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Foreword by the Editor

 Two recent columns have considered the use of general-purpose graphical processing units (GPUs) for computational 
electromagnetics: the June 2010 column looked specifi cally at the FDTD method, and the December 2010 column addressed 
acceleration of the MoM. Progress in this fi eld is rapid as new hardware becomes available. This month’s column revisits the FDTD 
method, providing a comprehensive review of various current approaches to an FDTD CUDA implementation. Two of this month’s 
co-authors also contributed to the June 2012 column on coding the FDTD on more conventional x86 CPUs. As always, we thank 
the authors for their contributions. 
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The use of general-purpose computing on a GPU is an effective way to accelerate the FDTD method. This paper 
introduces fl exibility to the theoretically best available approach. It examines the performance on both Tesla- and Fermi-
architecture GPUs, and identifi es the best way to determine the GPU parameters for the proposed method. 
 
Keywords: Finite difference methods; time domain analysis; hardware; acceleration; high performance computing; 
parallel programming; parallel architectures; GPU; graphical processing unit 

1. Introduction

The use of general-purpose computing on graphics proc-
essing units (GPGPU) to execute scientifi c computations 

is becoming increasing prevalent. GPGPU is particularly 
suit able for executing problems with a high degree of data 
paral lelism, in order to make use of the many processing 
units pre sent on a typical GPU. The Finite-Difference Time-
Domain (FDTD) method is popular because it directly solves 
Maxwell’s curl equations with a minimal set of assumptions, 
thus providing a robust, straightforward method. The FDTD 
method is characterized by tens or hundreds of thousands of 
time-step iterations over large amounts of data, organized into 
multidimensional arrays. Due to signifi cant data independence 
among the calculations performed for each element in each 
array at each time step, the FDTD method exhibits a large 
degree of parallelism. Several GPGPU implementations of the 
FDTD method have been presented in research to date using 
NVIDIA’s CUDA technology. Here, we demonstrate how dif-
ferences in confi guration affect the performance of a CUDA-
based FDTD implementation. Differences in memory-access 
patterns, single versus double-precision arithmetic, and differ-
ences in hardware generation are considered. Section 2 briefl y 
introduces the characteristics of the FDTD method. Section 3 
presents the architecture of GPGPU technology, and intro duces 
its key aspects that may affect the speed of computation, in 
general. Section 4 summarizes the currently available meth-
ods for implementing the FDTD method on GPU hardware. 
Since this paper is concerned only with single GPU boards, 
work which focuses on the utilization of multiple GPU boards 
for the FDTD computation are not included. Section 5 details 
our approach to implementing the FDTD method on a GPU 

board. Section 6 presents our various numerical experiments, 
and analyses the results to understand the optimum condition 
under which our approach should be used. Section 7 concludes 
the paper, summarizing the key outcomes of our work. 

2. Overview of the FDTD Method

 Maxwell’s curl equations for free space without sources 
are written as 

  
t
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where E, H, ε , and µ  are the electric and magnetic fi elds, and 
the permittivity, and permeability of free space, respec tively. 
Application of the central fi nite-difference approxima tion to 
both the space and time derivatives of Equation (1) yields the 
discretized equations:
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Figure 2. The CUDA grid organization in Tesla [4].

Figure 1. The Tesla unifi ed graphics and computing GPU 
architecture [2].

where t∆ , x∆ , and z∆  are the temporal step, the spatial step in 
the x direction, and the spatial step in the z direction, respectively. 
[1] presents the rest of the core equations. In a three-dimensional 
implementation of the FDTD method, E and H are vectorized 
into six three-dimensional arrays, denoted xE , yE , zE , xH , 

yH , and zH . For a single time step, each element in each array 
must be calculated using the core equations. Each calculation in 

xE , yE , and zE  is inde pendent from the others, and the same 
is true of those in xH , yH , and zH . Also, as is seen in 
Equation (2), the computa tion is spatially localized to the one-
cell neighbors. The FDTD method is thus well known to be 
suitable for parallel comput ing. 

3. General-Purpose GPU 
Computing with CUDA

 NVIDIA’s Tesla Architecture introduced a GPU hard-
ware design consisting of an array of general-purpose stream-
ing multiprocessors. The architecture of a Tesla GPU is shown 
in Figure 1 [2]. In conjunction, NVIDIA introduced the 
Com pute Unifi ed Device Architecture programming model 
(CUDA) [2-4]. CUDA allows a programmer to specify which 
sections of a computation (described as “kernels”) should be 
executed on the GPU [2]. Computations suitable for execution 
on a GPU are characterized by massive parallelism. A kernel 
operates over a grid of threads, where a grid is divided into 
blocks [5] in either one or two dimensions. Each block is 
fur ther divided into threads in one, two, or three dimensions 
[3]. Figure 2 shows the hierarchical organization of grids, 
blocks, and threads. Within one kernel, a thread is identifi ed 
by its indices at both the block and thread level. The built-in 
parameters blockIdx.x and blockIdx.y (and blockIdx.z 
for Fermi) determine to which block a thread belongs, while 
threadIdx.x, threadIdx.y, and threadIdx.z determine 
the thread’s position within a block. The threads within one 
block are executed simultaneously on a single streaming mul-
tiprocessor (labeled SM in Figure 1). Threads within a block 
can synchronize with each other and share data via the shared 
memory on each streaming multiprocessor. However, there 
is no guarantee of the execution order of each block within a 
grid, so communication and synchronization between threads 
in different blocks is not permitted, although all threads can 
be synchronized outside kernel execution. Making effective 
use of the GPU hardware therefore requires identifi cation of 
a large number of independent calculations within a computa-
tion that can be executed as a kernel on the GPU. The global 
memory (shown as DRAM in Figure 1) of the Tesla architec-
ture is large, and is accessible to all threads in all blocks in a 
grid. The memory bandwidth in Tesla T10 and Tesla M2050 
are 32 GB/s and 148 GB/s, respectively. On the other hand, 
the bandwidth in the AMD Athlon 64×2 5600+  is about 
9 GB/s. The global memory thus has more than four times 
wider bandwidth than a modern PC, but will limit perform-
ance if used too extensively [4]. It is possible to optimize the 
performance of access to global memory through “memory 
coalescing” [4]. If simultaneously executing threads within a 

block access consecutive memory locations, the requests are 
combined into a single-larger memory fetch. Fetching a large 
consecutive block of memory results in more effi cient use of 
the memory’s bandwidth [4]. The streaming processor cores 
(labeled SP in Figure 1) within each streaming multiprocessor 
in the earliest Tesla GPUs only supported single-precision 
arithmetic [6]. A revision to the architecture introduced dou-
ble-precision support, but with far lower arithmetic perform-
ance [6]. A more-recent major revision to the architecture, 
named Fermi, introduced much more comprehensive double-
precision support [6]. Fermi also introduced improvements in 
the memory system. The shared memory can be confi gured as 
partially user programmable and partially a level 1 cache [6]. 
A level 2 cache to global memory, unifi ed across all streaming 
multiprocessors, was also introduced [6]. This paper examines 

Figure 3. The domain decomposition of the three-dimen-
sional FDTD space in the fi rst approach. ( ), , ,a b c d  means 
(blockIdx.x, blockIdx.y, threadIdx.x, threadIdx.y).

Figure 4. Two-dimensional decomposition using blocks and 
threads on a k constant=  plane in the fi rst and second 
approaches. [ ],a b  and ( ),a b  mean [blockIdx.x, 
blockIdx.y] and (threadIdx.x, threadIdx.y), respec-
tively.

the most-effi cient approach to the implementation of the three-
dimensional FDTD method on the GPGPU. The paper studies 
the FDTD’s performance on both Tesla- and Fermi-architec ture 
hardware in both single and double precision, to under stand the 
best way to run the proposed approach. 

4. Existing Implementations of the 
FDTD Method on GPU Hardware

 Several implementations of the three-dimensional FDTD 
method using CUDA have been published. Each of these 
exhibits one of three domain-decomposition approaches to 
mapping the x, y, and z dimensions of the FDTD space to the 
allocation of blocks and threads. 

4.1 First Approach

 The three-dimensional FDTD space is broken down into 
two-dimensional planes. Figure 3 depicts the decomposition of 
a 6×4×5-dimensional FDTD space. The FDTD equations for 
a particular plane are solved in parallel using a kernel on the 
GPU, but each plane is computed by its own kernel invoca tion, 
sequentially to the others, within a single time step. Within each 
plane, the elements are divided into blocks in two dimensions, 
so that each block has the standard CUDA parameters of 
blockIdx.x and blockIdx.y. Each block is further broken 
down into threads in two dimensions, so that each thread 
has the standard CUDA parameters of threadIdx.x and 
threadIdx.y. Figure 4 presents this method of decomposition 
for a plane within the three-dimen sional FDTD space shown 
in Figure 3. Each thread is respon sible for a single cell of 
the FDTD space, and can calculate its i and j coordinates 
as blockIdx.x × blockDim.x + threadIdx.x and 
blockIdx.y × blockDim.y + threadIdx.y, respectively. 
While this method allows very fi ne-grained decomposition 
to expose all of the parallelism within a single plane, it does 
not exploit the full concurrency of the algorithm, since all the 

calculations in all planes are independent from each other. This 
may or may not limit per formance, depending on whether the 
parallelism exposed is enough to keep the cores of the GPU 
fully occupied during execution. This approach was used in [7] 
and [8]. 

4.2 Second Approach

 The second approach addresses the entire three-dimen-
sional space within a single kernel invocation. As with the fi rst 
approach, blocks and threads are used to produce a two-
dimensional decomposition matched to the x and y dimensions 
of the FDTD space, as is shown in Figure 4. However, in this 
case, each thread executes all of the elements in the z direction 
in a for loop, as is shown in Figure 5. This means that each 
thread does much more work than in the fi rst approach and 
many fewer kernel instances are required, but it does not alter 
the amount of parallelism exposed at any one point in time. 
Each approach has a maximum of x yN N×  threads, where xN  
and yN  are the size of the FDTD space in the x and y dimensions. 
This approach was demonstrated in [9], and was also used in 
[10]. 

4.3 Third Approach

 The third approach applies a fundamentally different 
method to domain decomposition. As is the second approach, 
the entire three-dimensional space is addressed within a single 
kernel invocation. Blocks are allocated in two dimensions, and 
the x and y indices of each block are mapped to two of the x, y, 
and z dimensions of the FDTD space. Threads within each 
block are allocated in one dimension, as shown in Figure 6, and 
the x index of the thread is mapped to the remaining dimension 
of the FDTD space. One thread can now be allo cated to every 
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is no guarantee of the execution order of each block within a 
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in different blocks is not permitted, although all threads can 
be synchronized outside kernel execution. Making effective 
use of the GPU hardware therefore requires identifi cation of 
a large number of independent calculations within a computa-
tion that can be executed as a kernel on the GPU. The global 
memory (shown as DRAM in Figure 1) of the Tesla architec-
ture is large, and is accessible to all threads in all blocks in a 
grid. The memory bandwidth in Tesla T10 and Tesla M2050 
are 32 GB/s and 148 GB/s, respectively. On the other hand, 
the bandwidth in the AMD Athlon 64×2 5600+  is about 
9 GB/s. The global memory thus has more than four times 
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tively.

the most-effi cient approach to the implementation of the three-
dimensional FDTD method on the GPGPU. The paper studies 
the FDTD’s performance on both Tesla- and Fermi-architec ture 
hardware in both single and double precision, to under stand the 
best way to run the proposed approach. 

4. Existing Implementations of the 
FDTD Method on GPU Hardware

 Several implementations of the three-dimensional FDTD 
method using CUDA have been published. Each of these 
exhibits one of three domain-decomposition approaches to 
mapping the x, y, and z dimensions of the FDTD space to the 
allocation of blocks and threads. 

4.1 First Approach

 The three-dimensional FDTD space is broken down into 
two-dimensional planes. Figure 3 depicts the decomposition of 
a 6×4×5-dimensional FDTD space. The FDTD equations for 
a particular plane are solved in parallel using a kernel on the 
GPU, but each plane is computed by its own kernel invoca tion, 
sequentially to the others, within a single time step. Within each 
plane, the elements are divided into blocks in two dimensions, 
so that each block has the standard CUDA parameters of 
blockIdx.x and blockIdx.y. Each block is further broken 
down into threads in two dimensions, so that each thread 
has the standard CUDA parameters of threadIdx.x and 
threadIdx.y. Figure 4 presents this method of decomposition 
for a plane within the three-dimen sional FDTD space shown 
in Figure 3. Each thread is respon sible for a single cell of 
the FDTD space, and can calculate its i and j coordinates 
as blockIdx.x × blockDim.x + threadIdx.x and 
blockIdx.y × blockDim.y + threadIdx.y, respectively. 
While this method allows very fi ne-grained decomposition 
to expose all of the parallelism within a single plane, it does 
not exploit the full concurrency of the algorithm, since all the 

calculations in all planes are independent from each other. This 
may or may not limit per formance, depending on whether the 
parallelism exposed is enough to keep the cores of the GPU 
fully occupied during execution. This approach was used in [7] 
and [8]. 

4.2 Second Approach

 The second approach addresses the entire three-dimen-
sional space within a single kernel invocation. As with the fi rst 
approach, blocks and threads are used to produce a two-
dimensional decomposition matched to the x and y dimensions 
of the FDTD space, as is shown in Figure 4. However, in this 
case, each thread executes all of the elements in the z direction 
in a for loop, as is shown in Figure 5. This means that each 
thread does much more work than in the fi rst approach and 
many fewer kernel instances are required, but it does not alter 
the amount of parallelism exposed at any one point in time. 
Each approach has a maximum of x yN N×  threads, where xN  
and yN  are the size of the FDTD space in the x and y dimensions. 
This approach was demonstrated in [9], and was also used in 
[10]. 

4.3 Third Approach

 The third approach applies a fundamentally different 
method to domain decomposition. As is the second approach, 
the entire three-dimensional space is addressed within a single 
kernel invocation. Blocks are allocated in two dimensions, and 
the x and y indices of each block are mapped to two of the x, y, 
and z dimensions of the FDTD space. Threads within each 
block are allocated in one dimension, as shown in Figure 6, and 
the x index of the thread is mapped to the remaining dimension 
of the FDTD space. One thread can now be allo cated to every 
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Figure 5. The domain decomposition of the three-dimen-
sional FDTD space in the second approach. ( ), , ,a b c d  
means (blockIdx.x, blockIdx.y, threadIdx.x, 
threadIdx.y). 

cell in the FDTD space, exposing the maximum available 
parallelism in the algorithm. Whether or not all these threads 
actually execute simultaneously depends on the num ber of 
streaming multiprocessors in the hardware, and this will in part 
determine whether the exposure of additional parallel ism 
provides any performance benefi t over the other approaches. 
This method of decomposition was demonstrated in [11]. In 
[12], only one dimension was used for block allo cation, but this 
was mapped to both i and j in such a way that the execution was 
equivalent to this approach. The two dimen sions of i and j were 
effectively unrolled into a single dimen sion, so that the highest 
block index was x yN N×  rather than xN  or yN .

5. Our Implementations of the 
FDTD Method on GPU Hardware

 We use a similar method to the third approach, but with 
fl exibility in how much work is done by each thread. Figure 7 
shows how block and thread dimensions are defi ned. The data 
type dim3 allows one-, two-, or three-dimensional information 
to be represented. When a kernel is launched, two dim3 vari-
ables are provided, one representing the organization of blocks 
within a grid, and one representing the organization of threads 
within each block. Figure 8 shows how the threads within one 
block are responsible for the elements in a single dimension, in 
this case, the x dimension. Each thread performs the calcu-
lations for one or more cells in the FDTD space. The number of 
cells executed by each thread is determined by the ratio of 
threads per block to xN . If, as in Figure 8, xN  is six but the 
number of threads per block is three, each thread is responsi ble 
for two cells in the x dimension. The number of active threads 
is y zN N× ×  the number of threads per block. If each thread 
executes a series of sequential cells as per Figure 8a, then 
memory access is un-coalesced, since the threads within a block 
simultaneously access memory locations that are not adjacent. 
However, if the allocation of cells to threads is interleaved as 
per Figure 8b, then threads simultaneously request adjacent 
memory locations, and memory access is coalesced. Figure 9 
shows the iterative behavior of a thread in our un-coalesced 
implementation, while Figure 10 shows the same for our 
coalesced implementation. gridDim.x is set to xN . There are 
many ways to improve the computational effi  ciency by using 
the shared memory. However, it was not used in our 
implementation, to see the infl uence from the methods to access 
the global memory without being obscured by using the shared 
memory. The experiments performed here investi gated the 
performance impact of un-coalesced versus coa lesced memory 
access, and also the performance impact of changing the 
number of cells to be executed by each thread. When the thread 
count is equal to xN , both the coalesced and un-coalesced 
approaches assign one element per thread. This means the 
behavior at runtime of the un-coalesced and coa lesced 
implementations should be almost identical, with only slight 
differences in the calculation used to determine the index for 
each thread. The similarity in execution time when the thread 
count equals xN  is therefore expected. 

6. Numerical Experiments

6.1 Computational Environment

 Our GPU implementation was executed on a Tesla T10 
GPU and on a GPU with compute capability 2.0 (commonly 
known as a Fermi GPU), the specifi cations of which are shown 
in Table 1. On each GPU, the implementation was exe cuted for 
5000 time steps. The center of the 3256  FDTD space with the 
PEC boundary condition was excited by a z-directed soft point 
source [13]. The calculation was performed in both single and 
double precision. The memory-access pat ters presented in 

Figure 7. Launching kernels with multiple blocks and mul-
tiple threads. 

Figure 6. The domain decomposition of the three-dimen-
sional FDTD space in the third approach. [ ],a b  means 
[blockIdx.x, blockIdx.y].

Figure 8a. Un-coalesced memory access for multiple threads 
in a block. [ ],a b  means [blockIdx.x, blockIdx.y].

Figure 8b. Coalesced memory access for multiple threads in 
a block. [ ],a b  means [blockIdx.x, blockIdx.y].

Table 1. The specifi cations of the GPUs used in this report. SM stands 
for streaming multiprocessor. 64 KB for the shared memory per 

streaming multiprocessor in the Tesla M2050 was confi gured 
as either 48 KB shared memory and 16 KB L1 cache, 

or 16 KB shared memory and 48 KB L1 cache.

GPU Name Tesla T10 Tesla M2050
Number of SM 30 14
Number of SP cores 240 (8 per SM) 448 (32 per SM)
Clock speed per core 1.3 GHz 1.1 GHz
Single-precision performance 933 GFlops 1030 GFlops
Double-precision performance 78 GFlops 515 GFlops
Registers per SM 16384 32768
Shared memory per SM 16 KB 64 KB
Constant memory size 64 KB 64 KB
Global memory size 4 GB 3 GB
Level 2 cache size None 768 KB
Global memory bandwidth 32 GB/s 148 GB/s
Maximum threads per block 512 1024
Compute capacity 1.3 2.0
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Figure 5. The domain decomposition of the three-dimen-
sional FDTD space in the second approach. ( ), , ,a b c d  
means (blockIdx.x, blockIdx.y, threadIdx.x, 
threadIdx.y). 

cell in the FDTD space, exposing the maximum available 
parallelism in the algorithm. Whether or not all these threads 
actually execute simultaneously depends on the num ber of 
streaming multiprocessors in the hardware, and this will in part 
determine whether the exposure of additional parallel ism 
provides any performance benefi t over the other approaches. 
This method of decomposition was demonstrated in [11]. In 
[12], only one dimension was used for block allo cation, but this 
was mapped to both i and j in such a way that the execution was 
equivalent to this approach. The two dimen sions of i and j were 
effectively unrolled into a single dimen sion, so that the highest 
block index was x yN N×  rather than xN  or yN .

5. Our Implementations of the 
FDTD Method on GPU Hardware

 We use a similar method to the third approach, but with 
fl exibility in how much work is done by each thread. Figure 7 
shows how block and thread dimensions are defi ned. The data 
type dim3 allows one-, two-, or three-dimensional information 
to be represented. When a kernel is launched, two dim3 vari-
ables are provided, one representing the organization of blocks 
within a grid, and one representing the organization of threads 
within each block. Figure 8 shows how the threads within one 
block are responsible for the elements in a single dimension, in 
this case, the x dimension. Each thread performs the calcu-
lations for one or more cells in the FDTD space. The number of 
cells executed by each thread is determined by the ratio of 
threads per block to xN . If, as in Figure 8, xN  is six but the 
number of threads per block is three, each thread is responsi ble 
for two cells in the x dimension. The number of active threads 
is y zN N× ×  the number of threads per block. If each thread 
executes a series of sequential cells as per Figure 8a, then 
memory access is un-coalesced, since the threads within a block 
simultaneously access memory locations that are not adjacent. 
However, if the allocation of cells to threads is interleaved as 
per Figure 8b, then threads simultaneously request adjacent 
memory locations, and memory access is coalesced. Figure 9 
shows the iterative behavior of a thread in our un-coalesced 
implementation, while Figure 10 shows the same for our 
coalesced implementation. gridDim.x is set to xN . There are 
many ways to improve the computational effi  ciency by using 
the shared memory. However, it was not used in our 
implementation, to see the infl uence from the methods to access 
the global memory without being obscured by using the shared 
memory. The experiments performed here investi gated the 
performance impact of un-coalesced versus coa lesced memory 
access, and also the performance impact of changing the 
number of cells to be executed by each thread. When the thread 
count is equal to xN , both the coalesced and un-coalesced 
approaches assign one element per thread. This means the 
behavior at runtime of the un-coalesced and coa lesced 
implementations should be almost identical, with only slight 
differences in the calculation used to determine the index for 
each thread. The similarity in execution time when the thread 
count equals xN  is therefore expected. 

6. Numerical Experiments

6.1 Computational Environment

 Our GPU implementation was executed on a Tesla T10 
GPU and on a GPU with compute capability 2.0 (commonly 
known as a Fermi GPU), the specifi cations of which are shown 
in Table 1. On each GPU, the implementation was exe cuted for 
5000 time steps. The center of the 3256  FDTD space with the 
PEC boundary condition was excited by a z-directed soft point 
source [13]. The calculation was performed in both single and 
double precision. The memory-access pat ters presented in 

Figure 7. Launching kernels with multiple blocks and mul-
tiple threads. 

Figure 6. The domain decomposition of the three-dimen-
sional FDTD space in the third approach. [ ],a b  means 
[blockIdx.x, blockIdx.y].

Figure 8a. Un-coalesced memory access for multiple threads 
in a block. [ ],a b  means [blockIdx.x, blockIdx.y].

Figure 8b. Coalesced memory access for multiple threads in 
a block. [ ],a b  means [blockIdx.x, blockIdx.y].

Table 1. The specifi cations of the GPUs used in this report. SM stands 
for streaming multiprocessor. 64 KB for the shared memory per 

streaming multiprocessor in the Tesla M2050 was confi gured 
as either 48 KB shared memory and 16 KB L1 cache, 

or 16 KB shared memory and 48 KB L1 cache.

GPU Name Tesla T10 Tesla M2050
Number of SM 30 14
Number of SP cores 240 (8 per SM) 448 (32 per SM)
Clock speed per core 1.3 GHz 1.1 GHz
Single-precision performance 933 GFlops 1030 GFlops
Double-precision performance 78 GFlops 515 GFlops
Registers per SM 16384 32768
Shared memory per SM 16 KB 64 KB
Constant memory size 64 KB 64 KB
Global memory size 4 GB 3 GB
Level 2 cache size None 768 KB
Global memory bandwidth 32 GB/s 148 GB/s
Maximum threads per block 512 1024
Compute capacity 1.3 2.0
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Figure 8a and Figure 8b were both tried. The NVIDIA M2050 
Fermi GPU has 1.9 times more cores than the T10 GPU. The 
M2050 GPU can thus execute a larger number of threads in 
parallel. All these cores need to access the global memory. The 
global memory bandwidth of the M2050 GPU is 4.6 times 
wider than the bandwidth of the T10 GPU. Although the T10 
GPU does not have a cache, the M2050 GPU does include 
cache between the processing units and the global memory. The 
M2050 GPU has a level 2 cache shared across all streaming 
multiprocessors, and the option to use 48 KB of the shared 
memory on each multiprocessor as a level 1 cache was used in 
this work. The level 1 cache and the level 2 cache reduce the 
number of requests made to global memory. The double-
precision performance of compute capability 2.0 is 6.6 times 
higher than the performance of compute capability 1.3. 
However, as [10] pointed out, in the FDTD computation, 
memory operations can consume GPU clock cycles a couple of 
hundreds of times more than arithmetic operations. The double-
precision performance in the M2050 GPU i.e., 515 GFlops 
(giga-fl oating-point operations per second), com pared with 
78 GFlops in the T10 GPU, would have a mini mum impact on 
the overall performance of the M2050 GPU in our GPU 
implementation. On the other hand, there is not a large difference 
in the maximum single-precision performance of the Fermi 
GPU and the Tesla T10 GPU. Therefore, if there is any 
noticeable performance difference between these GPUs for the 
single-precision computation, that would be mainly due to the 
global memory bandwidth. Although arithmetic opera tions are 
very light in the FDTD calculation, large data access is required. 
For both global and shared memory access, the T10 GPU 
(compute capability 1.3 ) experiences bank confl icts for 64-bit 
access because “memory request is compiled into two separate 
32-bit requests” [5]. For the M2050 GPU (com pute capability 

2.0), 64-bit access is handled to minimize bank confl icts. It is 
thus expected to that a signifi cantly improved performance of 
calculation in double precision in the M2050 GPU relative to 
the T10 GPU would be seen. Given the fact that the FDTD 
algorithm is memory-throughput limited rather than limited by 
the arithmetic operations [10], the higher bandwidth will 
positively affect the performance of our implementation in the 
M2050 GPU. 

6.2 Performance Measurement

 Figure 11 shows the overall performance of the T10 (Fig-
ure 11a) and M2050 (Figure 11b) GPUs. The abscissa presents 

Figure 9. The structure of the un-coalesced kernel imple-
mentation.

Figure 10. The structure of the coalesced kernel implemen-
tation. 

Figure 11. The performance of our implementation on 
the T10 GPU and the M2050 GPU. A solid line, a dotted 
line, a broken line with one dot, and a broken line with 
two dots means the coalesced method in single precision, 
the un-coalesced method in double precision, the coalesced 
method in double precision, and the un-coalesced method in 
single precision, respectively. (a, top) Results on the T10; (b, 
bottom) Results on the M2050.

 Number of threads per block
Number of GPU cores available in a GPU board

= ,

        (3)

and the ordinate presents the number of FDTD cells calculated 
per second. The number of the GPU cores in these GPU boards 
was different. However, by expressing the abscissa as the 
number of threads per block divided by the number of GPU 
cores, the result could be applicable to the GPU boards that are 
not handled in this paper. An equivalent, sequential, CPU 
implementation was also executed on an Intel Xeon E5620 
CPU for comparison. Its operating system was 64-bit Scientifi c 
Linux 5.5, and the kernel version was 2.6.18. It con tained eight 
cores, the core speed was 2.4 GHz, and the gcc version was 
4.1.2. For the FDTD computation, only one core was used. The 
CPU computation in single (double) precision took 29 (33) 
times more time than the M2050 GPU computa tion with un-
coalesced memory access when each thread was responsible for 
just one cell, i.e., the fastest case in the un-coalesced memory-
access approach. When a thread was responsible for all cells in 
one block, the GPU computation took more than 1.3 times as 
much time as the CPU computa tion. It was clear in Figure 11 
that the approach in Figure 8b outperformed the approach in 
Figure 8a. The coalesced approach performs best when R  is 
around 0.15.

 The same results were obtained when the different sizes 
of the FDTD space were tested. In the case of the coalesced 
approach in single precision, the T10 GPU took about 1.5 times 
more time than the M2050 GPU. This suggests the improvement 
of the performance by the M2050 GPU in single precision 
mainly results from the increase in memory band width, because 
the bandwidth of the M2050 GPU is 4.6 times wider than that 
of the T10 GPU. In the case of double preci sion, our coalesced 
approach performed better on the M2050 GPU than on the T10 
GPU, reducing 60% of the elapsed time of the T10 GPU. The 
M2050 GPU has both good double-pre cision performance and 
the level 1 and 2 caches. However, we fi nd the contribution of 
these to the performance improvement to be negligible. First, 
the elapsed time of the FDTD method is mostly dominated by 
memory operations, rather than arithme tic operation. Second, 
the cache will be quickly overwritten by other threads, and the 
data from the global memory may not be reused to compute each 
of the neighboring fi eld values; it is thus tricky to effectively 
make use of the cache for speedup with the FDTD method. We 
fi nd the major contribution to be the reduction of bank confl icts 
that were occurring on the T10 GPU. 64-bit access on the T10 
GPU architecture requires two memory instructions, while the 
M2050 GPU requires only one [5]. The bank confl icts occur in 
global memory, which causes the T10 GPU architecture to use 
twice the number of memory lookups. This means that memory 
fetches for 64-bit words happen twice as fast on the M2050 
GPU, which probably accounted for 50% of the speedup. The 
required memory access for double-precision computation in 
our approach would exceed the available bandwidth in the 
T10 GPU. In the M2050 GPU, the special treatment of 64-bit 
access reduced the frequency of the global memory access. 
This may make the practical bandwidth required for double-
precision compu tation comparable to one in single precision. 

In the M2050 GPU, the double-precision computation thus 
took only 1.3 times more time than the single precision. On the 
other hand, in the T10 GPU, the double-precision computation 
took 2.5 times more time than the single precision. When our 
approach was compared to implementations of methods 1 and 2 
running on the same T10 GPU, our method showed 6.4 and 6.6 
times higher performance than methods 1 and 2, respectively, 
for single precision. For double precision, our method showed 
3.3 times higher performance than both methods 1 and 2. 

7. Conclusion

 This paper categorized the currently available approaches 
for implementing the three-dimensional FDTD method on 
GPGPUs, and explained the merits and demerits of these 
approaches. The most promising approach was taken as a base 
for our work, and a further improvement to the approach was 
proposed. Numerical experiments showed that when the ratio 
between the number of threads per block and the number of 
cores available in a GPU board was around 0.15, our coa lesced 
approach had a signifi cantly more effi cient global-memory 
access, just enough for the bandwidth available in the T10 GPU 
in the case of single precision. In this case, the M2050 GPU 
gave the performance improvement only for the increase of the 
bandwidth compared with the T10 GPU. How ever, the double-
precision computation doubles the amount of data requested. In 
our approach, the access in the double-pre cision computation 
doubles the global-memory access of the single-precision 
computation in the T10 GPU, and signifi  cantly exceeded the 
bandwidth of the T10 GPU. The perform ance was thus less than 
half of the single-precision perform ance. On the other hand, 
our approach signifi cantly benefi ted from the specifi c treatment 
of 64-bit access in the M2050 GPU, and the calculation in 
double precision took only 1.3 times more time than the single-
precision calculation. 
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Figure 8a and Figure 8b were both tried. The NVIDIA M2050 
Fermi GPU has 1.9 times more cores than the T10 GPU. The 
M2050 GPU can thus execute a larger number of threads in 
parallel. All these cores need to access the global memory. The 
global memory bandwidth of the M2050 GPU is 4.6 times 
wider than the bandwidth of the T10 GPU. Although the T10 
GPU does not have a cache, the M2050 GPU does include 
cache between the processing units and the global memory. The 
M2050 GPU has a level 2 cache shared across all streaming 
multiprocessors, and the option to use 48 KB of the shared 
memory on each multiprocessor as a level 1 cache was used in 
this work. The level 1 cache and the level 2 cache reduce the 
number of requests made to global memory. The double-
precision performance of compute capability 2.0 is 6.6 times 
higher than the performance of compute capability 1.3. 
However, as [10] pointed out, in the FDTD computation, 
memory operations can consume GPU clock cycles a couple of 
hundreds of times more than arithmetic operations. The double-
precision performance in the M2050 GPU i.e., 515 GFlops 
(giga-fl oating-point operations per second), com pared with 
78 GFlops in the T10 GPU, would have a mini mum impact on 
the overall performance of the M2050 GPU in our GPU 
implementation. On the other hand, there is not a large difference 
in the maximum single-precision performance of the Fermi 
GPU and the Tesla T10 GPU. Therefore, if there is any 
noticeable performance difference between these GPUs for the 
single-precision computation, that would be mainly due to the 
global memory bandwidth. Although arithmetic opera tions are 
very light in the FDTD calculation, large data access is required. 
For both global and shared memory access, the T10 GPU 
(compute capability 1.3 ) experiences bank confl icts for 64-bit 
access because “memory request is compiled into two separate 
32-bit requests” [5]. For the M2050 GPU (com pute capability 

2.0), 64-bit access is handled to minimize bank confl icts. It is 
thus expected to that a signifi cantly improved performance of 
calculation in double precision in the M2050 GPU relative to 
the T10 GPU would be seen. Given the fact that the FDTD 
algorithm is memory-throughput limited rather than limited by 
the arithmetic operations [10], the higher bandwidth will 
positively affect the performance of our implementation in the 
M2050 GPU. 

6.2 Performance Measurement

 Figure 11 shows the overall performance of the T10 (Fig-
ure 11a) and M2050 (Figure 11b) GPUs. The abscissa presents 

Figure 9. The structure of the un-coalesced kernel imple-
mentation.

Figure 10. The structure of the coalesced kernel implemen-
tation. 

Figure 11. The performance of our implementation on 
the T10 GPU and the M2050 GPU. A solid line, a dotted 
line, a broken line with one dot, and a broken line with 
two dots means the coalesced method in single precision, 
the un-coalesced method in double precision, the coalesced 
method in double precision, and the un-coalesced method in 
single precision, respectively. (a, top) Results on the T10; (b, 
bottom) Results on the M2050.
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and the ordinate presents the number of FDTD cells calculated 
per second. The number of the GPU cores in these GPU boards 
was different. However, by expressing the abscissa as the 
number of threads per block divided by the number of GPU 
cores, the result could be applicable to the GPU boards that are 
not handled in this paper. An equivalent, sequential, CPU 
implementation was also executed on an Intel Xeon E5620 
CPU for comparison. Its operating system was 64-bit Scientifi c 
Linux 5.5, and the kernel version was 2.6.18. It con tained eight 
cores, the core speed was 2.4 GHz, and the gcc version was 
4.1.2. For the FDTD computation, only one core was used. The 
CPU computation in single (double) precision took 29 (33) 
times more time than the M2050 GPU computa tion with un-
coalesced memory access when each thread was responsible for 
just one cell, i.e., the fastest case in the un-coalesced memory-
access approach. When a thread was responsible for all cells in 
one block, the GPU computation took more than 1.3 times as 
much time as the CPU computa tion. It was clear in Figure 11 
that the approach in Figure 8b outperformed the approach in 
Figure 8a. The coalesced approach performs best when R  is 
around 0.15.

 The same results were obtained when the different sizes 
of the FDTD space were tested. In the case of the coalesced 
approach in single precision, the T10 GPU took about 1.5 times 
more time than the M2050 GPU. This suggests the improvement 
of the performance by the M2050 GPU in single precision 
mainly results from the increase in memory band width, because 
the bandwidth of the M2050 GPU is 4.6 times wider than that 
of the T10 GPU. In the case of double preci sion, our coalesced 
approach performed better on the M2050 GPU than on the T10 
GPU, reducing 60% of the elapsed time of the T10 GPU. The 
M2050 GPU has both good double-pre cision performance and 
the level 1 and 2 caches. However, we fi nd the contribution of 
these to the performance improvement to be negligible. First, 
the elapsed time of the FDTD method is mostly dominated by 
memory operations, rather than arithme tic operation. Second, 
the cache will be quickly overwritten by other threads, and the 
data from the global memory may not be reused to compute each 
of the neighboring fi eld values; it is thus tricky to effectively 
make use of the cache for speedup with the FDTD method. We 
fi nd the major contribution to be the reduction of bank confl icts 
that were occurring on the T10 GPU. 64-bit access on the T10 
GPU architecture requires two memory instructions, while the 
M2050 GPU requires only one [5]. The bank confl icts occur in 
global memory, which causes the T10 GPU architecture to use 
twice the number of memory lookups. This means that memory 
fetches for 64-bit words happen twice as fast on the M2050 
GPU, which probably accounted for 50% of the speedup. The 
required memory access for double-precision computation in 
our approach would exceed the available bandwidth in the 
T10 GPU. In the M2050 GPU, the special treatment of 64-bit 
access reduced the frequency of the global memory access. 
This may make the practical bandwidth required for double-
precision compu tation comparable to one in single precision. 

In the M2050 GPU, the double-precision computation thus 
took only 1.3 times more time than the single precision. On the 
other hand, in the T10 GPU, the double-precision computation 
took 2.5 times more time than the single precision. When our 
approach was compared to implementations of methods 1 and 2 
running on the same T10 GPU, our method showed 6.4 and 6.6 
times higher performance than methods 1 and 2, respectively, 
for single precision. For double precision, our method showed 
3.3 times higher performance than both methods 1 and 2. 

7. Conclusion

 This paper categorized the currently available approaches 
for implementing the three-dimensional FDTD method on 
GPGPUs, and explained the merits and demerits of these 
approaches. The most promising approach was taken as a base 
for our work, and a further improvement to the approach was 
proposed. Numerical experiments showed that when the ratio 
between the number of threads per block and the number of 
cores available in a GPU board was around 0.15, our coa lesced 
approach had a signifi cantly more effi cient global-memory 
access, just enough for the bandwidth available in the T10 GPU 
in the case of single precision. In this case, the M2050 GPU 
gave the performance improvement only for the increase of the 
bandwidth compared with the T10 GPU. How ever, the double-
precision computation doubles the amount of data requested. In 
our approach, the access in the double-pre cision computation 
doubles the global-memory access of the single-precision 
computation in the T10 GPU, and signifi  cantly exceeded the 
bandwidth of the T10 GPU. The perform ance was thus less than 
half of the single-precision perform ance. On the other hand, 
our approach signifi cantly benefi ted from the specifi c treatment 
of 64-bit access in the M2050 GPU, and the calculation in 
double precision took only 1.3 times more time than the single-
precision calculation. 
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