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Resolution Enhancement of UWB Time-Reversal
Microwave Imaging in Dispersive Environments
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Abstract—Time Reversal (TR) techniques allow optimal re-
focusing of ultrawideband (UWB) electromagnetic waves in
complex propagation environments, due to the invariance of the
wave equations. Propagation of electromagnetic waves through
dispersive or lossy media breaks this invariance. Consequently,
such media degrade the refocusing ability of TR techniques. In
this work, we propose a novel algorithm for the enhancement
of the UWB TR microwave imaging resolution in dispersive
environments. The presented algorithm takes into account the
frequency-dependent complex permittivity of the propagation
medium across the entire bandwidth of the UWB pulse. Using
this complex permittivity, it models the medium-, time-, and
frequency- dependent attenuation in the wavelet domain to
create inverse filters which compensate for the effects of the
attenuation. This is the first algorithm that constructs inverse
filters in the wavelet domain using the complex permittivity of
the dispersive propagation medium across the entire bandwidth,
rather than at a center frequency, of the excitation pulse. We
also introduce a smart scaling concept to minimize undesired
noise amplification. While our proposed approach is agnostic to
the application scenario and thus could be utilized in various
disciplines, we apply it in a biomedical imaging scenario and
achieve enhancement in the resolution of UWB microwave TR
imaging of a simulated brain tumor inside the digital human
phantom (DHP).

Index Terms—Microwave imaging, focusing, biomedical imag-
ing, radar signal processing, dispersive media, time reversal (TR)

I. INTRODUCTION

THE time-reversal (TR) method exploits the invariance
of the wave equation under a time-reversal operation in

lossless and stationary media to refocus time-reversed signals
back to their source. The TR method works by recording and
time-reversing the distorted wave-field coming from a source
(active or passive) at the focal point of interest [1]. As a
result, optimal spatial and temporal refocus is achieved under
the condition that the propagation media are lossless. The TR
method can be applied on ultra-wideband (UWB) signals and
harness multipaths to improve the refocusing precision and to
achieve superresolution [2]–[6], i.e. a spatial resolution much
finer than achievable in free space.
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The TR method has found several applications in recent
years, such as acoustics for brain therapy, non-destructive
testing, under-water telecommunications, fault diagnosis in
wire networks [7]. In electromagnetics, the TR techniques have
been applied in radar imaging including Ground Penetrating
Radar (GPR) [2], [8], [9], in communications [10]–[12] and in
biomedical applications [13]–[15]. Microwave imaging utiliz-
ing TR aimed for microwave breast cancer detection has been
studied in [13], [16]–[18] and references therein.

TR techniques in electromagnetics employ a set of transmit-
receive (Tx/Rx) elements, called the TR array (TRA) [8].
Each TRA element receives the signals originating from the
source. These signals are recorded, time-reversed, and then
sent back to the propagation medium by each TRA element
simultaneously, to achieve refocusing around the original
source location. In the case of a scatterer acting as a passive
source, the propagation environment can first be illuminated
by one of the TRA elements.

The TR invariance of the wave equation breaks in the
presence of lossy propagation media [3], [19]. While the
TR process itself can compensate for the additional phase
shift incurred by dispersion, it cannot compensate for the
amplitude attenuation the TR signals undergo during both for-
ward and backpropagation [3], [19]. This attenuation degrades
the resolution of the TR refocusing relative to the lossless
and non-dispersive case. Inverse filters can be employed to
compensate for the attenuation of the TR signals. In the
case of random and/or inhomogeneous propagation media,
approximate inverse filters can be used [3]. This practice
can be applied for TR-based microwave imaging applications
where the obtainment of qualitative radar images, rather than
quantitative fields, is acceptable [20].

The work in [19] compensates the dispersion in UWB TR
applications by making use of time-dependent inverse filter-
ing with short-time Fourier transforms (STFT), to improve
the refocusing of time-reversed electromagnetic waves. [19]
constructs the inverse filters by comparing the solution of the
wave equation in the dispersive propagation medium at various
propagation distances against a corresponding nondispersive
test medium. There are three major drawbacks to adopting the
inverse filter production proposed by [19]. First, it is empirical,
as it requires a manual examination of the spectral density
of the received signals to assess whether the noise levels at
individual frequencies are unacceptably high, depending on the
application. The amplification of noise-affected frequencies is
minimized by manually adjusting the filtering process. Second,
it assumes perfect knowledge of the dispersive characteristics
of the propagation media. Finally, it is time consuming, as it
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implies prior realization of one experiment with the lossless
test medium.

Later, [21] extended the method in [19] by introducing a
threshold approach to minimize the amplification of the noise
in the inverse filters in [19]. The work in [21] investigates the
application of different window types and lengths to optimize
the selection of the parameters of the STFT filters. While the
noise reduction process is automated by [21], the requirements
of performing one extra experiment with the non-dispersive
test medium and of perfect knowledge of the dispersive char-
acteristics of the propagation media persist. Another limitation
imposed by [21] is that it assumes knowledge of the location
of the scatterers during the optimization process, which may
not be available in real-life applications. Besides, both [21]
and [19] consider only point-like perfect electric conductor
(PEC) scatterers.

More recently, the authors in [22] propose an adaptive-
window scheme based on the continuous wavelet transform
(CWT) of discrete-time signals received by a TRA. Hence,
[22] performs the discrete-time wavelet transform (DTWT)
[23] of the received signals. The wavelet transform method
applies a temporally long window to the received signals
at the lower frequencies of the spectrum (large scales) and
a temporally short window at the higher frequencies of the
spectrum (small scales). Therefore, it is well-suited for time-
dependent filter implementations in terms of time and fre-
quency localization [22]. The method in [22] uses stabilized
approximate inverse filters in the wavelet domain to increase
the resolution of the TR refocusing of UWB signals. Each of
these stabilized inverse filters is a model of the attenuation
in the wavelet domain and is produced using the complex
permittivity of the propagation medium, which is assumed to
be known. Using these inverse filters, [22] compensates the
attenuation due to the medium and thus results to more precise
TR refocusing. The compensation of attenuation in the case of
[22] is not exact. Besides, the work in [22] is focused on the
enhancement of the TR refocusing resolution, and hence on the
qualitative improvement of the radar image. It does not aim to
preserve the energy of the interrogating pulse before and after
the inverse filtering process and it performs no such study. The
work in [22] uses the value of the complex permittivity of one
dominant propagation medium at the center frequency of the
interrogating UWB pulse to create the inverse filters without
taking into account the frequency dependency of propagation
media.

In this work, we propose an algorithm for the resolution
enhancement of UWB TR imaging in lossy propagation media,
such as dispersive human tissues. While brain imaging is
considered in this paper, our algorithm can be applied to
other disciplines involving dispersive media, such as GPR,
through-the-wall imaging, etc. Our work corrects and improves
the adaptive-window scheme method proposed in [22]. The
approach in [22] associates the wavelet transform scales to
frequencies in an arbitrary way, which leads to unreliable
performance. We correct this by proposing the use of a
different method to associate wavelet scales with Fourier
frequencies. The method our work uses to associate wavelet
scales with Fourier frequencies is derived mathematically and

has been employed by existing wavelet transform-related liter-
ature. The main novelty introduced by our algorithm is that it
incorporates the frequency-dependent complex permittivity of
the propagation medium across the whole frequency spectrum,
rather than at a center frequency, of the interrogating UWB
pulse, for the first time to our knowledge, to construct a scale-,
and hence, frequency-dependent model of the attenuation
which the pulse undergoes during the TR forward propagation.
Using this model, our algorithm constructs stabilized inverse
filters and enhances the refocusing resolution of time-reversed
UWB electromagnetic waves in dispersive media. Further-
more, our method applies smart scaling that prevents the
amplification of unwanted noise at frequencies which are not
part of the spectrum of interest of the UWB pulse. The method
in [22] fails to do so, as it performs amplification over a part of
the noise spectrum instead of selecting the bandwidth portion
that corresponds to the signal and it hence breaks the TR
refocusing process. Our algorithm is in principle general and
agnostic to application scenario. In this paper, we choose the
brain tumor detection scenario to demonstrate the performance
of our work. While clutter removal techniques can be utilized
alongside to improve the overall system performance further,
we leave this as part of future work and here we focus on the
resolution enhancement algorithm for UWB microwave TR
imaging regardless of clutter removal techniques.

II. RESOLUTION ENHANCEMENT OF UWB TR IMAGING IN
DISPERSIVE MEDIA

Let x(t) be the signal received by one TRA element. x(t)
is sampled and represented in discrete time domain as

x[n] = x(nTs) n = 0, 1, 2, . . . , N − 1 (1)

where Ts is the sampling period and N is the total number
of sampling points in the time domain signal. We use the
complex Morlet function as the analyzing (mother) wavelet
for the DTWT of x[n], following [22]. Let ψ0(η)

ψ0(η) =
1
4
√
π
eωMηe−η

2/2 (2)

be the mother wavelet function where ωM = 2πfM is the
central angular frequency of the mother wavelet, fM is the
corresponding frequency, and  =

√
−1. For (2), a value

of ωM > 5 must be chosen so that ψ0(t) is approximately
admissible [24]. The value ωM = 6 is commonly employed
in practice [25]–[27], which we also use following [22]. We
express ψ0(t) in the scaled discrete frequency domain as [25]

Ψ0[ajωk] =


1
4
√
π
e−

1
2 (ajωk−ωM)2 ωk > 0

0 otherwise
(3)

where aj is the scale factor associated with each individual
scale with index j = 0, 1, . . . , J , given as a relation between
the smallest resolvable scale a0, the index j, and the scale step
∆j by

aj = a0 · 2j∆j . (4)
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We set a0 so that the equivalent Fourier period is 2Ts [25].
ωk is the k-th harmonic of the fundamental frequency which
is defined as

ωk =


2πk

NTs
k ≤ N

2

−2π(N − k)

NTs
k >

N

2

(5)

and k = 0, 1, 2, . . . , N − 1 is the frequency bin. The index of
the largest scale J is computed by [25]

J =

⌈
1

∆j
log2

(
NTs

a0

)⌉
(6)

where d e is the ceiling function. ∆j controls the scale dis-
cretization. Smaller values of ∆j achieve finer discretization
of the scale parameter, which typically results in a higher-
fidelity signal analysis. However, with smaller values of ∆j,
the amount of required computation increases, because there
is a larger total number of scales and the DTWT is computed
at each scale. In this work, we assign ∆j = 0.025 following
[22].

We normalize the wavelet function so that it has unit energy
at each scale and to guarantee that the DTWTs at each aj are
comparable to each other [25]:

Ψ [ajωk] =

√
2πaj
Ts

Ψ0[ajωk]. (7)

Our compensation process first converts x[n] to the wavelet
domain. The DTWT of the signal x[n] is defined as

X[aj , n] =

N−1∑
k=0

[
1

N

(
N−1∑
τ=0

x[τ ]e−τ
2πk
N

)
Ψ∗[ajωk]eωknTs

]
(8)

where ∗ represents the complex conjugate.
We apply inverse filtering to X[aj , n] in the wavelet domain

to compensate for the effects of the attenuation caused by the
dispersive medium. To form the inverse filters, we compute
the attenuation corresponding to X[aj , n]. We assume a single
point source of band-limited electromagnetic radiation placed
inside a homogeneous and isotropic non-magnetic dispersive
medium of infinite size. Let the complex permittivity of the
linear and lossy propagation medium be noted as ε(f) =
ε′(f) − ε′′(f),ε0εr(f) in F/m where ε0 is the vacuum
permittivity, εr is the complex relative permittivity, f is the
frequency in Hz, and ε′(f), ε′′(f) are real functions of f . We
use the one-pole Debye relaxation model for the human tissues
[28]

εr(f) = ε∞ +
εs − ε∞

1 + 2πfτD
−  σ

2πfε0
(9)

where ε∞ is the optical relative permittivity, εs is the static
relative permittivity, τD is the relaxation time, σ is the static
conductivity.

The attenuation factor of the propagation medium can be
expressed as [29]

α(f) = 2πf
1√
2c

√1 +

(
ε′′(f)

ε′(f)

)2

− 1

1/2

(10)

where α(f) is the attenuation factor associated with f in Np/m
and c is the speed of light in the propagation medium.

Suppose a sinusoidal signal with frequency f at propagation
distance r from the excitation source. This signal is subject to
attenuation ϕ(f, r) which is given by [29]

ϕ(f, r) = exp(−α(f) · r). (11)

This signal is also subject to an additional phase shift of
e−β(f)r, where β(f) is the phase constant. Since the TR op-
eration corresponds to phase conjugation in frequency domain,
we are not concerned with this additional phase shift, as the
TR method automatically compensates any phase distortion
that affects the forward propagation [19]. We can express r in
terms of time as

r(t) = c · t (12)

where t is the time of travel of the electric field plane wave.
Using (12), (11) becomes

ϕ(f, t) = exp(−α(f) · r(t))

= exp

−2πf√
2

√1 +

(
ε′′(f)

ε′(f)

)2

− 1

1/2

· t

. (13)

We model (13) in wavelet domain as Φ(aj , t). To express
Φ(aj , t) algebraically, we consider the relation between aj and
f . When (2) is used as the mother wavelet, an analytical
relation between each scale factor aj and one equivalent
Fourier frequency f = fe(ωM, aj) can be found. This relation
can be obtained by taking the wavelet transform of a complex
sinusoid at a known frequency and deriving the scale aj at
which the wavelet energy density is maximized, following the
method in [30]. This yields [25], [30], [31]

fe(ωM, aj) =
ωM +

√
2 + ωM

2

4πaj
. (14)

The derivation of (14) is provided in the Appendix. Hence we
express our wavelet domain model of the forward attenuation
as

Φ(aj , t) = exp
(
−α
(
fe(ωM, aj)

)
· r(t)

)

= exp

−2πfe(ωM, aj)√
2

·


√√√√√1 +

ε′′(fe(ωM, aj)
)

ε′
(
fe(ωM, aj)

)
2

− 1


1/2

· t

. (15)
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By sampling (15) we have that

Φ[aj , n] = exp

−2πfe(ωM, aj)√
2

·


√√√√√1 +

ε′′(fe(ωM, aj)
)

ε′
(
fe(ωM, aj)

)
2

− 1


1/2

· nTs

. (16)

The work in [22] does not make use of relation (14).
Conversely, [22] dilates the central frequency of x[n], fc, by
each scale factor to arbitrarily associate each scale factor to a
frequency, as in

f =
fc

aj
. (17)

(17) has no physical meaning relating to the frequency content
of X[aj , n] for constant aj . In addition, the attenuation model
in [22] uses the value for the permittivity of one medium only
at fc instead of taking into account the functional relationship
of ε and f , and therefore ε and aj . Thus, the model of
attenuation in [22] is invalid for non-monochromatic waves
propagating in dispersive media. With (16), our approach
considers the effect of the attenuation on x[n] across all scales
– and hence, frequencies – of interest of x[n].

To compensate for the effects of the frequency- and time-
dependent attenuation, we construct inverse filters in the
wavelet domain as in

H[aj , n] =
1

Φ[aj , n]
. (18)

As the excitation wave travels beyond a certain distance
from the source, its magnitude at high frequencies (small
scales) becomes weaker than the noise. The inverse filters in
(18) would amplify noise-dominated scales by an exponential
function of time. To minimize such amplification of noise after
long travel times, we stabilize (18) and form the stabilized
inverse filters [32]–[34] of

Hs[aj , n] =
Φ[aj , n]

Φ2[aj , n] + s2
(19)

where s2 is the real positive stabilization parameter. This
parameter can be set empirically [33]–[35]. Alternatively, s2

can be set as a ratio of variances of signal and noise, as a
measure of signal-to-noise ratio (SNR) [33]. The system is
stable with a fixed value of s = 10−7 in all our simulations.

We produce the compensated wave sequence Y [aj , n] by
applying Hs[aj , n] on X[aj , n] in the wavelet domain as

Y [aj , n] =

{
Hs[aj , n]X[aj , n] if fmin≤fe(ωM,aj)≤fmax

X[aj , n] otherwise
(20)

where fmin and fmax are the minimum and maximum fre-
quencies of the spectrum of the source excitation respectively.
We do not apply the inverse filters outside of the frequency
range of interest to avoid amplification of noise outside this

range. With (20) our approach takes into account the entire
frequency range of interest for the stabilized inverse filtering
of x[n].

The work in [22] sets Hs to 1 only for 0 ≤ j ≤ J/2 to
prevent the amplification of high frequency noise. While this
choice of scale indices selects the higher part of the frequency
spectrum used by the DTWT, it does not specify the exact
frequency range where we are not interested. Consequently,
the amplification of noise beyond fmax and below fmin is
possible in [22].

Finally, we obtain the compensated signal in time domain
y[n] by taking the Inverse DTWT (IDTWT) of Y [aj , n] as in

y[n] =
∆jTs

1/2

Cδψ0(0)

J∑
j=0

Re{Y [aj , n]}
√
aj

(21)

where Cδ is a constant for each wavelet function and Re{ } is
the real part of its complex argument. For the Morlet wavelet
of (2), Cδ is calculated as [25]

Cδ =
∆jTs

1/2

ψ0(0)

J∑
j=0

Re

{
N−1∑
k=0

Ψ∗[ajωk]/N

}
√
aj

. (22)

We apply the same process for each x(t) received at
each TRA element before the backpropagation stage. Fig. 1
summarizes our proposed approach in a block diagram. When
we utilize our filter in an inhomogeneous scenario, we set ε in
(15) to the complex permittivity of the dominant medium. We
define as dominant the medium which covers the largest area
of the propagation space between the TRA and the electric
field source.

Sampling
TRA element

receives signal
DTWT

IDTWT
TR and

backpropagation 

X [aj, n]x[n]x(t)

Proposed

wavelet-domain

model of the

attenuation

Complex permit-

tivity across

entire bandwidth

of excitation

ǫ(fe(ωM, aj)) Φ[aj, n] Creation of stabi-

lized inverse filters

Hs[aj, n]

j = 0

fmin ≤ fe(ωM, aj) ≤ fmax

j ≤ J

j = j + 1

?

?

Inverse filtering

with proposed

spectrum-dependent

obviation of the

noise amplification
Yes

YesNo

Y [aj, n] = Hs[aj, n]X [aj, n]Y [aj, n] = X [aj, n]

Do not apply stabilized

inverse filtering

Apply stabilized

inverse filtering

Y [aj, n]
y[n]

No

Fig. 1. Block diagram of our proposed algorithm for the resolution enhance-
ment of UWB TR imaging in dispersive media.
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III. NUMERICAL EXPERIMENTS

Brain tumors are one of the deadliest of all forms of cancer
[36], [37]. Microwave imaging of the brain is challenging
because of complex layered tissues inside the head [38],
which attenuate electromagnetic signals propagating through
them. We apply the TR imaging technique with our proposed
resolution enhancement method to locate a brain tumor in the
Digital Human Phantom (DHP). The purpose of these numeri-
cal simulations is to evaluate the improvement in resolution by
using our method on a practical case scenario which involves
propagation through multiple dispersive human tissues.

The DHP was provided by RIKEN (Saitama, Japan) under
nondisclosure agreement between RIKEN and The University
of Manchester (Manchester, U.K.). Its usage was approved by
the RIKEN ethical committee. The DHP has 1 mm resolution
and contains 52 segmented tissues. We fitted the one-pole De-
bye parameters of human tissues [39] using the measurements
provided in [40] and [41]. The Debye media parameters for
human tissues are presented in [42].

A. Simulation Settings

This scenario involves the head of the DHP. We illustrate the
simulation setup in Fig. 2 (3D graphic produced by using [43],
[44]). A 3D frequency-dependent finite difference time domain
( (FD)2TD) [45] space of size 321 cells× 297 cells× 160 cells
was used for our simulations. The complex frequency-shifted
perfectly matched layer (CFS-PML) absorbing boundary con-
ditions [46] are used with a 32-cell layer. The FDTD space
is uniformly sampled with a spatial step of ∆h , ∆x =
∆y = ∆z = 1 mm. The temporal step ∆t ≡ Ts for the FDTD
simulation is set to 1.9245 ps.

We place 11 TRA elements on the skin as in Fig. 2. The
interrogating TRA element is at location (xd0

, yd0
, zd0

) =
(175, 71, 108), where xd, yd, zd are the grid cell coordinates
in the x, y and z directions respectively. It is excited with a
first derivative of a Gaussian pulse, with a center frequency
fc of 3 GHz. The excitation pulse covers a frequency range of
fmin ≤ f ≤ fmax with fmin = 700 MHz and fmax = 6.2 GHz.
Frequencies fmin, fmax satisfy S(fmin) = S(fmax) = e−1 ×
S(fc) = e−1 [21] where S(f) is the normalized frequency
spectrum of the excitation signal. We observe Ez at each TRA
element. We simulate an SNR of 45 dB by applying Additive
White Gaussian Noise (AWGN) to x[n] received at each TRA
element.

In Table I, we list the Debye media parameters which
we use in this numerical experiment. We simulate the tumor
as a sphere with a diameter of 7 mm located on the white
matter (right hemisphere) as in Fig. 2. We set the relative
permittivity εr

cancer of the brain tumor as [47] εrcancer(f) =
εr

wh. matter(f)× (1+30%), where εrwh. matter(f) is the complex
relative permittivity of healthy white matter [42].

We carry out the TR experiment using no filter, using
the proposed approach, and using the method in [22]. We
use the time-reversed perturbed fields during the TR back-
propagation [13]. These fields are obtained by subtracting
the forward scattered signals computed using the scenario
geometry with and without the target object as also followed
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Fig. 2. The geometry of the simulation scenario. The black rectangle indicates
the region of interest.

in other works in the literature, such as [16], [17], [48], [49].
The time-reversed perturbed fields are back-propagated inside
a geometry identical to Fig. 2 but without the tumor. Note
that we follow the same procedure described above for all
the methods examined in this manuscript to obtain consistent
comparisons and demonstrate the relative improvement. To
objectively decide the time of refocusing, and hence perform a
fair comparison of the refocusing achieved by these methods,
we use the minimum entropy criterion on Ez in a region of
interest of the unfiltered TR experiment [13]. Both resolution
enhancement algorithms are independent of both the region
of interest and the time of refocusing. We employ the inverse
varimax norm of Ez , (23), as measure of entropy [16], [17],
[50], with

Ξ(Enz ) =

[∑
xd,yd

Enz
2(xd, yd, zd0)

]2

∑
xd,yd

Enz
4(xd, yd, zd0

)
. (23)



6

TABLE I
DEBYE PARAMETERS OF DHP MEDIA

Propagation medium σ [S/m] εs ε∞ τD [ps]

Bone 0.104 14.169 7.363 0.341
Cerebellum 0.826 58.155 35.195 0.683
Cerebral cortex 0.595 56.444 33.057 0.352
Cerebrospinal fluid 2.144 70.400 33.148 0.182
Eyeball 1.445 67.711 10.308 8.271
Fat 0.037 5.531 3.998 0.236
Hypothalamus 0.595 56.444 33.057 0.352
Midbrain 0.348 41.281 24.371 0.336
Muscle 0.747 56.932 28.001 0.187
Paranasal sinus 0.000 1.000 1.000 0.000
Skin 0.541 47.930 29.851 0.436
White matter 0.348 41.281 24.371 0.336

We compute Ξ(Enz ) inside the region of interest, away from
the TRA elements, to minimize the effect the transmitting
elements have on the minimum entropy selection process
during backpropagation. We quantify the spatial resolution
for each method. We expect that our approach presents the
best resolution of the TR refocusing. For both resolution
enhancement methods, we use the frequency-dependent white
matter tissue as the dominant medium for the inverse filters.

B. Results

The normalized |Ez| distribution with conventional TR
imaging without inverse filtering, one with our resolution
enhancement approach, and one with the approach in [22] are
presented in Figs. 3, 4, and 5, respectively.
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Fig. 3. Normalized |Ez | distribution inside the region of interest at the time of
refocusing without applying any resolution enhancement method. The white
circle represents the tumor.

The method in [22] failed to achieve refocusing. Instead, it
resulted in artifacts in Fig. 5 which were higher in intensity
near the TRA elements. The algorithm in [22] uses (17) to
calculate f associated with each aj . Thus, it associated the
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Fig. 4. Normalized |Ez | distribution inside the region of interest at the time
of refocusing using our resolution enhancement approach. The white circle
represents the tumor.
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Fig. 5. Normalized |Ez | distribution inside the region of interest at the time
of refocusing using the method from [22]. The white circle represents the
tumor.

non-rejected scales to a frequency range from 3.43 · 1017 Hz
to 2.31 · 1019 Hz. This frequency range does not belong to
the frequency spectrum of interest of x(t). Moreover, the
calculation of α(f) by the method in [22] is proportional to
f (as [22] evaluates ε′ and ε′′ only at f = fc). Therefore the
value of α(f) with [22] becomes 10 orders of magnitude larger
than the true value of α(f). Thus [22] carries out unreliable
computation of Φ[aj , n] and of Hs[aj , n], resulting in the
breaking of the TR process. Our proposed filter compensates
for the effect of the losses caused by the dispersive human
tissues and thus yields more precise spatial focusing than the
non-enhanced TR method.

Figs. 6 and 7 present the cross-section of the |Ez| distribu-
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Fig. 6. Cross sections of the normalized |Ez | distribution along the cross-
range axis of refocusing after applying our approach, and without applying
any resolution enhancement method.
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Fig. 7. Cross sections of the normalized |Ez | distribution along the range
axis of refocusing after applying our approach, and without applying any
resolution enhancement method.

tion along the cross-range and range directions respectively.
Symbols RTR and RP represent the resolution of the spatial
focusing at the time of refocusing, using no resolution en-
hancement method (RTR), and using the proposed resolution
enhancement approach (RP) respectively. We measure the
range and cross-range resolutions of RTR and RP as the
minimum distance between two half-maxima in |Ez| nearest
the point of refocusing, along the range and cross-range
directions respectively, as in [22].

The method in [22] generates the peak of the backprop-
agated |Ez| signal near the TRA and hence breaks the TR
refocusing process. Along the range direction, our method
outperforms the conventional TR method in precision by a
factor of RTR/RP = 1.56. Along the cross-range direction,
our method provides RTR/RP = 1.3 times better resolution
than the unfiltered TR approach. Along the range direction,
it is RP = 7.03 mm and RTR = 10.98 mm. Hence, the
range precision of the proposed method is approximately equal

to the ground-truth tumor’s size, whereas the precision of
the conventional TR approach is 1.57 times coarser than the
tumor’s size. We did not compare the refocusing resolution
achieved using our approach with the results using [22], since
there is no refocusing with the approach in [22].

IV. CONCLUSION

The time reversal invariance of the wave equation is broken
in dispersive media such as human tissues. The method in [22]
provides an adaptive-window approach for inverse filters in
the wavelet domain, without requiring the realization of prior
experiments. However, the algorithm in [22] only considers
propagation at the center frequency of the interrogating pulse
through the dispersive media. In addition, the wavelet-domain
model for the attenuation used by [22] does not relate the
wavelet transform’s scales to frequencies correctly, and is thus
unreliable. Our work corrected and improved the method in
[22]. Our algorithm for the resolution enhancement of TR
microwave imaging employed the frequency-dependent com-
plex permittivity of the propagation medium across the whole
spectrum of interest, for the computation of the attenuation
which the interrogating UWB pulse undergoes during TR
forward propagation. Our algorithm also introduced a smart
selection of scales on which to obviate the inverse filtering
process, to minimize undesired noise amplification, contrary
to the empirical approaches in relevant prior work. Further,
we integrated the minimum entropy selection to dispersion
compensation problems for the first time to our knowledge,
to determine the time of TR refocusing. We applied our
method to a three-dimensional scenario involving a brain
tumor inside the head of a DHP. Our approach improved
the refocusing resolution of the conventional TR approach,
while prior work failed to refocus at the tumor. One limitation
that the simulations in this work share with prior work is
that they do not take into account effects due to finite dipole
size or mutual coupling between the TRA elements. This is
because the main aim of this work is the development of the
resolution enhancement algorithm. Furthermore, we currently
do not have an experimental setup. However, we considered
a computational setup which is similar to setups found in
head imaging literature [51]–[53]. As a part of future work
based upon this study, more realistic simulation models or
practical experiments can be developed to assess any possible
impact these effects have on the microwave imaging. Note also
that, while we have considered the resolution enhancement
of brain imaging as our case study, the introduced algorithm
is general and can be applied in other applications, such as
GPR applications, through-the-wall imaging, as well as purely
computational methods. Also, similarly to the prior work, this
paper assumes that the time-reversal of the exact perturbed
field due to the target is possible by perfect background
subtraction, which may not be a trivial process in some real-
world applications where the background’s response may not
be readily available. However, the simulation experiments
presented in this work suffice to demonstrate the performance
of our new TR imaging resolution enhancement approach
relative to the prior work and the conventional TR method
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for UWB propagation in heterogeneous and dispersive en-
vironments. Future research also includes the integration of
the proposed algorithm with clutter removal techniques, the
assessment of the statistical characteristics of our method in
random media, and of its imaging performance when applied
on other TR-based techniques, such as the UWB-MUltiple
SIgnals Classification (MUSIC) method, as well as extensions
to other disciplines involving dispersive media.

APPENDIX
RELATING WAVELET SCALES TO FOURIER FREQUENCIES

Wavelet scales are not per se related to frequencies analyzed
by the wavelet transform, but rather define a stretch of the
wavelet function in time domain. For cases where the mother
wavelet contains dominant periodic components, an analytical
relation can be found between each wavelet scale and one
equivalent Fourier frequency. We derive (14), which relates
each wavelet transform scale factor to one equivalent Fourier
frequency using the complex Morlet mother wavelet, following
the approach in [30] (which relates wavelet scale factors to
equivalent Fourier wavelengths). The principle of this ap-
proach is that a monochromatic wave at a known frequency
maximizes the wavelet energy density at the scale associated
to this frequency.

Let f(t) be a complex sinusoid of known frequency ωr and
f̂(ω) denote the Fourier transform of f(t), then

f(t) = eωrt

∴ f̂(ω) = 2πδ(ω − ωr) (24)

where δ( ) is the Dirac delta function. The complex Morlet
wavelet is expressed in frequency domain as

ψ̂0(ω) = π1/4
√

2e−
1
2 (ω−ωM)2 . (25)

We take the CWT of f(t) using its frequency domain rep-
resentation, employing ψ0(t) as the mother wavelet at scale
factor a and with a translation in time of b temporal units:

T (a, b) =
√
a

∫ ∞
−∞

f̂(ω)ψ̂0
∗
(aω)eωb dω. (26)

Substituting f̂(ω) in (24) and ψ̂0(aω) in (25) into (26), we
obtain

T (a, b) =
√
a

∫ ∞
−∞

2πδ(ω − ωr)π
1/4
√

2e−
1
2 (aω−ωM)2eωb dω

= 2π
√
aeωrb

(
π1/4
√

2e−
1
2 (aωr−ωM)2

)
= 2π

√
aeωrbψ̂0(aωr).

The wavelet energy density function (also called the wavelet
power spectrum by some authors [30], [54]) is

|T (a, b)|2 = 4π2a
∣∣∣ψ̂0(aωr)

∣∣∣2
= 4π2π1/22ae−(aωr−ωM)2

To derive the scale a = ar where the wavelet energy density
is maximized, we require

∂|T (a, b)|2
∂a

∣∣∣∣∣
a=ar

= 0.

Therefore,

4π2π1/22e−(arωr−ωM)2
(
−2ωr

2a2
r + 2arωrωM + 1

)
= 0

∴ −2ωr
2a2

r + 2ωrωMar + 1 = 0. (27)

The accepted realistic root of the quadratic equation (27) is

ar =
1

2

[
ωM +

√
2 + ωM

2

ωr

]
(28)

since the rejected solution would suggest ar < 0. By setting
fe(ωM, a),ωr/2π and a,ar into (28) and rearranging, we
obtain (14).
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