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Foreword by the Editor

 Many recent papers on accelerating computations (in particular for the FDTD, which lends itself readily to parallel computation) 
have used GPGPUs [general-purpose graphics processing units], but contemporary CPUs offer a variety of options for performance 
acceleration, too. Often, these are somewhat easier to code. This month’s contribution provides a detailed investigation of the use 
of steaming SIMD extensions instructions on x86 architectures. The authors carefully ana lyze hardware aspects, in particular the 
impact of cache alignment on performance, and provide interesting results. 

 As always, the authors are thanked for their contribution. 
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1. Introduction

There are multiple parallel implementations of the Finite-
Difference Time-Domain (FDTD) method [1] using the 

single-program multiple-data (SPMD) paradigm. In the SPMD 
paradigm, each hardware execution unit has its own instruc tion 
fetch unit, and can therefore simultaneously execute a different 
instruction. Shared-memory thread-based parallel programming 
(e.g., using OpenMP) and message-passing-based parallel 
programming (e.g., using MPI) are both instances of the SPMD 
paradigm. The progressive increase in CPU clock speed over 
time has recently ceased, and instead, multi- or many-core 
CPUs have become the norm. The trend in high-performance 
computing has thus become the utiliza tion of many-core CPUs. 
An alternative method of many-core computation has been 
proposed using general-purpose com putation on graphics-
processing units (GPGPU). While GPGPU is attracting much 
attention in computational electro magnetics, this requires new 
hardware to be purchased. 

 On the other hand, most researchers engaged in FDTD 
coding have access to CPUs based on the x86 architecture (those 
from AMD and Intel). All recent AMD and Intel proc essors 
are equipped with parallel single-instruction multiple-data 
(SIMD) capabilities, offered by a single processor core with 
streaming single-instruction multiple-data extensions (SSE) 
instructions. In the single-instruction multiple-data paradigm, 
multiple hardware execution units are simultane ously issued a 
single instruction, and synchronously execute this instruction 
on multiple data items [2]. SSE optimization may thus allow 
performance improvement without requiring the purchase of 
any new hardware. 

 However, little attention is paid to using the vector-arith-
metic logic units (VALU) capability provided by SSE, as sin-
gle-instruction multiple-data is not a frequently used method 
of acceleration. It is understood that the major top commercial 
codes have used only the SSE speedups automatically offered 
through compiler options, without the introduction of vectori-
zation of their code. The compiler does not automatically per-
form the memory allocation and alignment. The maximum 
benefi t of SSE vector instructions may thus only be gained 
when hand-written vectorization is introduced into the code. 

 Reference [3] presented a single-precision implementa-
tion of the FDTD method using packed SSE instructions, and 
reported a speedup of close to four times. In reality, for some 
material parameters and implementations, calculations in dou-
ble precision may be needed. This work extends [3] to a dou-
ble-precision case using the instructions available with the 
second generation of SSE, and studies the situation when SSE 
is effective and how SSE should be practically used. 

2. The FDTD Method

 Maxwell’s curl equations for free space without sources 
yield the discretized equations, such as

 ( ) ( )1 , , , ,n n
y yH i j k H i j k+ =

        ( ) ( )1, , , ,n n
z z

t E i j k E i j k
xµ
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∆  − + − ∆
,

        (1)

where the variables and notation are the same as those in [4]. 
Reference [1] presents the rest of the core equations. As is seen 
in Equation (1), the computation is spatially localized to the 
one-cell neighbors. The FDTD method is thus well known to be 
suitable for parallel computing. 

3. SSE Instructions

 SSE adds eight 128-bit-wide registers to the x86 architec-
ture [5]. Each register may hold four single-precision, 32-bit 
fl oating-point values. SSE also extends the x86 instruction set 
with instructions that operate on the additional registers. As 
Figure 1 illustrates, with packed SSE instructions [5, 6] each 
32-bit section of each input register is treated as a separate 
operand. Four instances of the instruction are executed on four 
sets of data. SSE therefore provides a single-instruction multi-
ple-data capability. A second generation of SSE, commonly 
known as SSE2 [7], provides 144 new instructions, which 
include support for double-precision fl oating-point values. 
Since double-precision fl oating-point values are 62  bits in 
length, a single packed instruction can perform two double-
precision fl oating-point operations at once. Subsequent gen-
erations of SSE gradually add additional instructions [8]. Since 
the double-precision instructions added in SSE2 provide the 
required arithmetic operations for calculating the FDTD 
equations in double precision, this study focuses on the SSE2 
instruction set. 

4. The FDTD Implementation with SSE

 The most direct method of using SSE instructions in an 
implementation is to create an assembly-language sequence of 
the required instructions to produce the desired result. As an 

Figure 1. The behavior of a packed SSE instruction [5]. Each 
rectangle has single precision. X and Y are 32-bit operands, 
and OP means “operation.”

AP_Mag_Jun_2012_Final.indd   160 7/30/2012   6:56:33 PM



IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012� 161

 EM Programmer’s Notebook Founded by John Volakis

David B. Davidson
Dept. E&E Engineering 
University of Stellenbosch 
Stellenbosch 7600, South Africa 
Tel: +27 21 808 4458;
Fax: +27 21 808 4981 
E-mail: davidson@sun.ac.za

Foreword by the Editor

 Many recent papers on accelerating computations (in particular for the FDTD, which lends itself readily to parallel computation) 
have used GPGPUs [general-purpose graphics processing units], but contemporary CPUs offer a variety of options for performance 
acceleration, too. Often, these are somewhat easier to code. This month’s contribution provides a detailed investigation of the use 
of steaming SIMD extensions instructions on x86 architectures. The authors carefully ana lyze hardware aspects, in particular the 
impact of cache alignment on performance, and provide interesting results. 

 As always, the authors are thanked for their contribution. 

Performance of Streaming SIMD Extensions 
Instructions for the FDTD Computation

Matthew Livesey1, Fumie Costen2, and Xiaoling Yang3

       
1Accenture

Kingsley Hall, 20 Bailey Lane, Manchester Airport,Manchester,M90 4AN, UK
Tel: +44 161 435 5865; E-mail: matthew.livesey@accenture.com

2School of Electrical and Electronic Engineering
University of Manchester

Sackville Street Building, Sackville Street, Manchester, M13 9PL, UK
Tel: +44 161 306 4717; Fax: +44 161 306 4644; E-mail: fc@cs.man.ac.uk

 
32COMU, Inc.

200 Innovation Blvd, State College, PA 16803, USA
Tel: +1 814 4417409; Fax: +1 814 234 1829; E-mail: ybob@2comu.com

Abstract

The utilization of vector-arithmetic logic units is a promising way to speed up FDTD computations from the viewpoint of 
hardware acceleration. This paper studies how a streaming SIMD extensions (SSE) implementation can be effi ciently 
developed, and the situation where SSE is benefi cial for FDTD computations. 

Keywords: Finite difference methods; FDTD methods; time domain analysis; hardware; acceleration; high 
performance computing; parallel programming; parallel architectures; streaming SIMD extensions instructions; SSE 

1. Introduction

There are multiple parallel implementations of the Finite-
Difference Time-Domain (FDTD) method [1] using the 

single-program multiple-data (SPMD) paradigm. In the SPMD 
paradigm, each hardware execution unit has its own instruc tion 
fetch unit, and can therefore simultaneously execute a different 
instruction. Shared-memory thread-based parallel programming 
(e.g., using OpenMP) and message-passing-based parallel 
programming (e.g., using MPI) are both instances of the SPMD 
paradigm. The progressive increase in CPU clock speed over 
time has recently ceased, and instead, multi- or many-core 
CPUs have become the norm. The trend in high-performance 
computing has thus become the utiliza tion of many-core CPUs. 
An alternative method of many-core computation has been 
proposed using general-purpose com putation on graphics-
processing units (GPGPU). While GPGPU is attracting much 
attention in computational electro magnetics, this requires new 
hardware to be purchased. 

 On the other hand, most researchers engaged in FDTD 
coding have access to CPUs based on the x86 architecture (those 
from AMD and Intel). All recent AMD and Intel proc essors 
are equipped with parallel single-instruction multiple-data 
(SIMD) capabilities, offered by a single processor core with 
streaming single-instruction multiple-data extensions (SSE) 
instructions. In the single-instruction multiple-data paradigm, 
multiple hardware execution units are simultane ously issued a 
single instruction, and synchronously execute this instruction 
on multiple data items [2]. SSE optimization may thus allow 
performance improvement without requiring the purchase of 
any new hardware. 

 However, little attention is paid to using the vector-arith-
metic logic units (VALU) capability provided by SSE, as sin-
gle-instruction multiple-data is not a frequently used method 
of acceleration. It is understood that the major top commercial 
codes have used only the SSE speedups automatically offered 
through compiler options, without the introduction of vectori-
zation of their code. The compiler does not automatically per-
form the memory allocation and alignment. The maximum 
benefi t of SSE vector instructions may thus only be gained 
when hand-written vectorization is introduced into the code. 

 Reference [3] presented a single-precision implementa-
tion of the FDTD method using packed SSE instructions, and 
reported a speedup of close to four times. In reality, for some 
material parameters and implementations, calculations in dou-
ble precision may be needed. This work extends [3] to a dou-
ble-precision case using the instructions available with the 
second generation of SSE, and studies the situation when SSE 
is effective and how SSE should be practically used. 

2. The FDTD Method

 Maxwell’s curl equations for free space without sources 
yield the discretized equations, such as

 ( ) ( )1 , , , ,n n
y yH i j k H i j k+ =

        ( ) ( )1, , , ,n n
z z

t E i j k E i j k
xµ

∆  + + − ∆

        ( ) ( ), , 1 , ,n n
x x

t E i j k E i j k
zµ

∆  − + − ∆
,

        (1)

where the variables and notation are the same as those in [4]. 
Reference [1] presents the rest of the core equations. As is seen 
in Equation (1), the computation is spatially localized to the 
one-cell neighbors. The FDTD method is thus well known to be 
suitable for parallel computing. 

3. SSE Instructions

 SSE adds eight 128-bit-wide registers to the x86 architec-
ture [5]. Each register may hold four single-precision, 32-bit 
fl oating-point values. SSE also extends the x86 instruction set 
with instructions that operate on the additional registers. As 
Figure 1 illustrates, with packed SSE instructions [5, 6] each 
32-bit section of each input register is treated as a separate 
operand. Four instances of the instruction are executed on four 
sets of data. SSE therefore provides a single-instruction multi-
ple-data capability. A second generation of SSE, commonly 
known as SSE2 [7], provides 144 new instructions, which 
include support for double-precision fl oating-point values. 
Since double-precision fl oating-point values are 62  bits in 
length, a single packed instruction can perform two double-
precision fl oating-point operations at once. Subsequent gen-
erations of SSE gradually add additional instructions [8]. Since 
the double-precision instructions added in SSE2 provide the 
required arithmetic operations for calculating the FDTD 
equations in double precision, this study focuses on the SSE2 
instruction set. 

4. The FDTD Implementation with SSE

 The most direct method of using SSE instructions in an 
implementation is to create an assembly-language sequence of 
the required instructions to produce the desired result. As an 

Figure 1. The behavior of a packed SSE instruction [5]. Each 
rectangle has single precision. X and Y are 32-bit operands, 
and OP means “operation.”

AP_Mag_Jun_2012_Final.indd   161 7/30/2012   6:56:33 PM



162� IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012

alternative, there is a library of functions available allowing 
packed SSE instructions to be expressed entirely in C. These 
are known as intrinsic functions. This report focuses on intrin-
sic functions as the method for implementing the FDTD 
method using SSE, because it was found that manually coded 
assembly-language sequences could not easily be ported 
between machines with different variations of the x86 archi-
tecture. 

 The intrinsic library provides the data type _m128d, 
which represents a pair of 64-bit double-precision values stored 
in a 128-bit register. This greatly simplifi es loading and storing 
to the SSE processor registers from the matrices repre senting 
the FDTD problem space in memory. A pointer of type _m128d 
pointing to the address of ( )2,1,1xE  covers the data at this 
location and ( )3,1,1xE . A single increment of this pointer 
changes its target to the 128-bit location of ( )4,1,1xE  and 

( )5,1,1xE , stepping over two elements. The code sample in 
Figure 2 shows how Equation (1) is represented using intrinsic 
functions. Since the _m128d data type holds two double-
precision values, this code simultaneously performs the 
equation for two elements of yH . 

 As with many scientifi c computations, the original FDTD 
program was written in FORTRAN rather than C. It was desir-
able to avoid a wholesale rewrite of the existing implementa-
tion. It was necessary to use C code to produce the intrinsic 
sequences, but procedures written in C could be called from a 
FORTRAN program by following a particular naming conven-
tion and using the GCC compiler to link together the compila-
tion units. The compiler option for integration of FORTRAN 
and C code was -O2 -msse2 -mfpmath=sse. Prior to this 
integration, -c -std=c99 was used for compiling C code. 
Porting the standard code to the SSE version was not trivial, 
mainly because of lack of documentation on it. Par ticular 

attention was required for the pointer arithmetic at the end of 
the triply nested loops. 

5. Numerical Experiments

5.1 Computational Environment

 The experiments were performed on four machines. 
Table 1 gives the specifi cations of each machine. Each had a 
varying number of available cores, but only the single-instruc-
tion multiple-data hardware available on a single core was 
used in these experiments. The number of cores was therefore 
not expected to impact the results. Figure 3 shows the cache 
organization of each processor presented in Table 1. 

 Figure 4 generalizes the correspondence of the memory 
address to the level-1 cache-line address when a computer had 
an N-byte level-1 cache, and there was an M-way set associ ated 
in the level-1 cache. Each matrix was assigned to a 122 B ( 122  
byte) boundary in memory. Each level-1 cache-line could hold 
a contiguous 62 B block from main memory. The level-1 cache-
line address into which each 62 B block in mem ory was copied 
was a whole number of 

 6memory address modulo 2N
M

  
    

.

 
Since each set in level-1 cache had identical cache-line 
addresses, there were M locations for each cache-line address 
and M competing blocks could reside in cache together, one in 
each set. When the ( )1M + th competing block was loaded, one 
of the existing blocks had to be evicted from its cache-line to 
make room for the new block. 

5.2 Expectation

 Figure 4 with ( ) ( )16, 2, 2M N =  and ( )158,2  represents 

the AMD processor and the Intel processor, respectively. With 
the AMD processors, if memory addresses of the beginning of 
each of the six matrices xE , yE , zE , xH , yH , and zH  hap-

pened to be congruent modulo 152 , the matrices could be said 
to be aligned with respect to the level-1 data-cache. Since all six 
matrices were identical in size and structure, any two ele ments 
with the same indices but from different matrices would 
compete for the same position in cache when the matrices were 
aligned with respect to the level-1 data-cache. Figure 5 shows 
how the cache-line eviction could occur in the level-1 cache of 
the AMD processors when executing a calculation for 

( ), ,yH i j k . The memory addresses of ( ), ,xE i j k  and 

( ), ,zE i j k  resolved to the fi rst cache-line, and therefore each 
was loaded into one of the two sets available. When the value of 

( ), ,yH i j k  was subsequently required to complete the cal-

Figure 2. The implementation of SSE using intrinsic func-
tions.

Figure 3. The cache organization of the processors in Table 1. SA stands for “set associative.” 

Table 1. The details of the architectures used for the numerical experiments. The cache details are in Figure 3. 
SL stands for “Scientifi c Linux.”

AMD Athlon 
Dual-Core 4200+

AMD Opteron 
6168

Intel Core2Duo 
E8400 Intel Xeon E5620

Type 64 Bit 64 Bit 32 Bit 64 Bit
Operating System Kernel OpenSuse 10.2 2.6.18.8 CentOS5.5 2.6.18 Fedora11 2.6.30.10 SL 5.5 2.6.18
Core number 2 48 2 8
Core speed 2.2 GHz 1.9 GHz 3 GHz 2.4 GHz
GCC version 4.3.0 4.1.2 4.4.1 4.1.2
Level of SSE support SSE2 SSE4a SSE4.1 SSE4.2
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Figure 4. The relationships between the addresses in main memory and the N-byte Level-1 cache with M-way set associative. 

Figure 5. The cache behavior of the AMD Athlon proces sor.

Figure 6. The performance of FDTD implementations on AMD architectures: (a) AMD Athlon; (b) AMD Opteron.

Figure 7. The performance of FDTD implementations on AMD architectures, following the memory-alignment fi x: (a) AMD 
Athlon; (b) AMD Opteron.
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implementation, respectively. As expected, both the standard 
FORTRAN implementation and the SSE implementation 
showed frequent and signifi cant drops in performance at vari-
ous problem sizes on both AMD machines. Since the drops in 
performance happened at particular problem sizes, but the 
performance returned to normal for subsequent problem sizes, 
this was not related to the scalability of the algorithm. Calcu-
lating the matrix size but adjusting for memory alignment to the 
next 122 B boundary, we found that those dimensions that led to 
a dramatic loss in throughput perfectly correlated with those 
dimensions calculated to be aligned on a 152 B bound ary. This 
proved our expectation that alignment in memory – leading to 
excessive eviction of cache-lines – was the cause of the drop in 
performance. 

5.3.3 Poor Performance on AMD Athlon

 The AMD Athlon is based on the K8 micro-architecture, 
which features a 64-bit data path. This means that 128-bit SSE 
instructions must be split in two, effectively removing all con-
currency from double-precision execution. In contrast, the 
AMD Opteron is based on the K10 micro-architecture, and 
both Intels are based on the Core micro-architecture, both of 
which feature a 128-bit data path. This difference is the most 
likely cause of the lack of performance on the AMD Athlon. All 
processors that are SSE capable but have a 64-bit data path are 
likely to suffer from a similar lack of speedup when exe cuting 
double-precision SSE vector instructions. 

5.4 Remedy for 
Localized Performance Deterioration

 One solution to the memory-alignment problem is to 
introduce memory-allocation logic into the code, in order to 
increase the space between each matrix and ensure that align-
ment does not occur. Having calculated that a particular prob-
lem size would cause alignment and required adjustment, a 
simple solution was to add redundant elements to the begin ning 
of each matrix. The extra space was given negative indi ces and 

Figure 8. The performance of FDTD implementations on Intel architectures.

culation, it had to be placed in the fi rst cache-line of one of the 
two sets. This led to either the values of ( ), ,xE i j k  to 

( )7, ,xE i j k+  or ( ), ,zE i j k  to ( )7, ,zE i j k+  being evicted, 
even though these values would be required in several calcu-
lations immediately following the calculation of ( ), ,yH i j k . 
The resulting cache misses led to main memory accesses. A 
performance deterioration was thus expected, depending on the 
FDTD grid size, on AMD architectures. 

 This memory alignment should not have been an issue on 
the Intel machines for our simple FDTD algorithm. Since the 
level-1 cache was eight-way set associative, each cache-line 
address corresponded to eight slots in the cache. Since there 
were only six matrices in this simple FDTD algorithm, the 62
B cache-lines containing the elements indexed by a particu lar 
(i,j,k) index from each matrix could all simultaneously 
reside in cache, using six of the available eight positions for that 
cache-line address. 

5.3 Results on AMD Architectures

5.3.1 Performance Measurement

 The standard FORTRAN implementation and the SSE 
implementation were each executed with an FDTD grid num-
ber of ( )32l , where l  is an integer from eight to 128. The 
execution was run for 1000 FDTD time steps, and each result 
was taken four times to produce an average. The timing result 
measured was the overall execution time of the 1000 time steps 
without initialization and data output. The performance, P , is 
defi ned as the execution time in seconds for 1000 time steps 
divided by the number of FDTD grids, ( )32l . A smaller P  thus 
represents better performance. 

5.3.2 Intermittent Performance Degradation

 Figure 6 shows the performance results from the AMD 
machines. The 侟  and   symbols are the execution time with 
the standard FORTRAN implementation and with the SSE 
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therefore was ignored by the code, which traversed the matrices 
using positive indices. Figure 7 shows the perform ance results 
for the standard and SSE implementations on the AMD 
machines after the memory alignment fi x was in place. 
Compared with Figure 6, there were many fewer instances of 
loss of throughput in Figure 7. Where the drop in performance 
still occurred, this was caused by problem sizes where adding 
an extra layer altered the size of the matrices by an exact 152 B 
amount. A more-practical solution may be to be aware of the 
FDTD grid sizes that cause cache contention due to alignment 
on a particular machine, and to avoid those sizes. 

5.5 Results on Intel Architectures

 Figure 8 shows the performance results on the Intel Xeon 
and Intel Core 2 Duo machines. On both Intel machines, the 
differences between the performance of the standard FORTRAN 
implementation and the SSE implementation rep resented a 
speedup of around two, the ideal speedup achiev able when 
using the packed SSE instructions to perform two arithmetic 
operations at once. As expected, the Intel machines did not 
exhibit the same pattern of performance drops seen with the 
AMD machines. 

6. Conclusion

 This paper investigated the application of SSE to double-
precision computation and its effi ciency in commonly avail able 
computer architectures. It was found that using intrinsic 
functions, an SSE implementation could accelerate the double-
precision computation on machines that featured a 128-bit data 
path. When a level-1 cache was M-way set associate and 
computational equations required more than M matrices with 
an identical size, we needed to consider memory alignment 
leading to cache collisions in order not to suffer sporadic dips in 
performance. This paper proposed and demonstrated one of the 
ways to avoid this when 2M = . An alternative approach could 
be an application of memory interleaving to reduce the cache 
misses. Introduction of boundary conditions, Huygens 
excitation, and more complex situations such as handling fre-
quency-dependent material will produce more computation 
locally and in the entire FDTD space. These computations can 
also use SSE instructions. While we expect similar speedups 
can be achieved if the issues of memory allocation and code 
structure are observed, performance will vary on a case-by-case 
basis. 
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Application areas:
•    Antenna diagnostics:
	 Identification	of	array	element	failure,	surface	errors,	feeding	network	and		
	 radome	imperfections,	leaking	cables	and	unexpected	bright	spots,	all	of		
	 which	cause	unexpected	anomalies	in	the	radiation	pattern

• Filtering of undesired radiation:
	 Computation	of	clean	antenna	patterns	where		currents	on	cables,		 	
	 mounting	fixture	or	selected	areas	of	the	reconstruction	surface	are	 
	 suppressed	–	essential	for	measurements	of	small	antennas	

• Enhancement of measured patterns:
	 Compute	noise-free	patterns	radiated	by	the	reconstructed	 
	 currents	–	the	conformal	reconstruction	surface	acts	as	a	physics-based	 
	 filter	that	includes	the	shape	of	the	AUT

DIATOOL reconstructs the extreme near-field and surface 
currents of an antenna under test (AUT), based on the  
radiated field measured in anechoic chambers. The recon-
struction is performed on an arbitrary surface conformal to 
the AUT or on a plane in the extreme near-field region. 

Application	of	the	planar	reconstruction	technique:	the	co-polar	component	

of	the	radiated	electric	field	is	reconstructed	on	a	plane	in	the	measurement	

coordinate	system.	A	bump	on	the	reflector	surface	is	clearly	visible.	The	

bump	caused	numerous	ripples	in	the	side	lobes	of	the	measured	far-field	

pattern,	while	the	main	lobe	did	not	show	any	anomaly.

Application	of	the	3D	reconstruction	technique:	 

the	cross-polar	component	of	the	radiated	electric	 

field	is	reconstructed	on	a	closed	surface	conformal	to	

the	AUT.	The	figure	shows	an	unexpected	asymmetry	

which	is	due	to	an	error	in	the	horn	feeding	network	 

and	which	causes	a	high	cross-polar	component	 

in	the	measured	pattern.	

 The invaluable tool for 
    advanced antenna diagnostics 
                                                 and processing of measured fields

www.ticra.comTICRA is an antenna engineering company with world leading expertise in software tools 
and consultancy services within design, analysis and measurement techniques for antennas. 
Based in the centre of Copenhagen, Denmark, TICRA employs highly skilled professionals 
with over 240 man-years of expertise in their fields.Pioneering Antennas
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