single-program multiple-data (SPMD) paradigm. In the SPMD
paradigm, each hardware execution unit has its own instruction
fetch unit, and can therefore simultaneously execute a different
instruction. Shared-memory thread-based parallel programming
(e.g., using OpenMP) and message-passing-based parallel
programming (e.g., using MPJ) are both instances of the SPMD
paradigm. The progressive increase in CPU clock speed over
time has recently ceased, and instead, multi- or many-core
CPUs have become the norm. The trend in high-performance
computing has thus become the utilization of many-core CPUs.
An alternative method of many-core computation has been
proposed using general-purpose computation on graphics-
processing units (GPGPU). While GPGPU is attracting much
attention in computational electromagnetics, this requires new
hardware to be purchased.

On the other hand, most researchers engaged in FDTD
coding have access to CPUs based on the x86 architecture (those
from AMD and Intel). All recent AMD and Intel processors
are equipped with parallel single-instruction multiple-data
(SIMD) capabilities, offered by a single processor core with
streaming single-instruction multiple-data extensions (SSE)
instructions. In the single-instruction multiple-data paradigm,
multiple hardware execution units are simultaneously issued a
single instruction, and synchronously execute this instruction
on multiple data items [2]. SSE optimization may thus allow
performance improvement without requiring the purchase of
any new hardware.

However, little attention is paid to using the vector-arith-
metic logic units (VALU) capability provided by SSE, as sin-
gle-instruction multiple-data is not a frequently used method
of acceleration. It is understood that the major top commercial
codes have used only the SSE speedups automatically offered
through compiler options, without the introduction of vectori-
zation of their code. The compiler does not automatically per-
form the memory allocation and alignment. The maximum
benefit of SSE vector instructions may thus only be gained
when hand-written vectorization is introduced into the code.

Reference [3] presented a single-precision implementa-
tion of the FDTD method using packed SSE instructions, and
reported a speedup of close to four times. In reality, for some
material parameters and implementations, calculations in dou-
ble precision may be needed. This work extends [3] to a dou-
ble-precision case using the instructions available with the
second generation of SSE, and studies the situation when SSE
is effective and how SSE should be practically used.

2. The FDTD Method

Maxwell’s curl equations for free space without sources
yield the discretized equations, such as

Hy™ (i, jk) = Hy (i, j,k)
At "y, . n(. :
+[uTAx|:EZ (l+l,]:k)_Ez (l’J’k):I
At .. ..
_E[E;l (1,],k+1)—E;' (l,],k)J )
(1)

where the variables and notation are the same as those in [4].
Reference [1] presents the rest of the core equations. As is seen
in Equation (1), the computation is spatially localized to the
one-cell neighbors. The FDTD method is thus well known to be
suitable for parallel computing.

3. SSE Instructions

SSE adds eight 128-bit-wide registers to the x86 architec-
ture [5]. Each register may hold four single-precision, 32-bit
floating-point values. SSE also extends the x86 instruction set
with instructions that operate on the additional registers. As
Figure 1 illustrates, with packed SSE instructions [5, 6] each
32-bit section of each input register is treated as a separate
operand. Four instances of the instruction are executed on four
sets of data. SSE therefore provides a single-instruction multi-
ple-data capability. A second generation of SSE, commonly
known as SSE2 [7], provides 144 new instructions, which
include support for double-precision floating-point values.

Since double-precision floating-point values are 2% bits in
length, a single packed instruction can perform two double-
precision floating-point operations at once. Subsequent gen-
erations of SSE gradually add additional instructions [8]. Since
the double-precision instructions added in SSE2 provide the
required arithmetic operations for calculating the FDTD
equations in double precision, this study focuses on the SSE2
instruction set.

4. The FDTD Implementation with SSE

The most direct method of using SSE instructions in an
implementation is to create an assembly-language sequence of
the required instructions to produce the desired result. As an

|Register 1

||X1 lez ||X3 ||X4
[ vi T y2 [ v3 | Y4

[ [ [ [
(OvP) (OVP) (O'P) (OvP)
| X1 0p Y1[X2 0op Y2[X3 op Y3| X4 op Y4Register 1

Figure 1. The behavior of a packed SSE instruction [S]. Each
rectangle has single precision. X and Y are 32-bit operands,
and OP means “operation.”

|Register 2
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//Calculate hy

// ez(i""'lfjfk) _62(7:7j:k)

~m128d templ = mm sub_pd(*dez_shift_i, xdez);
divide by dx

templ = mm_div_pd(templ, ddx);

//ex(igk+1) - ex(i,j,k)

- m128d temp2= _mm sub _pd(xdex shift k, «dex);
//divide by dz

temp2 = mm div pd(temp2, ddz);

// subtract the two clauses

temp2 = mm sub pd(temp2, templ);

// multiply by dt/pma

temp2 = mm mul pd(temp2, ddtbpma);
// add calculation to hy(i,j,k) and store
*dhy = mm_ add_pd(*xdhy, temp2)

Figure 2. The implementation of SSE using intrinsic func-
tions.

alternative, there is a library of functions available allowing
packed SSE instructions to be expressed entirely in C. These
are known as intrinsic functions. This report focuses on intrin-
sic functions as the method for implementing the FDTD
method using SSE, because it was found that manually coded
assembly-language sequences could not easily be ported
between machines with different variations of the x86 archi-
tecture.

The intrinsic library provides the data type m128d,
which represents a pair of 64-bit double-precision values stored
in a 128-bit register. This greatly simplifies loading and storing
to the SSE processor registers from the matrices representing
the FDTD problem space in memory. A pointer of type m128d
pointing to the address of E, (2,1,1) covers the data at this

location and E, (3,1,1). A single increment of this pointer
changes its target to the 128-bit location of E, (4,1,1) and
E, (5,1,1), stepping over two elements. The code sample in

Figure 2 shows how Equation (1) is represented using intrinsic
functions. Since the m128d data type holds two double-
precision values, this code simultaneously performs the
equation for two elements of .

As with many scientific computations, the original FDTD
program was written in FORTRAN rather than C. It was desir-
able to avoid a wholesale rewrite of the existing implementa-
tion. It was necessary to use C code to produce the intrinsic
sequences, but procedures written in C could be called from a
FORTRAN program by following a particular naming conven-
tion and using the GCC compiler to link together the compila-
tion units. The compiler option for integration of FORTRAN
and C code was —-02 -msse?2 -mfpmath=sse. Prior to this
integration, -c -std=c99 was used for compiling C code.
Porting the standard code to the SSE version was not trivial,
mainly because of lack of documentation on it. Particular

attention was required for the pointer arithmetic at the end of
the triply nested loops.

5. Numerical Experiments

5.1 Computational Environment

The experiments were performed on four machines.
Table 1 gives the specifications of each machine. Each had a
varying number of available cores, but only the single-instruc-
tion multiple-data hardware available on a single core was
used in these experiments. The number of cores was therefore
not expected to impact the results. Figure 3 shows the cache
organization of each processor presented in Table 1.

Figure 4 generalizes the correspondence of the memory
address to the level-1 cache-line address when a computer had
an N-byte level-1 cache, and there was an M-way set associated

in the level-1 cache. Each matrix was assigned to a 22B (212
byte) boundary in memory. Each level-1 cache-line could hold

a contiguous 25 B block from main memory. The level-1 cache-

line address into which each 2° B block in memory was copied
was a whole number of

[(memory address modulo ]\]YIJ / 26} .

Since each set in level-1 cache had identical cache-line
addresses, there were M locations for each cache-line address
and M competing blocks could reside in cache together, one in
each set. When the (M +1) th competing block was loaded, one

of the existing blocks had to be evicted from its cache-line to
make room for the new block.

5.2 Expectation

Figure 4 with (M,N) = (2,216) and (8, 215) represents

the AMD processor and the Intel processor, respectively. With
the AMD processors, if memory addresses of the beginning of
each of the six matrices E,, E,, E., H,, H, ,and H_ hap-

pened to be congruent modulo 213 , the matrices could be said
to be aligned with respect to the level-1 data-cache. Since all six
matrices were identical in size and structure, any two elements
with the same indices but from different matrices would
compete for the same position in cache when the matrices were
aligned with respect to the level-1 data-cache. Figure 5 shows
how the cache-line eviction could occur in the level-1 cache of
the AMD processors when executing a calculation for
H, (i,j,k). The memory addresses of E,(i,jk) and

E. (i, j,k) resolved to the first cache-line, and therefore each

was loaded into one of the two sets available. When the value of
H (i, j,k) was subsequently required to complete the cal-
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Intel Core 2 Duo AMD Athlon
I3GHz Core | |3GHz Core 2 12.2GHz Core 1 [2.2GHz Core 2
L1 L1 L1 L1 L1 L1 L1 L1
Instruction | | Data |[Instruction | Data [8Way|| 2waY|instruction | Data | |Instruction | Data
Cache ||Cache|| Cache | Cachel SA || SA| Cache ||Cache|| Cache | Cache
321I(B 32KBJ|| 32KB [[32KB 64KB ||64KB|| 64KB | 64KB
| 24way ||16wa |
L2 Cache 6MB SAy SAY\LZ Cache 0.5MB|L2 Cache 0.5MB

Intel Xeon
12.4GHz Core 1- - - [2.4GHz Core §

L1 L1 L1 L1 L1 L1 L1 L1
Instruction | | Data |[Instruction || Data [SWay|| 2WaY|instruction || Data | |Instruction | Data
Cache ||Cache|| Cache ||Cachel SA || SA| Cache |Cache|| Cache ||Cache
32KB | [32KBJl 32KB |[32KB 64KB |[64KB|| 64KB | 64KB
L2 Cache L2 (,!ache 8way||l bway L2 (,!ache L2 Cache
256KB 256KB SA || SA 512KB 512KB
| [ | l6way |[48way | [ I
IL3 Cache 12MB SA || sa L3 Cache 12MB

AMD Opteron
11.9GHz Core 1---|[1.9GHz Core 13

Figure 3. The cache organization of the processors in Table 1. SA stands for “set associative.”

Table 1. The details of the architectures used for the numerical experiments. The cache details are in Figure 3.
SL stands for “Scientific Linux.”

DuakCore2ivs | gios | Esdon | IntelXeon ES620
Type 64 Bit 64 Bit 32 Bit 64 Bit
Operating System Kernel | OpenSuse 10.2 2.6.18.8 CentOS5.5 2.6.18 Fedorall 2.6.30.10 SL 5.52.6.18
Core number 2 48 2 8
Core speed 2.2 GHz 1.9 GHz 3 GHz 2.4 GHz
GCC version 4.3.0 4.1.2 441 4.1.2
Level of SSE support SSE2 SSE4a SSE4.1 SSE4.2
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N-Byte Level 1 cache with M way set associative

Set 1 Set 2 -+ SetM
| 64 thres . | 64 Bryges .
=0 (1718 (1 [16 (124 1391470 55163l line 1 prlo A8 1116 (1124 (1l 391147101 55111 63 Tine 1
64 11 | | | | [ | | line 2 l6a (1] | I [ [ [ I | line 2
| I | [ | [ I | I64NM | I | I [ I | | I64NM

main memory

64 Bytes for line 1 64 Bytes for line 2 ca 64 Bytes for line 64
64 Bytes for line 65 64 Bytes for line 66 o oo 64 Bytes for line 128
; : : ; H,
for line #2r 1192 for line Ir (1 191 .. for line £+ (129
: N
64 Bytes for line v - 128
64 Bytes for line % {1 6464 Bytes for line % 163 . .| [64 Bytes for line % 0l
64 Bytes for line % 64 Bytes for line 1 ¢« .. 64 Bytes for line 63
: : : : H
N N N y
for line GaM L1257 for line GaM [] 256 <« sl for line GaM 00194

: N
64 Bytes for line GaM - 193

Figure 4. The relationships between the addresses in main memory and the N-byte Level-1 cache with AM-way set associative.
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Figure 5. The cache behavior of the AMD Athlon processor.
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Figure 6. The performance of FDTD implementations on AMD architectures: (a) AMD Athlon; (b) AMD Opteron.
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Figure 7. The performance of FDTD implementations on AMD architectures, following the memory-alignment fix: (a) AMD
Athlon; (b) AMD Opteron.
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Figure 8. The performance of FDTD implementations on Intel architectures.

culation, it had to be placed in the first cache-line of one of the
two sets. This led to either the values of E, (i,j,k) to

E (i+7,j.k) or E_(i,j,k) to E.(i+7,],k) being evicted,
even though these values would be required in several calcu-
lations immediately following the calculation of H, (i, k).

The resulting cache misses led to main memory accesses. A
performance deterioration was thus expected, depending on the
FDTD grid size, on AMD architectures.

This memory alignment should not have been an issue on
the Intel machines for our simple FDTD algorithm. Since the
level-1 cache was eight-way set associative, each cache-line
address corresponded to eight slots in the cache. Since there

were only six matrices in this simple FDTD algorithm, the 26
B cache-lines containing the elements indexed by a particular
(1,73, %) index from each matrix could all simultaneously
reside in cache, using six of the available eight positions for that
cache-line address.

5.3 Results on AMD Architectures

5.3.1 Performance Measurement

The standard FORTRAN implementation and the SSE
implementation were each executed with an FDTD grid num-
ber of (21)3, where [ is an integer from eight to 128. The

execution was run for 1000 FDTD time steps, and each result
was taken four times to produce an average. The timing result
measured was the overall execution time of the 1000 time steps
without initialization and data output. The performance, P, is
defined as the execution time in seconds for 1000 time steps

divided by the number of FDTD grids, (2/ )3 .Asmaller P thus
represents better performance.

5.3.2 Intermittent Performance Degradation

Figure 6 shows the performance results from the AMD
machines. The # and A symbols are the execution time with
the standard FORTRAN implementation and with the SSE

166

implementation, respectively. As expected, both the standard
FORTRAN implementation and the SSE implementation
showed frequent and significant drops in performance at vari-
ous problem sizes on both AMD machines. Since the drops in
performance happened at particular problem sizes, but the
performance returned to normal for subsequent problem sizes,
this was not related to the scalability of the algorithm. Calcu-
lating the matrix size but adjusting for memory alignment to the

next 212 B boundary, we found that those dimensions that led to
a dramatic loss in throughput perfectly correlated with those

dimensions calculated to be aligned on a 2B boundary. This
proved our expectation that alignment in memory — leading to
excessive eviction of cache-lines — was the cause of the drop in
performance.

5.3.3 Poor Performance on AMD Athlon

The AMD Athlon is based on the K8 micro-architecture,
which features a 64-bit data path. This means that 128-bit SSE
instructions must be split in two, effectively removing all con-
currency from double-precision execution. In contrast, the
AMD Opteron is based on the K10 micro-architecture, and
both Intels are based on the Core micro-architecture, both of
which feature a 128-bit data path. This difference is the most
likely cause of the lack of performance on the AMD Athlon. All
processors that are SSE capable but have a 64-bit data path are
likely to suffer from a similar lack of speedup when executing
double-precision SSE vector instructions.

5.4 Remedy for
Localized Performance Deterioration

One solution to the memory-alignment problem is to
introduce memory-allocation logic into the code, in order to
increase the space between each matrix and ensure that align-
ment does not occur. Having calculated that a particular prob-
lem size would cause alignment and required adjustment, a
simple solution was to add redundant elements to the beginning
of each matrix. The extra space was given negative indices and
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therefore was ignored by the code, which traversed the matrices
using positive indices. Figure 7 shows the performance results
for the standard and SSE implementations on the AMD
machines after the memory alignment fix was in place.
Compared with Figure 6, there were many fewer instances of
loss of throughput in Figure 7. Where the drop in performance
still occurred, this was caused by problem sizes where adding

an extra layer altered the size of the matrices by an exact 2B
amount. A more-practical solution may be to be aware of the
FDTD grid sizes that cause cache contention due to alignment
on a particular machine, and to avoid those sizes.

5.5 Results on Intel Architectures

Figure 8 shows the performance results on the Intel Xeon
and Intel Core 2 Duo machines. On both Intel machines, the
differences between the performance of the standard FORTRAN
implementation and the SSE implementation represented a
speedup of around two, the ideal speedup achievable when
using the packed SSE instructions to perform two arithmetic
operations at once. As expected, the Intel machines did not
exhibit the same pattern of performance drops seen with the
AMD machines.

6. Conclusion

This paper investigated the application of SSE to double-
precision computation and its efficiency in commonly available
computer architectures. It was found that using intrinsic
functions, an SSE implementation could accelerate the double-
precision computation on machines that featured a 128-bit data
path. When a level-1 cache was M-way set associate and
computational equations required more than M matrices with
an identical size, we needed to consider memory alignment
leading to cache collisions in order not to suffer sporadic dips in
performance. This paper proposed and demonstrated one of the
ways to avoid this when M =2 . An alternative approach could
be an application of memory interleaving to reduce the cache
misses. Introduction of boundary conditions, Huygens
excitation, and more complex situations such as handling fre-
quency-dependent material will produce more computation
locally and in the entire FDTD space. These computations can
also use SSE instructions. While we expect similar speedups
can be achieved if the issues of memory allocation and code
structure are observed, performance will vary on a case-by-case
basis.
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