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The unconditionally stable Crank-Nicolson finite difference time
domain (CN-FDTD) method is extended to incorporate frequency-
dependent media in three dimensions. A Gaussian-elimination-based
direct sparse solver is used to deal with the large sparse matrix
system arising from the formulation. Numerical results validate and
confirm that the scheme is unconditionally stable for time steps over
the Courant-Friedrich-Lewy limit of classical FDTD.

Introduction: Finite difference time domain (FDTD) methods produce a
time domain analysis in various kinds of media using a minimal set of
assumptions compared to other techniques. They are said to be the most
straightforward, robust and widely applicable electromagnetic modelling
techniques. Many current and emerging technological applications
involve electromagnetic wave interactions with materials having fre-
quency-dispersive dielectric properties [1] necessitating modification
of the classical Yee-FDTD scheme [2]. Frequency dependency has
been incorporated in FDTD using several approaches: the auxiliary
differential equation method, the z-transform method and the discrete
convolution method.

The main drawback of the conventional FDTD method is the reduced
computational efficiency resulting from the upper limit on the time step
that needs to satisfy the Courant-Friedrich-Lewy (CFL) stability con-
dition [1]. An alternative to the explicit FDTD is provided by the
Crank-Nicolson FDTD (CN-FDTD) method [3], which presents uncon-
ditional stability beyond the CFL limit. Both methods share the discre-
tisation of time and space derivatives by second-order centred
differences, with the only difference being that the fields affected by
the curl operator are averaged in time by the CN-FDTD method,
whereas in Yee-FDTD they are not. The resulting scheme is a fully
implicit marching-on-in-time algorithm with the same potential of the
classical FDTD. However, despite its accuracy and low anisotropy [4]
it has not been widely used in time domain electromagnetics as it
involves the inversion of huge sparse matrices. Instead, there have
been many works attempting to simplify or approximate its implemen-
tation. To some extent such approximations suffer numerical errors,
which may become severe for some practical applications [5]. With
the massive advancement of the technology of memory and compu-
tational resources, handling huge sparse matrices is no longer a bottle-
neck. This, together with the extensive research carried out during the
last two decades, that resulted in highly sophisticated, robust, efficient
and economical sparse solvers, makes CN-FDTD a promising affordable
alternative to the classical FDTD.

In this Letter we propose a new three-dimensional frequency depen-
dent CN-FDTD method (FD-CN-FDTD). We incorporate the frequency
dependence of single-pole Debye materials into CN-FDTD by means of
an auxiliary differential formulation [6]. The scheme results in a sparse
system of linear equations involving the three components of the electric
field. A sparse direct algorithm is used next to perform the coefficient
matrix decomposition, finally leading to an marching-on-in-time uncon-
ditionally stable advancing algorithm. The scheme is validated by
simple numerical experiments.

Fundamentals of FD-CN-FDTD: Maxwell’s curl equations in material
independent form are:
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where E, H, D and B are electric field, magnetic field, electric flux
density and magnetic flux density, respectively. The constitutive relation-
ships for isotropic, linear, non-magnetic, single-pole Debye electrically-
dispersive media, are in the frequency domain:

B = poH 3)

D:%(Sﬁm_,L)E 4

14+ jomp - we

ELECTRONICS LETTERS

where g¢ and u are the free-space permittivity and permeability, g is
the static permittivity, €« is the optical permittivity, 7p is the relaxation
time and o is the conductivity. Equation (4) can be rewritten as:
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By mapping (Jw)", in the frequency domain, into 9”/9¢", in time
domain, (5) can be written as
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Application of the Crank-Nicolson method to (1-3, 6) and manipu-
lation of the resultant discretised equations yield an equation with
only electric field E”*1(i, j, k) terms:
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where &, &, &, &, &, & are space dependent and defined as & =
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Permutation of x, y and z in (7) yields the remaining two E-field
equations. By applying them to each Yee-grid position, a system of
linear equations of AN = C is found, with A4 being an extremely large
and highly sparse coefficient matrix. The size of 4 is (3(N, — 1)(N, — 1)
(Nz = D)(B(N, — )N, — 1)(Nz — 1)) where N,, N,, N; are the size of
the FDTD space in x, y and z directions, respectively (i = imin,/ = jmin
and k = ky,p are excluded because at these points boundary conditions
will be used). NV represents a vector with the electric field components to
be solved, and C is the excitation vector. The solution of the system of
equations to find the electric field is the core of the scheme. All the remain-
ing field quantities are found in an explicit manner from the electric field. In
order to provide a convenient and straightforward algorithm, Mur first-
order boundary conditions were employed into FD-CN-FDTD.

Solution of sparse system: The sparse system AN = C can be solved by
direct or iterative methods. Despite their intrinsic appeal for very large
linear systems, iterative solvers are not robust compared to direct
solvers [7] and often require preconditioning to improve their efficiency
and robustness. As the purpose of this Letter is to verify the validity of
the proposed FD-CN-FDTD, not to improve the way to solve AN = C, a
direct solver approach was used. Direct solvers are robust, reliable and
their latest implementations are quite memory efficient, and have effi-
cient reordering techniques, which improve the performance to a great
extent. In this work we used a version of sparse Gaussian elimination
to solve FD-CN-FDTD. This method chooses a pivot sequence to
decompose A into LU factors, in such a way that the sparsity is preserved
in them. A full Markowitz search technique is used to find the best pivot
and reduce the fill-ins (i.e. not to waste memory). After the factorisation,
forward and backward triangular sweeps are executed to obtain N. At
each time step of the FD-CN-FDTD algorithm, a new C is calculated,
while A is required to be factorised only once (which dominates the
computational time) before the beginning of the time-stepping. Once
factorised, the same factors are repeatedly used at each time step to
obtain V. For this reason, this method may become more computation-
ally efficient than the iterative methods when a large number of iterations
are needed, since at each time step only forward and backward solutions
are required.
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Numerical results: To validate FD-CN-FDTD numerically, a compu-
tational region of size (30 x 30 x 30) cells was considered. Half of it
was filled with medium one (g5 = 71.66, 5 = 34.58, 0 = 0.49 S/m
and 7t =5.65ps) and the other half with medium two
(es = 87.34, 8o = 49.13, 0 = 0.69 S/m and 7p = 26.89 ps) as shown
in Fig. 1. A z-directed dipole was placed at (10, 15, 15) in medium one,
with a time evolution of a modulated Gaussian pulse centred at 3 GHz.
Signals were recorded 10 cells away at (20, 15, 15) in medium two. A
uniform spatial sampling was taken (A, = A, = A, = 10~3m).
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Fig. 1 FDTD problem space for simulation with FD-CN-FDTD

As a reference, an identical setup was taken for the standard explicit
frequency dependent (FD)-FDTD. The first 600 time steps of the E. field
component at the observation point are shown in Fig. 2, computed both
with FD-FDTD with CFLN = A¢/Afcp, = 1, and with FD-CN-FDTD
with CFLN = 1, 3, 5, where Afcp. denotes the maximum time step
allowed by the CFL stability condition. Good agreement between the
signals from the proposed scheme and explicit FD-FDTD was observed.
The scheme is seen to be unconditionally stable beyond the CFL limit
(CFLN = 1), although numerical errors increasingly appear with
higher CFLN. Thus At is no longer restricted by the CFL limit but by
numerical errors, a characteristic possessed by other implicit schemes
like ADI-FDTD [8]. Crank-Nicolson schemes lead to finite spurious
oscillations not connected with the roundoff, this problem was also
recognised by Crank and Nicolson [3] and reported in the standard
texts like [9, 10]. The reason behind the small discrepancy at higher
CFLN and trailing oscillations, that is seen when FD-CN-FDTD is
run with even higher CFLN (around 10 or more), is such characteristics
are inherent to the CN scheme.

I O Explicit FD-FDTD(CFLN=1)
14 ’r)\\ FD-CN-FDTD(CFLN=1)
“i ——— - FD-CN-FDTD(CFLN=3)
I) ‘\ — — FD-CN-FDTD(CFLN=5)
1
] - |
b 3 \
3 (fm 4: \ p N
S 4 s %’ | f OX g, o0
0 0$—eo / 1 . %’9 .
Jr
i ? EVJ
I I
\
14 \79
T T T T T T T
400 600 800 1000
time, ps

Fig. 2 Observations from both explicit scheme and FD-CN-FDTD scheme

For the problem described in Fig. 1 when computational space was
(30 x 30 x 30) cells, CPU time required for LU decomposition was
633 min and average CPU time per iteration was 6.489s when
CFLN =1 on the dual AMD Opteron 280 with 8 GB of memory.
When the FDTD space was filled with homogeneous material of
media one or when CFLN > 1 there were no significant differences in
these values.

Conclusion: A method to incorporate frequency-dependent Debye-dis-
persive media into the unconditionally stable Crank-Nicolson FDTD
method has been presented. The proposed scheme uses a direct sparse
solver, which performs the LU factorisation only once (before the
time-stepping begins). The major amount of computation time is
employed at this stage, keeping computational times during time-march-
ing similar to those of FDTD. The application of iterative methods to
solve the sparse system is currently under investigation.
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