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Abstract—This paper compares the methods used to account for sheets 

thinner than the cell size of the FDTD method. The comparison relies on the 

reflection and transmission of plane waves. It is shown that the Maloney and 

Smith method is the best. In contrast to the other methods, it provides correct 

reflection and transmission coefficients for any incidence angle.  
 

Index Terms—FDTD methods, electromagnetic coupling, 

reflection coefficient.    

I. INTRODUCTION 

Several techniques were published almost simultaneously [1]-[6] to 

enable the finite-difference time-domain (FDTD) method [7]-[8]  to 

deal with dielectric or conducting sheets thinner than the cell size. A 

comparison by means of numerical experiments [9] showed that using 

[1] the computed results agree with the analytical solution, while using 

[2]-[5] they experience some discrepancies when the electric field is 

perpendicular to the sheet. 

In this paper we revisit the comparison of the techniques by means 

of theory. The comparison is limited to [1] and [3], since [4] and [6] 

are similar to [3], [2] is limited to dielectric sheets, and [5] is subject 

to instability. The theoretical reflection and transmission of an incident 

plane wave that strikes a thin sheet are derived in the FDTD discretized 

space. They are compared with the analytical reflection and 

transmission in the physical continuous space. This shows that using 

[3] the reflection and transmission are correct when the incidence is 

close to normal incidence, but erroneous at wide incidence. 

Conversely, with [1] they agree with their physical counterparts at all 

incidence angles. In particular, the zero reflection at the Brewster angle 

is well reproduced with a dielectric sheet.  

II. THE MALONEY-SMITH AND LUEBBERS-KUNZ TECHNIQUES 

With techniques [3] or [6], the thin sheet can be assumed as centered 

on a plane that holds the two E components parallel to the sheet, as 

represented in Fig. 1, where the nodes Ey and Ez are within the sheet. 

By discretizing the integral form of the Maxwell-Ampère equation, it 

is found that the FDTD advance of the two E components in the sheet 

can be performed with the standard FDTD equation, with permittivity 

and conductivity replaced by their average value in the cell 

surrounding the considered node. Thus, for a sheet surrounded by air, 

of thickness d, relative permittivity s, and conductivity s, the relative 

permittivity and conductivity to be used in the sheet are 
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This method yields correct results in many experiments [3], [6]. 

However, it is evident that when a plane wave propagates in a direction 

parallel to the sheet (in the y-z plane in Fig. 1) with E perpendicular to 

the sheet, there is no E component parallel to the sheet, and thus this 

propagation in the FDTD space is just like the one in a vacuum, i.e. the 

sheet is transparent to the wave.  
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Fig. 1. A plane x-y of a 3D FDTD mesh with a thin sheet located at i = is. 
 

We do not face this problem with the Maloney and Smith additional 

modification to the FDTD equations [1]. Field E perpendicular to the 

sheet (Ex at i = is-1/2 in Fig. 1) is split into two parts, one advanced as 

in a vacuum, the other advanced as if it were in the sheet. A weighted 

average of the two parts in then used in place of E in the FDTD advance 

of H components parallel to the sheet. In the case of Fig. 1, denoting 

the two parts as Ex_out and Ex_in, component Ex is replaced with  Ex_out 

+  Ex_in in the advance of Hz in the plane i = is-1/2, with  

xd  /1          xd  / .                        (2) 

Experiments in a special case in [9] showed a better agreement of 

analytical solutions with the Maloney and Smith method than with 

other methods. This is confirmed in the following sections by 

investigating the reflection and transmission of plane waves by thin 

sheets. 

III. REFLECTION AND TRANSMISSION OF PLANE WAVES 

In this section, we review the formula giving the physical reflection 

and transmission by a sheet, we derive the reflection and transmission 

in the FDTD grid, and we briefly describe how the reflection can be 

measured by FDTD experiments. 

A. Analytical reflection and transmission of a sheet 

It is a simple exercise to derive the reflection Ra and transmission 

Ta of a plane wave by a sheet of thickness d, relative permittivity s 

and conductivity s. This yields 
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where, for incidence  and with r = s-j s/0 and c=1/(0 0)1/2 
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B. Theoretical reflection and transmission in the FDTD grid 

We derive the FDTD reflection and transmission in the 2D TE case, 

which is also the 3D case if the incident wave propagates in the x-y 
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plane. The problem is thus the one in Fig. 1. Let us assume that the 

relative permittivity and the conductivity are (a,a) for i = is-1, b, 

b) for i = isand either 1, 0) orm, m) for i = is-1/2, where m, m) 

are used for the advance of the additional Ex_in component in Maloney 

method. The FDTD equations in the three columns are [1] 
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Let us consider an incident wave of magnitude E0i and 

wavenumbers (kx, ky) propagating in direction  with respect to 

direction x (Fig. 1). Denoting by (Eyi, Hzi) and (Eyr, Hzr) the incident 

and reflected fields, and R E0i the magnitude of the reflected wave, the 

field for i < is-1, can be written as 
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where x = 0 at i = is. Let us then write components Hz(is-1/2,j+1/2), 

Ex_out(is-1/2,j), and Ex_in(is-1/2,j) as 
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where Tz, Tx_out, Tx_in are unknown parameters, and ky is the same as in 

(5), following the Snell law which holds in the discretized medium. In 

the vacuum, for i > is, the transmitted wave can be written as 
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where again ky is the same as in (5) and thus the direction of 

propagation  is also the same as in (5).   

By inserting waves (5)-(7) into the FDTD equations (4), we obtain 

a set of five equations for the five unknown parameters R, Tz, Tx_out, 

Tx_in, and T as in 
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Solving the equations for reflection R and transmission T yields 
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An interesting closed form can be obtained for a dielectric sheet 

where s = 0, Au = 1, Bu = 1/u. When the frequency of interest is far 

below the cutoff frequency of the FDTD mesh, we have  t << 1, kx 

x << 1,  = c k, kx = /c cos, and ky = /c sin. Under such 

conditions, it can be seen that 
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from which, denoting a = b as  at low frequency R tends to  
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Assuming that y = x and replacing and (p-m)  with (10), and 
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In the case a= 1, b=1+(s-1) d/x, = 1, and = 0, which corresponds 

to technique [3], the reflection  (12) becomes 
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With the Maloney technique [1] with which a= 1, b=1+(s-1) d/x, 

m=s, =1-d/x and =d/x, (12) yields 
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The bracket in (14) vanishes for cos2 = 1/(s+1) or equivalently 
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s )tan(  .                                       (15) 

This is the well-known Brewster angle where the reflection of the E 

field lying in the plane of incidence vanishes at the interface between 

a vacuum and a dielectric of relative permittivity s. If the reflection 

from the two interfaces of a sheet is zero, the overall reflection should 

be zero. This is well verified with the Maloney technique, at least in 

the frequency ranges well below the mesh cutoff. In contrast, reflection 

(13) of [3] never vanishes. This clearly demonstrates the superiority of 

the Maloney technique, which is confirmed in the following. 

C. Calculation of the reflection by means of FDTD experiments 

The reflection coefficient from a boundary condition [10] can be 

measured within a large 2D FDTD domain where the incident wave is 

produced by a Huygens surface. The reader is referred to [10] for more 

details on the settings. The technique has been used here to measure 

the reflection from a thin sheet so as to validate the theoretical FDTD 

reflection (9).  

IV. COMPARISON OF METHODS 

In Figs 2-6, method [3] is denoted as « Luebbers », and method [1] 

is denoted as « Maloney ». They are compared in Figs 2 and 3 for a 

dielectric sheet of s = 10 and d = 1 cm. The space step of the cubic 

FDTD cell is 5 cm, so that d = x / 5, and the time step is 0.1 ns. In 

Fig. 2 the incidence is  = 80° and results are plotted as a function of 

frequency (the cutoff of the FDTD mesh is about 2 GHz). FDTD 

experiments, FDTD reflection (9), and analytical reflection (3), are 

plotted in Fig. 2. The theoretical formula (9) agrees very well with 

FDTD experiments with both Luebbers and Maloney methods. But the 

Maloney results are very close to the analytical solution whilst the 

Luebbers results differ by 7-8 dB. 

Fig. 3 provides with another view of the same case. Here Maloney 

and Luebbers reflections (9) are compared with the analytical 

reflection (3) as a function of the incidence , at frequencies 10 MHz 

and 100 MHz (about 1/200 and 1/20 of the FDTD cutoff). Again, 

Maloney results agree very well with the analytical solution across the 

whole range of incidences. Luebbers results are correct up to incidence 

45°, but at a wider incidence they deviate from the analytical solution. 

This was expected from (13) and (14). While Luebbers reflection is a 

monotonic function of , Maloney reflection (14) vanishes at the 

Brewster angle (15), as does the analytical reflection. And as the 

incidence tends to 90°, Luebbers reflection vanishes, i.e. the sheet is 

transparent to the incident wave, while Maloney reflection becomes 

total. All this clearly demonstrates that methods [3], [4], and [6], are 

erroneous at wide incidence angle, while the Maloney reflection is 

almost perfect at any incidence.  

Concerning the transmission through the dielectric sheet, it can be 

computed from the reflection, since there is no loss in the sheet, so that 

R2 +T2 =1, as it can be easily verified numerically with (9).  

Figs. 4-6 show results for a conducting sheet of thickness d = x / 

50 = 1 mm. Fig. 4 is a comparison of FDTD theory with analytical 

reflection as a function of frequency, for incidence  = 80° and 

conductivities s = 0.1 and 1 S/m. Above a certain frequency, that 

depends on the conductivity, Luebbers method deviates from the 

analytical solution, while Maloney method remains correct. Fig. 5 is a 

comparison as a function of the incidence angle, at 10 and 100 MHz 

and conductivity 0.1 S/m. Up to 70° the reflection is almost 

independent of frequency and both the Luebbers and Maloney methods 

agree with the analytical solution. At a higher incidence, the reflection 

depends on frequency and the Luebbers method becomes erroneous, 

as in the case of a dielectric. In particular, the Luebbers reflection 

vanishes while the Maloney reflection tends to unity, in accordance 

with the physical reflection. Notice the agreement of FDTD results 

computed up to  = 80° (prohibitive CPU time for larger angles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Reflection at incidence angle  = 80° from a dielectric sheet of s = 10 

and thickness d = x/5 = 1 cm. Comparison of analytical reflection (3) with 

Luebbers and Maloney reflections computed with FDTD theory (9), and with 

FDTD experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Reflection from a dielectric sheet of s = 10 and thickness d = x/5 = 1 

cm at 10 MHz and 100 MHz, as a function of incidence angle .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Reflection at incidence angle  = 80° from a conducting sheet of 

thickness d = x/50 = 1 mm and conductivities 0.1 and 1 S/m. 

 

Fig. 6 depicts the transmission coefficient of the sheet, for three 

conductivities. Although it is plotted at 100 MHz, it is valid as well at 

any frequency since the transmission is almost independent of 

frequency. The Maloney and Luebbers methods appear as 

superimposed at any incidence angle in Fig. 6. In fact, at grazing 
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incidence Maloney (9) and the exact (3) transmissions vanish, while 

Luebbers transmission tends to unity which means that the sheet is 

transparent to the wave. This is illustrated in Table I and can be verified 

with (9) where when  = 1 and  tends to 90°, w and u vanish,  tends 

to infinity, and thus T in (9) tends to unity.  
Reflection or transmission in other situations can be easily 

computed using (9). For instance, it can be shown that R and T are 

almost left unchanged when placing the plane where E is split behind 

the sheet instead of in front of it. This just corresponds to permuting 

(a, a) with (b, b) in (9).    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Reflection from a conducting sheet of thickness d = x/50 and 

conductivity 0.1 S/m, at frequencies 10 and 100 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Transmission of a sheet of thickness d = x/50 = 1 mm and 

conductivities 10, 100, 1000 S/m. Maloney and Luebbers curves are 

superimposed. Plotted at 100 MHz, the figure is valid at any frequency. 
 

TABLE I  

FDTD TRANSMISSION (dB) OF THE SHEET OF FIG. 6 AT WIDE INCIDENCE , 

FOR S = 10 S/M AND FREQUENCY 100 MHZ. 

 

(°) 85 89 89.9 89.99 89.999 89.9999 

Luebbers -1.32 -0.281 -0.029 -0.003 -0.000 -0.000 

Maloney -1.32 -0.298 -1.371 -15.6 -35.0 -50.7 

 

V. SIMPLIFIED MALONEY IMPLEMENTATION FOR DIELECTRIC SHEET 

In the case of a dielectric sheet, the two E components perpendicular 

to the sheet, i.e. Ex_out and Ex_in in Fig. 1, can be replaced with a unique 

component Ex_equ advanced using the standard FDTD equation with the 

fictitious relative permittivity 

)/(1 sequ    .                                      (16) 

With the standard FDTD equation in place of (4b) and (4c), (8b) and 

(8c) are replaced with a unique equation 
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and (Tx_in+Tx_out) in (8d) is replaced with Tx_equ from (17). This 

yields the same equation as by substituting (8b) and (8c) into (8d). The 

R and T solutions are thus the same as those of the initial set (8), 

rigorously. The implementation of a dielectric sheet is then slightly 

simpler than that with the split field [1] whilst the FDTD results are 

left unchanged.   

VI. CONCLUSION 

In contrast to the simpler method [3], or similar methods [4] and [6], 

the Maloney and Smith method [1], that was also used in [11] with a 

non-orthogonal FDTD grid, provides us with accurate reflection and 

transmission when a plane wave strikes a dielectric or conducting thin 

sheet at any incidence angle. It thus appears as desirable to use method 

[1] in FDTD computer codes instead of other methods. However, the 

difference in the results may be either negligible or significant in 

practical applications, depending on the permittivity and conductivity 

of the sheet and on the incident wave. Further investigations will 

compare methods [1] and [3] in realistic applications and with 

canonical objects composed with several sheets of finite sizes. The 

comparisons will also be extended to the dispersive sheet method 

reported in [12]. 
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