
1 +

Description Logics

Description Logics

and Databases

Enrico Franconi

Department of Computer Science

University of Manchester

http://www.cs.man.ac.uk/~franconi

+ +



2 +

Description Logics and Databases

• Queries

• Conceptual Modeling

• Finite Model Reasoning

Conceptual Schema

Query

Database

Knowledge Base

+ +



3 +

Relational Algebra

SINGER

name country type

Pavarotti Italy Classic

Eagles U.S.A. Pop

Ramazzotti Italy Pop

Queen U.K. Rock

CONCERT

artist place date ticket

Eagles Paris 22/6/1998 YES

Pavarotti Barcelona 28/6/1997 NO

Pavarotti Bologna 27/4/1998 YES

Tell me the places and the dates of italian artists

concerts.

π{place,date}

(σcountry=Italy

(SINGER ./name=artist CONCERT))

RESULT

place date

Barcelona 28/6/1997

Bologna 27/4/1998

+ +



4 +

Relational Calculus

SINGER

name country type

Pavarotti Italy Classic

Eagles U.S.A. Pop

Ramazzotti Italy Pop

Queen U.K. Rock

CONCERT

artist place date ticket

Eagles Paris 22/6/1998 YES

Pavarotti Barcelona 28/6/1997 NO

Pavarotti Bologna 27/4/1998 YES

Tell me the places and the dates of italian artists

concerts.

∃z, k, w. CONCERT (z ,x,y, k) ∧

SINGER(z , Italy,w)

RESULT

place date

Barcelona 28/6/1997

Bologna 27/4/1998

+ +



5 +

Relational Theory

FACT: SINGER (Pavarotti, Italy, Classic).
...

CONCERT (Pavarotti, Bologna, 27/4/1998, YES).

UNA: Eagles 6= Queen, . . . , Paris 6= Barcelona.

DO: ∀x. ((x = Pavarotti)∨· · ·∨(x = Eagles)).

CO: ∀x1 · · ·x3. (SINGER (x1, . . . , x3) −→

(x1 = Pavarotti∧· · ·∧x3 = Classic)∨

· · · ∨

(x1 = Queen ∧ · · · ∧ x3 = Rock)).

∀x1 · · ·x4. (CONCERT (x1, . . . , x4) −→

(x1 = Eagles ∧ · · · ∧ x4 = YES) ∨ · · · ∨

(x1 = Pavarotti ∧ · · · ∧ x4 = YES)).

∃z, k, w. CONCERT (z ,x,y, k) ∧

SINGER(z , Italy,w)

+ +



6 +

Autoepistemic Logic

FACT: SINGER (Pavarotti, Italy, Classic).
...

CONCERT (Pavarotti, Bologna, 27/4/1998, YES).

UNA: Eagles 6= Queen, . . . , Paris 6= Barcelona.

∃z, k, w. KCONCERT (z ,x,y, k) ∧

KSINGER(z , Italy,w)

+ +



7 +

DL as a query language for DB

Description Logics parallel the four approaches:

• The C̈3 fragment can be easily translated

into relational algebra.

• Model checking techniques can be generally

applied, up to a CO-NP-complete com-

plexity for querying with the full featured

description logic.

• The description logic can express the

uniqueness of a model for a relational

theory.

• Decidable autoepistemic extensions of

description logics exist.

+ +



8 +

DL and Relational Algebra:
the ALC example

>
I

= J I

⊥
I

= ∅

A
I

= (KA)I

¬C
I

= J I \ C
I

C u D
I

= C
I
∩ D

I

C t D
I

= C
I
∪ D

I

∀R.C
I

= J I \ π1(R
I

1
2=1

(J I \ C
I
))

∃R.C
I

= π1(R
I

1
2=1

C
I
)

R
I

= (KR)I

+ +



9 +

Example of query

Given the theory (ABox):

CHILD(john,mary), Female(mary).

Which are the individuals in the extension of

the query:

∀CHILD. Female

• with classical DL semantics

• by considering the ABox as a database and

using the relational algebra equivalent for

the query:

J \ π1(CHILD 1
2=1

(J \ Female))

+ +



10 +

Relational theories in DL

• FACT is an ABox knowledge base.

• UNA is built-in in description logics.

• DO can be expressed by means of an axiom

of the type

>v̇{ a } t { b } t . . .

for all individuals in the database.

• CO can be expressed by means of axioms

of the type

Ai
.
= { ai

1, a
i
2, . . . }

Rj
.
= ({ aj

1 }×{ bj
1 })t ({ aj

2 }×{ bj
2 })t . . .

(if the (C × D) operator is lacking, a more

careful encoding is necessary)

• Reasoning is now on the unique identified

model.

+ +



11 +

Exercise

The encoding of the role expression R
.
= (C×D),

where

(C × D)I = {(i, j) ∈ ∆I × ∆I | CI(i) ∧ DI(j)}

C v ∃R

D v ∃R−1

> v ∀R.D

> v ∀R−1.C

+ +



12 +

Our old example

Γ =

bill: ¬Female

andrea susan: Female

john

?

�

�
�

�
�	

@
@

@
@R

FRIEND FRIEND

LOVES

LOVES

Does John have a female friend loving a not

female person?

Γ |= ∃X, Y . FRIEND(john, X) ∧ Female(X) ∧

LOVES(X, Y ) ∧ ¬Female(Y )

Γ |= (∃FRIEND. (Femaleu(∃LOVES.¬Female) ))(john)

+ +



13 +

Γ1 =

bill: Male Male
.
= ¬Female

andrea susan: Female

john

?

�

�
�

�
�	

@
@

@
@R

FRIEND FRIEND

LOVES

LOVES

Does John have a female friend loving a male

person?

Γ1 |= ∃X, Y . FRIEND(john, X) ∧ Female(X) ∧

LOVES(X, Y ) ∧ Male(Y )

Γ1 |= (∃FRIEND. (Female u (∃LOVES. Male) ))(john)

+ +



14 +

Γ 6|= Female(andrea)

Γ 6|= ¬Female(andrea)

Γ1 6|= Female(andrea)

Γ1 6|= ¬Female(andrea)

Γ1 6|= Male(andrea)

Γ1 6|= ¬Male(andrea)

+ +



15 +

Γ as a logic program (datalog
¬)

EDB: friend(john,susan).

friend(john,andrea).

loves(susan,andrea).

loves(andrea,bill).

female(susan).

Querying Γ:

?- friend(john,X), female(X),

loves(X,Y), ¬female(Y).

X = susan, Y = andrea

yes

?- ¬female(andrea).

yes

?- female(andrea).

no

+ +



16 +

Γ = FRIEND(john,susan) ∧

FRIEND(john,andrea) ∧

LOVES(susan,andrea) ∧

LOVES(andrea,bill) ∧

Female(susan) ∧

¬Female(bill)

∆I = {john, susan, andrea, bill}

FemaleI = {susan}

⇐= unique minimal model.

Γ1 = FRIEND(john, susan) ∧

FRIEND(john, andrea) ∧

LOVES(susan, andrea) ∧

LOVES(andrea, bill) ∧

Female(susan) ∧

Male(bill) ∧

∀X. Male(X) ↔ ¬Female(X)

∆I1 = {john, susan, andrea, bill}

FemaleI1 = {susan, andrea}

MaleI1 = {bill, john}

∆I2 = {john, susan, andrea, bill}

FemaleI2 = {susan}

MaleI2 = {bill, andrea, john}

∆I1 = {john, susan, andrea, bill}

FemaleI1 = {susan, andrea, john}

MaleI1 = {bill}

∆I2 = {john, susan, andrea, bill}

FemaleI2 = {susan, john}

MaleI2 = {bill, andrea}

Four models; does not exist a unique minimal model.

+ +



17 +

ALCK

C → . . . | KC

R → . . . | KR

• KC denotes the set of individuals which are

known to be in the extension of the concept

C, in every model of the knowledge base.

• Reasoning in ALCK is PSPACE-complete.

• The evaluation of the database-oriented

ALCK queries is polynomial.

• If we limit the expressivity of the DL to

ensure the existence of a unique minimal

model, then the evaluation of database-

oriented queries is formally equivalent to

CWA.

+ +



18 +

Γ =

bill: ¬Female

andrea susan: Female

john

?

�

�
�

�
�	

@
@

@
@R

FRIEND FRIEND

LOVES

LOVES

Γ |= (∃FRIEND. (Female u (∃LOVES.¬Female) ))(john)

Γ 6|= Female(andrea)

Γ 6|= ¬Female(andrea)

DB-oriented queries:

Γ |= (∃KFRIEND. (KFemale u (∃KLOVES.¬KFemale) ))(john)

Γ 6|= KFemale(andrea)

Γ |= ¬KFemale(andrea)

Γ 6|= (∃KFRIEND. (KFemaleu(∃KLOVES. K¬Female) ))(john)

Γ 6|= (∃KFRIEND. K(Femaleu(∃LOVES.¬Female) ))(john)

+ +



19 +

Exercise

Description Logics with the autoepistemic

operator can query also the theory Γ1 – which

is completely equivalent to Γ – while Γ1 can

not even be represented in database or logic

programming frameworks.

• Try some autoepistemic query to the knowl-

edge base Γ1.

• Check the CWA with Γ and Γ1: which

is the difference between the two exten-

sions, and which is the difference with the

autoepistemic approach?

+ +



20 +

So what?

Why should we bother of using DL for querying

databases, when there are much more expressive

languages for that purpose – basically without

the “three variables” limit?

• Reasoning over the query is decidable:

– Query containment,

– Query satisfiability.

• Evaluation still tractable.

• Two natural extensions:

– Incomplete information,

– Querying with a conceptual schema.

+ +



21 +

Incomplete Information

Handling incomplete knowledge is the ability to

correctly reason without a complete specifica-

tion of a situation, but with a under-specified

description of a class of possible situations.

• FOL theories.

• KR theories.

– Unique Name (UNA) assumption.

• Finite Domain theories.

– Domain Closure (DO) assumption.

• Closed theories (e.g., null values).

– DO + Completion (CO) assumptions.

• Extended Relational theories.

– UNA + DO + CO assumptions.

+ +



22 +

The Entity-Relationship (ER)
Conceptual Data Model

The Entity-Relationship (ER) model is the

most common semantic data model for database

design.

Dollar-
quantityincome

location

Employee

City

Person Quantity

Regionis-part

Manager
1-

1-

1-

Number

successor

Odd Even

[1,1] [1,1]

+ +



23 +

• An ER conceptual schema can be expressed

in a suitable description logic theory.

• The models of the DL theory correspond

with legal database states of the ER

schemas.

• Reasoning services such as satisfiability

of a schema or logical implication can be

performed by the corresponding DL theory.

• A description logic allows for a greater ex-

pressivity than the original ER framework,

in terms of full disjunction and negation,

and entity definitions by means of both

necessary and sufficient conditions.

+ +



24 +

Mapping an ER schema
in a DL theory

• Relations are reified in the description logic

theory, i.e., they become concepts with

n special feature names denoting the n

arguments of the n-ary relation.

• The relation INCOME becomes a concept

with the two features:

– incomer – relating to the first argument

of the relation, i.e., an employee,

– incoming – relating to the second

argument of the relation, i.e., a dollar

quantity.

• incomer, incoming, locator, place,

whole, and part are functional roles.

+ +



25 +

Dollar-
quantityincome

location

Employee

City

Person Quantity

Regionis-part

Manager
1-

1-

1-

INCOME v incomer : Employee u

incoming : Dollar-quantity

LOCATION v locator : Employee u

place : City

IS-PART v part : City u

whole : Region

Employee v Person u ∃incomer−1. INCOME u

∃locator−1. LOCATION

Manager v Person u ¬Employee

Person v Manager t Employee

Dollar-quantity v Quantity

City v ∃part−1. IS-PART

+ +



26 +

Object-Oriented
Conceptual Data Models

• Is is intuitive to understand the relationship

between a description logic and a generic

Object-Oriented formalism.

• Unlike object-oriented systems, description

logics do not stress the representation of the

behavioral aspect of information, for which

they are still considered inadequate.

• The translation of the structural part of an

O-O schema into a description logic knowl-

edge base is similar to the one sketched for

ER schemas.

+ +



27 +

Advantages of DL
for Conceptual Modeling

• Ontological organization. It is possible to

capture important basic facets of data se-

mantics, including the structure of complex

entities.

• Consistency checking. It is possible to check

whether the global information conveyed in

a schema forces some specific class to be

inconsistent. Moreover, one could check the

consistency of the whole schema, also with

respect to possible integrity constraints.

+ +



28 +

• Data entry. The user is supported in

the phase of populating the data base,

according to the knowledge of the schema

and satisfying the integrity constraints.

Then, the system could not only check the

consistency of the data base itself, but also

make some deductive inferences asserting

new facts regarding the data. Moreover, the

system supports the user in the refinement

of the schema in a populated data base.

• Views organization. Views - i.e., pre-defined

descriptions, grounded on the terms of the

schema - are automatically organized into a

hierarchy, which is a non-trivial task when

there are many complex views. Taxonomic

relations between views do explicit their

meaning and their specificity, allowing for

its retrieval and reuse.

+ +



29 +

• Schema refinement. It is possible to reduce

the redundancy of a schema, by discovering

equivalent descriptions, by reusing descrip-

tions, and by exploiting the description

lattice.

• Inter-schema organization. It is possi-

ble to define inter-schema knowledge de-

scribing the constraints among different

databases, easing the task of managing

multi-databases.

+ +



30 +

Finite Model Reasoning

• Simple description logics do have the Finite

Model property: if a formula is satisfiable,

then it is finitely satisfiable.

• However, very expressive description logics

do not have the finite model property

anymore.

• Satisfiability (logical implication) and finite

satisfiability (logical implication) may

diverge. The theory may infer a property

holding only in the finite structures, but

classical reasoning may not reveal this fact.

• Finite model reasoning is relevant for

database conceptual modeling: databases

are always finite.

• In order to model ER schemas, we need a

logic which does not have the finite model

property.

+ +



31 +

Examples

Male

Female

Unsatisfiable

Root
(2,-)

(0,1)
Node

LINK

Satisfiable, but not finitely

satisfiable

Element

CONS

List
[0,1]

[1,-]

ListElement

Not logically implied,

but finitely logically

implied

+ +



32 +

Querying with a conceptual schema

• Query containment of conjunctive queries

(SPJ-queries) referring to predicates de-

fined in a ALCQIreg theory is EXPTIME-

complete.

• It is possible to encode constraints over

n-ary relations.

• The DL schema allows for recursive def-

initions, with full negation, disjunction,

and universal quantification (compare with

datalog).

• DL are able to fully encode many O-O

and semantic data models, e.g., Entity-

Relationship (ER), Object-Role Modeling

(ORM), OMT static model. It can extend

them in may ways, e.g., with negation,

disjointness, covering constraints.

+ +



33 +

Querying with a conceptual schema

Q(x, y, z)
.
= Person(x) ∧ ¬Manager(x) ∧

INCOME(x, y) ∧ LOCATION(x, z).

⇓

Dollar-
quantityincome

location

Employee

City

Person Quantity

Regionis-part

Manager
1-

1-

1-

⇑

Table1DB1(x, y)
.
= Employee(x) ∧ INCOME(x, y).

Table2DB1(x, y)
.
= Employee(x) ∧ LOCATION(x, y).

+ +



34 +

Advantages of DL

• Query validation. Incoherent queries - i.e.,

queries that can not return any value as

answer, given their inconsistent meaning

with respect to the schema - are detected,

and the user is informed about its ill-formed

request.

• Query generalization. In many situations,

the query, even if it is consistent, can return

an empty answer, since there is no actual

object in the database satisfying it. In

such cases, it is reasonable to generalize the

query until a non empty answer is obtained;

the description lattice is the obvious space

where such generalizations can be searched

for.

+ +



35 +

• Query organization. Data exploration may

involve a great amount of queries, possibly

submitted by different group of persons,

in different periods of time, for different

purposes. The system can organize the

set of queries in a hierarchy, such that it

is possible to retrieve already submitted

similar or equivalent queries, together with

the cached results. This is relevant if the

queries need a substantial amount of time

to be processed, or if the users associate

comments or observations to the queries or

to the answers.

+ +



36 +

• Query refinement. Queries can be specified

through an iterative refinement process

supported by the description lattice for

the queries. This process is useful for

data exploration tasks. The user may

specify his/her request using generic terms;

after the query classification, which makes

explicit the meaning and the specificity of

the query itself and of the terms composing

the query, the user may refine some terms

of the query or introduce new terms, and

iterate the process.

+ +



37 +

• Intensional query processing. Users may

explore and discover new generic facts

without querying the whole information

base, but by giving an explicit meaning

to the queries through classification. The

system has the ability of answering a query

with synthetic concepts representing the

general characteristics of the information

that satisfy it, as opposed to answering with

long sequences of detailed data. Moreover,

if the query is classified in a taxonomy of

descriptions and queries already computed

and indexing the answers, then it can

be processed with respect to the indexed

objects only, rather than with respect to

the whole information base.

+ +



38 +

• Query optimization. Given a schema and a

set of views and already processed queries,

a query can be optimized by computing an

equivalent more efficient one. The optimized

query can be obtained by using the cached

results - maintained by a semantic indexing

technique - retrieved by classification,

and/or making more specific the single

terms and the complex descriptions used

within the query original formulation.

+ +



39 +

Basic References

• Alex Borgida, ‘Description Logics in Data

Management’, IEEE Transactions on

Knowledge and Data Engineering vol.7,

No. 5, October 1995.

• Diego Calvanese, Maurizio Lenzerini,

Daniele Nardi, ‘Description Logics for

Conceptual Data Modeling’, Logics for

Databases and Information Systems, J.

Chomicki and G. Saake eds., Kluwer, 1998.

• Klaus Schild, ‘Tractable reasoning in a

universal description logic’, Proceedings

of 1st Workshop KRDB’94, Saarbrcken,

Germany, September 20-22, 1994.

+ +


