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Abstract

We extend the language of the modal logic K4 of transitive frames with two sorts of
modalities. In addition to the usual possibility modality (which means that a formula holds
in some successor of a given point), we introduce graded modalities (a formula holds in at
least n successors) and graded inverse modalities (a formula holds in at least n predecessors).
We show that the resulting logic, called GrIK4, is undecidable. The same result is obtained
for all logics between GrIK4 and GrIS4. As a consequence, for the “unrestricted version”
of the description logic SZQ, the problem of concept satisfiability (even with respect to the
empty terminology) is undecidable. We also give a survey of complexity results for the local
and global satisfiability problems for fragments of the logic GrIK4.
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Introduction

Recent development in computational aspects of modal logic is to a certain extent motivated by
its application in computer science, in particular, in artificial intelligence. This paper belongs
to this trend of research, for its origin belongs to the field of knowledge representation, or more
specifically, of description logics (DLs) [1]. In order to formulate our result, we need to specify
three things: the modal language, the class of Kripke frames, and the decision problem. All
three components have their natural counterparts in DLs (for details, see Section 5).

Recall that the standard modal language has the “possibility” modality ¢; a formula A
at a point x of a model means that “there is a successor of x in which the formula A is true”.
We augment this language with the so-called graded modalities <>>", which mean “there are at
least n successors of x ...”, inverse (also called converse) modalities & (“there is a predecessor
of x ...7”), and graded inverse modalities 2™ (“there are at least n predecessors of o ...7).

The class of frames we consider is the class of all transitive frames. In addition, the class
of all reflexive transitive frames is considered as well.

Two decision problems are addressed in this paper: the local satisfiability of formulas of
some modal language in some class of frames F: given a formula A, determine whether it is true
at some point of some model based on some frame from F, and the global satisfiability: given a
formula A, determine whether it is true in some model based on some frame from F. Our main
result is that, for the above modal language and the class of (reflexive) transitive frames, both
problems are undecidable.

Closely related is the “unrestricted” DL SZQ [7] (see also Section 5), where by “unrestricted”
we mean that transitive roles are not forbidden in number restrictions. Our results imply that,



for this DL, the problems of concept satisfiability and of terminology consistency are undecidable,
even if there is only one transitive role in the vocabulary. Note that, for this DL, the (more
general and hence more difficult) problem of concept satisfiability w.r.t. terminologies was shown
to be undecidable in [9]. To the best of our knowledge, these are the first undecidability results
obtained for any fragment of SHOZQ — the DL that underpins the Web Ontology language,
OWL, see [10] — in absence of role hierarchy.

The method of proof deserves a few words. We prove the undecidability by reduction from
the undecidable domino problem for ZxZ. Typically, to obtain such a reduction for a given logic
L, one constructs a model M that ‘resembles’ ZxZ, then builds a formula A, and proves that
this formula helps to reduce the domino problem to a given decision problem for L. However,
in such a proof, the exact relationship between the logic L, the model M, and the formula A
remains implicit.

We make it explicit by introducing the following notion: a model M is expressed by a formula
A in a logic L. Intuitively, this means that M is an L-model, satisfies A, and is embeddable
into every L-model satisfying A. This makes it possible to split the undecidability proof into
two loosely related parts. In the first part, one shows that a particular model (that looks like
Zx7) is expressible in the given logic by some formula. In the second part, one proves that if
this model is expressible in any logic by any modal formula, then this suffices for the logic to be
undecidable.

The paper is organized as follows. After giving necessary definitions and fixing notation in
Section 1, we introduce, in Section 2, the local and the global versions of the notion “a model
is expressible in a modal logic.” Using this notion, we first prove the global undecidability of
the modal logic GrIK4 in Section 3, and then prove its local undecidability in Section 4. In
parallel, we prove the same results for the logic GrIS4, the reflexive counterpart of GrIK4. In
Section 5, we discuss a close relationship between the modal logic GrIK4 and the “unrestricted”
description logic SZQ and show that, for the latter, the problems of concept satisfiability and the
terminology consistency are undecidable. Section 6 presents a survey of decidability and com-
plexity results for fragments of the logic GrIK4. Finally, we conclude the paper by discussing
further directions of research.

1 Preliminaries

Syntax. The language of the graded modal logic with converse has countably many proposi-
tional variables {po, p1, ...}, Boolean connectives L, — (others are taken as standard abbrevia-
tions) and two sorts of modal operators &=™ and &2, for all integers n > 1. Formulas are built
up according to the syntax:

AB == 1L |p| A=B | 0°"A | &"A.

Some shortcuts are useful: GA := OZLA, A := =O—A, OSA 1= ~O>" LA, similarly for &>7,
O O™, and for ©, e.g. BA = =6—=A. Denote by Var(A) the set of variables occurring in A.

Semantics. A frame F' = (W, R) consists of a nonempty set of points W and a binary ac-
cessibility relation R C WxW. A model based on a frame F is a pair M = (F,0), where 6
is a valuation that assigns to every variable p a subset of points 8(p) C W. The truth relation
M,z = A (where we usually omit M) is defined by induction on the construction of A: x | L;
rEpiff v €0(p); x = A— Biff v £ A or z |= B; finally, for the graded modal operators, we



define:!

rEO”MA iff Py e W: xRy and y | A,
r | o”"A iff Py e W: yRr and y = A.

Thus, G2 A is true at a point z if A is true in at least n successors of x, whereas &>" A is true
at x if A is true in at least n predecessors of x. We say that a formula A is true in a model M
and write M = A if A is true at all points of M. A formula A is valid on a frame F, written
as F' = A, if it is true in all models based on F. These notions extend naturally to classes of
models and frames and to sets of formulas.

1.1 Modal logics

A (modal) logic is a pair L = (£, F), where L is a modal language (a set of modal operators, at
least containing <, with their semantics) and F is a class of frames. By an L-formula we mean
a formula in the language £; an L-model is a model M = (F,0) with F € F.

Naming logics. The names K, K4, S4 stand for the logics in the language £ = {O} of the
classes of all frames, all transitive frames, and all reflexive transitive frames, respectively. We
denote logics in extended languages by adding a prefix to their names:

e the prefix Gr stands for the language £ = {O2" | n > 1}
e the prefix I stands for the language £ = {O, &}
e the prefix Grl stands for the language £ = {O2", 62" [ n > 1}

For example, the logic GrIK4 is determined by the set of operators £ = {27, 62" | n > 1}
(with the semantics defined above) and the class of all transitive frames.

Fragments and sublogics. Let L = (£, F) and L' = (£, ') be two logics.

e L is called a fragment of L' if £L C £' and F = F.
e L is called a sublogic of L' if L = L' and F D F'.

We write L C L/ if both £ C £/ and F D F’. This notion generalizes the usual inclusion between
logics to the case of extending the language of a logic. Note that if we identify a logic L = (£, F)
with the set of its validities? (i.e., the set of £-formulas that are valid on F), then the relation
L C L’ coincides with the usual set-theoretic inclusion. For example, we have the following
inclusions:

S4 ¢ GrS4 c GrIs4
U U U
K4 ¢ GrK4 c GrIK4

Satisfiability. Given a logic L = (£, F), an L-formula A is said to be

e locally satisfiable in L if A is true at some point of some L-model;
e globally satisfiable in L if A is true in some L-model.

"Here we use an abbreviation: 37"y ®(y) := Jy1,...,Yn (/\i# Yi #Yj ANy Q(yi))-
2This means that we consider only Kripke complete modal logics.



We call a logic L locally (resp., globally) decidable if the problem of local (resp., global) satisfi-
ability of formulas in L is decidable.

Usually one also introduces the notion “a formula A is valid in L”, which means that F = A.
It is easily seen that validity is dual to local satisfiability: A is valid in L iff =A is not locally
satisfiable in L. Therefore, if we identify a logic with the set of its validities, then the notion
of local decidability of a logic coincides with the usual notion of decidability (for this reason,
we often omit the word ‘locally’). In general, the problems of global and local satisfiability are
not reducible to each other, for the global one is for some logics harder and for some other
logics easier than the local one, as Table 1 on p. 14 illustrates. The notion of local satisfiability
(and its dual, validity) has been extensively explored in modal logic. On the contrary, the
global satisfiability have received much less attention. However, it is the latter notion (and a
more general one, the global consequence relation, not considered here) that plays a crucial role
for knowledge representation and reasoning in description logics (many of which are notational
variants of modal logics); see Section 5.

1.2 Domino problem

Our undecidability proofs are given by reduction from the undecidable “domino problem”.

Definition 1.1. A domino system D = (D, H, V') consists of a finite set D = {dy,...,d,} of tile
types and horizontal and vertical matching relations H,V C DxD. A domino system D tiles
Z.x 7. if there exists a D-tiling, i.e., a total function t: ZxZ — D satisfying the following compat-
ibility constraints: (t(m,n),t(m+1,n)) € H and (t(m,n),t(m,n+1)) € V, for all m,n € Z. The
domino problem for ZxZ is to determine whether a given domino system D tiles ZxZ.

In other words, given a domino system D, the problem is to check whether copies of tiles
of the given types di,...,ds can be placed on the ZxZ grid so that horizontally and vertically
adjacent tiles comply with the given relations H and V.

Theorem 1.1 (Berger, 1966, see e.g. [4]). The domino problem for ZxZ is undecidable.

If the domino problem is reduced to the (local or global) satisfiability for two logics L
and Lo, where Ly C Ls, and the reduction uses the same modal formulas, then we immediately
obtain the undecidability result for all logics in the interval [Lj,Lso|, as the following lemma
shows.

Lemma 1.2. Let Ly C Ly be two logics. Assume that one can effectively build, given a domino
system D, an Li-formula ®p such that the following statements are equivalent:

(i) D tiles ZXZ;
(i) the formula ®p is satisfiable in Ly;
(ii1) the formula ®p is satisfiable in Lo.

Then every logic L with Ly C L C Ly is undecidable. Similarly for the global satisfiability.
Proof. Simply add the following statement to the above three:
(@") the formula ®p is satisfiable in L.

Obviously, the implications (7ii) = (ii’) = (1) hold, so all the four statements are equivalent.
Thus, the mapping D — ®p yields the required reduction. ]



2 Expressing a model in a logic

Our reduction of the domino problem to the (local or global) satisfiability problem in a given
logic follows the standard pattern: given a domino system, we effectively build a formula such
that it is (locally or globally) satisfiable in the logic if, and only if, the domino system tiles the
grid Zx7Z. The way we present the proof reveals, in a sense, the “reason” why the given logic
is undecidable. For this, we introduce the (local and global versions of the) notion “a model is
expressed by a formula in a logic.” This allows us to divide the undecidability proof into two
loosely related parts that might be interesting on their own right.

Firstly, some model (that looks like a grid) is shown to be (locally or globally) expressible
by some modal formula in a given logic. Secondly, it is shown that every logic in which this
model is (locally or globally) expressible is (locally or globally) undecidable; this is achieved by
a reduction from the domino problem.

Let us first introduce the “global” version of the notion and then its local counterpart.

2.1 Global expressibility of models

Let P C {po,p1,...} be a finite set of variables. A model over P is a pair M = (F,0), where F
is a frame and 6 a valuation of variables from P only, i.e., a function §: P — 2V
Let M = (W, R, ) be a model over P and M’ = (W', R',¢') be an ordinary model.

Definition 2.1. A homomorphism from M to M’ is a mapping h: W — W' that satisfies the
following two conditions, for all points z,y € W and all variables p € IP:

(1) xRy = h(z)R'h(y);
(2) M,z =p < M h(z) = p.

We say that M is embeddable into M’, written as M < M, if there is a homomorphism? from
M to M'.

Now let L = (£, F) be a logic, A an L-formula with Var(A4) =P, and M a model over P.

Definition 2.2. The model M is (globally) expressed in the logic L by the formula A if the
following conditions hold (intuitively, M is the “minimal” (w.r.t. <) L-model of A):

(i) M is an L-model, i.e., it is based on a frame from F,
(i) M = A,
(@) for every model M’ satisfying (i) and (ii), we have M — M.

We say that a model M over P is (globally) expressible in L if it is expressed in L by some
L-formula A with Var(A) = P.

In order to prove the global undecidability of some logic Lo, we will build a model My (over
some finite set of variables PP) that satisfies the following two properties:

Embedding. The model My is globally expressible in the logic Lg.

Reduction. If the model My is globally expressible in any logic L (that has the modal operator <&
in its language), then L is globally undecidable.

3Note that we do not require a homomorphism to be injective or surjective.



2.2 Local expressibility of pointed models

A pointed model is a pair (M, w), where M is a model and w is a point in it. A pointed model
over P and a pointed L-model are defined in the obvious way. Let (M, w) be a pointed model
over P and and (M’ w') an ordinary pointed model.

Definition 2.3. A homomorphism from (M, w) to (M’ w’) is a homomorphism from M to M’
(as per Definition 2.1) that sends w to w'. We say that (M,w) is embeddable into (M’ w’),
written as (M, w) < (M’,w"), if there is a homomorphism from (M, w) to (M’,w').

Now let L = (£, F) be a logic, A an L-formula with Var(A) = P, and (M, w) a pointed model
over P.

Definition 2.4. The pointed model (M, w) is (locally) expressed in the logic L by the formula A
if the following conditions hold:

(i) (M,w) is a pointed L-model, i.e., M is based on a frame from F,
(ii) M,w = A,
(@) for every pointed model (M’ w') satisfying (i) and (ii), we have (M, w) < (M’ w').

We say that the pointed model (M, w) over P is (locally) expressible in L if it is expressed in L
by some L-formula A with Var(A) = P.

The proof of the local undecidability of a logic Ly will follow the same pattern as for the
global case (i.e., embedding and reduction), but with pointed models instead of models, and
‘locally’ instead of ‘globally’ everywhere.

3 Global undecidability of GrIK4

Our first result is that the problem of global satisfiability of formulas in the logic GrIK4 is
undecidable. Following the pattern described above, the proof consists of two parts. First, a
model “similar” to ZxZ is shown to be expressible in GrIK4. Global satisfiability of formulas
is well suited for this purpose, as it allows one to impose necessary constraints on all points of
a model. Secondly, we use this expressibility fact in order to reduce the domino problem to the
global satisfiability problem. At the end of the section, we show that the construction works for
all logics between GrIK4 and GrIS4.

3.1 Expressing a grid

Let P = {p;; | 0<i,j <3} and consider the model 9t depicted in Fig. 1. Informally, we place
the 16 variables p;; onto the ZxZ grid (by periodically repeating the [0,3] x [0, 3] pattern) and
link the points as shown in Fig. 1. Formally, we have 9 = (ZxZ, <, \), where < is the transitive
closure of the following relation Edges depicted in Fig. 1:

Edges = Right U Left U Up U Down,
Right = {{((m,n), (m + 1 ,m)) | m,n €Z, miseven},
Left = {((m,n),(m—1,n)) | m,n €Z, mis even},
Up = {{(m,n), (m n—|— 1)) | myn€Z, niseven},
Down = {((m, n),(m,n—1)) | m,n €Z, niseven},

Apij) = {<i+4m,]+4n> | mneZ}.

Denote by M, = (ZXZ, <, ) the reflexive closure of the model 9t. Now let A be the conjunction
of the following formulas, where i, j, k, £ range over {0,1, 2, 3}:
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Figure 1: The ZxZ-like model 9 over the set of variables P = {p;; | 0<i,j <3}. Digits (ij)
in circles indicate which variable p;; is true at each point. The framed 4x4 pattern of points is
repeated periodically over ZXxZ.

(1) Vm’pij

(2)  ~(pij A pre) for all (i, j) # (k. {)
@ 7 27;’?5} for all (i, j) = (k, €)
ij

(4)

pij — OS'pre for all 4, j € {0,2}
pre = ©5'py; and all k, ¢ € {1,3}

Here (i,j) & (k,{), for 0 <14,7, k, £ < 3, intuitively means that, in Fig. 1, an arrow connects
the point (ij) to the point (kf); formally, this relation is defined by the equlvalence

((m,n),(m/,n)) € Edges <= (mmod4,n mod4) = (m' mod 4,n’ mod 4).

Lemma 3.1. (a) The model M is globally expressible in the logic GrIK4 (by the formula A).
(b) The model M, is globally expressible in the logic GrIS4 (by the same formula A).

Proof. We only prove (a); the proof of (b) is similar. Since < is transitive, I is a GrIK4-
model. It is not hard to see that 9 = A. In particular, the formulas (4) are true in 91 since,
for example, from any point satisfying pggp one can reach, via the relation <, only one point
satisfying p11, and only one point satisfying pi3, and so on.

It remains to show that the model 901 is embeddable into every transitive model M =
(W, R, 0) that globally satisfies the formula A. To this end, we will find (not necessarily distinct)
points { wy,, € W | m,n € Z} such that the function h: ZxZ — W defined by h(m,n) = wpy
is a homomorphism from 91 to M.

First, we claim that M has a point satisfying pgg. Indeed, M contains at least one point w;
by (1) it satisfies at least one of p;;. If, for example, w |= p12 (for other cases, the argument is
similar), then, by (3), w has an R-successor w’ satisfying p11; @’ in turn has an R-predecessor

" satisfying p1o; finally, w” has an R-predecessor w”’ satisfying poo.

So, let woo be a point in M such that wog = poo. This point will be the “origin” of the grid.

Next, using the formulas (3), we show that M contains points that form a “horizontal axis” and
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Figure 2: Building a 3x3 block of points.

a “vertical axis”. Indeed,

e since woo ): Poo — <>p107 there is w10 € W such that woonlo and w10 ): P10,

e since wig = p1o — ©p20, there is wey € W such that wogRwig and wag = pao,

e since woyg ): P2 — OP3o, there is wsyg € W such that weg Rwsg and wsg ): P30,

and so on; similarly in the opposite direction. By induction, there exist points {wm, o € W |
m € Z} that are linked by R-edges of interleaving directions:

R R R R R R
S W20 —> W-10 & Wo,0 —> W10 & W20 —> ...

and satisfy wp, 0 = pio, where i = m mod 4. Likewise, there exist points {wo, € W | n € Z}
that are linked similarly and satisfy wo, = po j, where j = n mod 4.

Now we “complete” the grid as follows. Whenever we have two horizontal and two vertical
edges consisting of points ag, a19, a0, ao1, ag2, as in Fig. 2(left), we complete them in a 3x3
block shown in Fig. 2(right). To this end, first we build a “pre-grid”; namely, by (3), there are
8 points (four points aq1, bi1, c11, di1, two points aja, as1, and two points aga, byg) that are
linked as in Fig. 2(middle) and satisfy the variables p;; that correspond to their subscripts. Then
we use the formulas (4) to “merge” points with the identical subscripts:

e since agy = poo — OSipi1, we conclude that ajy = by,
e since a0 ): P20 — <><1p11, we conclude that b11 =11,
e since ag2 = po2 — OSpii, we conclude that ¢ = di1,
e since ayj = p11 — ©S'paa, we conclude that agy = bao.
Thus we obtain a 3x3 grid of elements shown in Fig. 2(right). Continuing this process (in four
directions), we can build the whole “grid” of points {wy,, € W | m,n € Z} that are linked as
the corresponding nodes of the model 9t shown in Fig. 1, and that satisfy wm,, = pij, where
1 = mmod 4 and j = n mod 4. It immediately follows from the above construction that the
mapping h: ZxZ — W defined by h(m,n) = wy,, is a homomorphism from 9 to M. O

3.2 Reducing the domino problem

Recall that 9 = (ZxZ, <, \) is the Z xZ-like model depicted in Fig. 1 and M, = (ZXZ, <, ) is
its reflexive counterpart.

Lemma 3.2. Assume that the language of a logic Li contains the modal operator <.

(a) If the model M is globally expressible in L, then L is globally undecidable.
(b) If the model M, is globally expressible in L, then L is globally undecidable.

Proof. We only prove (a); the proof of (b) is similar (even with the same formulas). By as-
sumption, the model 91 is globally expressed in L by some L-formula A. We will show that the



domino problem is reducible to the problem of global satisfiability in L. Given a domino system
D = (D, H,V), to simplify notation, let us regard the elements of D as propositional variables
(not in P). Let Ap be the conjunction of the following formulas, for all i,5 € {0,1,2,3} and
c,d € D, where @& and © are the addition and the subtraction modulo 4:

(Partitioning) { Y(dce/lz 3) for ¢ % d
(pij A ¢) = Olpior; = Vieaen @) for i € {0,2}
(Compatibiity) {0 7 Elpens Vieaer ©) for s € {0,2)
(pij A e) = O(pijer = Viaev @) for j € {0,2}
(pij A d) = O(pijo1 — \/<C dev c) for j € {0,2}

Claim. A domino system D tiles Zx7 <= the formula A N Ap is globally satisfiable in L.

(=) Given a D-tiling t: ZxZ — D, let M be the model that extends the model M = (ZxZ, <, \)
to the variables d € D by putting

Ad) = {(m,n) € ZXZ | t(m,n) =d}.

We claim that M = A A Ap. Clearly, M |= A, since the formula A expresses the model 9t in
L and hence 9 = A. Furthermore, M = (Partitioning), since ¢ is a total function. Finally, let
us prove that M satisfies the first formula from (Compatibility); for the others, the argument is
similar.

Take any w = (m,n) € ZxZ. We show that, for each i € {0,2}, 7 € {0,1,2,3}, and ¢ € D,

M, w = (pij Ac) = O(pier,; = Vicayen d)-

Assume that (m,n) |= p;jAc. Theni=m mod 4, j =n mod 4, t(m,n) = ¢, and m is even. Now
take any w' > w with w’ |= pjg1,j. By construction of 91, this is only possible if (w,w’) € Right,
so that w' = (m+1,n). Now put d := t(m+1,n). Then (¢,d) € H, due to the horizontal
compatibility condition for ¢, and w’ |= d.

(<) Assume that M = (W, R,0) is an arbitrary L-model such that M = A A Ap. Since the
model M is expressed in L by the formula A, there is a homomorphism h: ZxZ — W from 9
to M. Denote wy,y, := h(m,n), for m,n € Z.

Now put t(m,n) :=d iff M, wp, = d. This yields a total function ¢:ZxZ — D, since M
satisfies (Partitioning). Finally, let us verify the horizontal compatibility condition for ¢ (the
vertical one is verified similarly).

Take any m,n € Z. Assume m is even; the case of odd m is considered similarly. Then we
have (m,n) < (m+1,n) (use the Right relation). By homomorphism, wy, Rwm+1,. Denote
i :=mmod 4 and j := n mod 4, then (m,n) |= p;; and (m+1,n) |= pig1,;. By homomorphism,
Win = pij and W10 = Die1;. Denote ¢ := t(m,n), d := t(m+1,n), then wp, = c and
Wm+1,n = d, by construction of ¢. We need to prove that (c,d) € H. To this end, we use that

M, winn = (pij A ¢) = O(pig1,; — \/<c,d’>€H d),
This implies w41, = d', for some d' € D with (¢,d’) € H. But the point w41, satisfies
(Partitioning) and so only one element of D is true in it. Therefore, d = d’ and (c¢,d) € H. O

Lemmas 3.1 and 3.2 immediately imply that the logics GrIK4 and GrIS4 are globally
undecidable. But since, for both logics, the reduction formula A A Ap was the same, we can use
the global variant of Lemma 1.2 to obtain the following result.



Theorem 3.3. FEvery logic L with GrIK4 C L C GrIS4 is globally undecidable.

Proof. Indeed, the formula ®p = A A Ap, where the formula A is built in Section 3.1 and Ap
is built in the proof of Lemma 3.2, satisfies the conditions of Lemma 1.2, sinse

— the equivalence (i) < (i) for L1 = GrIK4 was proved in Lemma 3.2(a), which is appli-
cable to this logic due to Lemma 3.1(a);

— the equivalence (i) < (iit) for Ly = GrIS4 was proved in Lemma 3.2(b), which is appli-
cable to this logic due to Lemma 3.1(b). O

4 Local undecidability of GrIK4

The proof follows the same pattern: we express (in the local sense) a grid-like model in the
logic GrIK4, and then use this fact for reducing the domino problem. But the first part of
the proof (expressing the grid) becomes more involved. The main difficulty is to enforce that
all the points of the Z xZ grid depicted in Fig. 1 satisfy two conditions simultaneously: all they
must be accessible from a single point and verify a certain modal formula. These conditions
are interdependent: the former ensures the latter, and vice versa; so we need to break the cycle
somewhere. This is what the Step Lemma proved below does.

4.1 Expressing a grid

We modify the model M = (ZxZ, <, A) built in Section3.1 (see Fig.1) by adding a new point
that “sees” all points of ZxZ. Formally, consider the set of 17 propositional variables P =
{E}YU{pi; | 0<4,5 <3}. Let M = ({e} UZXZ, <", \) be a model, where e ¢ ZxZ,

<= < U ({e} x (zxn)),

and the valuation ' extends A to the new variable E by X' (E) := {e}. Observe that 0 is again
a transitive model. Denote by M, = ({e} UZXZ, =<', \') the reflexive closure of the model 2.
Denote Z :=\/; jc10.1,2,3 Pij- Now consider the formula

A'=ENOT ANO-EANO(AN B),

where A is the conjunction of the formulas (1)—(4) built in Section 3.1 and B is the conjunction
of the following formulas:

(5) B(Z — ©F)
(6) ©S'E

Here comes the key lemma. It enables us to “build” points of the grid ZxZ one by one in
any transitive model that satisfies the formula A" at some point (called root). When we build a
new point, say y, of the grid, two cases are possible: if y is R-accessible from the old one, say z,
then y is R-accessible from the root just by transitivity of R. However, if y is R~!-accessible
from z, then the mere transitivity of R does not help. In this case we use that z satisfies the
formulas (5) and (6), and this enables us to conclude that y is R-accessible from the root.

Step Lemma. Let M = (W, R,0) be a transitive model, dRxz, d = A’, 0 <i,j,k, £ < 3.
(forth) Ifx =pij and (i,j) = (k,0), then there is y € W with dRy, xRy, and y = ppe.
(back) Ifx |=pre and (i, j) & (k, L), then there is y € W with dRy, yRz, and y = p;j.

10



Proof. Note that since d = A" and dRx, we have d = E and = = A A B.

(forth) By (3) and z = p;;, we have z = Opyy. Hence there is y € W such that 2Ry and
y | pre. By transitivity of R, we have that dRy.

(back) By (3) and z |= pi¢, we have z |= ©p;;. Hence there is y € W such that yRx and
y |= pij. It remains to show that dRy. By (5), we have x =8(Z — ©F), sothat y =2 — OF.
Since y |= Z (recall that y |= p;j), we have y |= &E. Therefore, there is d’ € W such that d'Ry
and d' | E. By transitivity, d RyRz implies d’ Rx. Thus, z is accessible from two points, d and
d’, that satisfy E. But z = ©<'E, by (6). Therefore, d = d’ and hence dRy, as required. [

Lemma 4.1. (a) The pointed model (I, e) is expressible in GrIK4 (by the formula A’).
(b) The pointed model (IM,, e) is expressible in GrIS4 (by the same formula A’).

Proof. We prove only (a); the proof of (b) is similar. Since <’ is transitive, 9’ is a GrIK4-model.
It is not hard to see that 9, e = A’. In particular, (4) holds in 9V, since the edges between the
points of ZxZ are the same in M and in 9. It remains to prove that if M = (W, R, 0) is an
arbitrary transitive model, d € W, and M,d = A, then (M, e) — (M, d).

To this end, we will find a set of (not necessarily distinct) points {wy,, € W | myn € Z}
such that the mapping h: ({e} U ZxZ) — W defined by h(e) =d and h(m,n) = wp, is a
homomorphism from (9, e) to (M, d).

Since d |= A’, there is w € W such that dRw and w = A A B. By (1), w = p;; for some 4, j.
Without loss of generality, w |= pgo. If, for example, w |= p12, then in 3 jumps we can reach a
point that satisfies pgp and is accessible from d, using the Step Lemma (see Fig. 1):

e since (1,2) = (1,1), there is x € W with wRz, z = p11, and dRu;
e since (1,0) & (1,1), there is y € W with yRz, y = p1o, and dRy;
e since (0,0) = (1,0), there is z € W with zRy, z = poo, and dRz.

So, we have a point wgg € W such that dRwgg and wgg = poo. Next, using the Step Lemma,
we build a “horisontal axis” of points {wno € W | m € Z} that are accessible from d (i.e.,
dRwy, ), linked by R-edges of interleaving directions (see Fig.1):

R R R R R R
LS W20 —> W_1,0 & Wo,0 —> W10 < W20 QI

and satisfy wp, 0 = pio, where ¢ = m mod 4. Likewise, we build a “vertical axis” of points
{wo, € W | n € Z} that are linked in a similar way and satisfy dRwo,, and wo, = po,j, where
j = nmod 4. Finally, we complete the ZxZ grid as in Lemma3.1 (see Fig.2): whenever we
have two horizontal and two vertical edges, we complete them in a 3x3 grid using (4) and the
Step Lemma.

Thus, the model M contains a set of points {wy, € W | m,n € Z} such that dRwy,, and
Winn P(m mod 4),(n mod 4)- INote that wp,y H E, for all m,n. The above construction implies
that the mapping h defined by h(e) = d and h(m,n) = wy,y, is a homomorphism from (9, e)
to (M, d), as required. O

4.2 Reducing the domino problem

Lemma 4.2. Assume that the language of a logic L contains the modal operator <.

(a) If the pointed model (I, e) is expressible in L, then L is undecidable.
(b) If the pointed model (MM, e) is expressible in L, then L is undecidable.

Proof. The proof repeats that of Lemma 3.2 with the following changes. Recall that, given a
domino system D, a formula Ap was built in that proof. Let A’ be an L-formula that expresses
the pointed model (M, e) (or (M, €), respectively) in L. Denote @, := A’ AO(Z — Ap).
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Claim. A domino system D tiles ZXZ <= the formula ®', is satisfiable in L.

This claim is proved as in Lemma 3.2, using the fact that, in the models 9 and 9N, it is
exactly the points of ZxZ that are accessible from e and satisfy Z. O

So, the logics GrIK4 and GrIS4 are undecidable. Moreover, since the reduction formula
P, was the same for both logics, we can use the local variant of Lemma 1.2 and obtain

Theorem 4.3. Every logic L with GrIK4 C L C GrIS4 is undecidable.

5 Undecidability of the unrestricted DL S7Q

Description logics (DLs) are a well-known family of logic-based knowledge representation for-
malisms [1]. A rather expressive DL named SHOZQ serves as a logical underpinning for the
Web Ontology Language OWL [10]. Here we focus on its fragment named SZQ. Both SZQ and
SHOIQ have a certain restriction on its syntax that guarantees decidability of reasoning. As
we show below, if we omit this restriction, then reasoning in the resulting “unrestricted” SZQ
becomes undecidable, even if there is only one transitive role in the vocabulary. To the best of
our knowledge, this is the first undecidability result for a fragment of SHOZQ that does not
involve the so-called role hierarchy (reflected by the letter H in the logic’s name). Compare
this with the undecidability result from [7] for the logic SHQ, which has role hierarchy, but not
inverse roles (and the proof needs 8 roles; a more subtle proof with only 3 roles was given in [9]).

In few words, the undecidable modal logic GrIK4 is (a notational variant of) a fragment
of the “unrestricted” SZQ, hence the latter is undecidable, too. Now we proceed formally. We
briefly recall the main definitions; for more information on DL, the reader is referred to [1, 10].

Concepts. The basic DL named ALC is a notational variant of the minimal multi-modal logic
K., as can be noticed by comparing the syntax for concepts of ALC and for formulas of K,,:

concepts of ALC: C,D == T|L|A|-C|CnND|CuUD|3R;.C|VR;.D
formulas of Kin: .9 = T [ Llpp | =@ oAy | VY| Gip | Lip
Here {A1, Ay, ...} are concept names and {Ry,..., Ry} are role names; altogether, they form

a vocabulary. Semantics of ALC concepts is identical to that for the corresponding formulas of
K,,. Many extensions of ALC are notational variants of extended modal logics; we only need
the following two extensions of the ALC syntax:

(Z) inverse roles: concepts IR, .C' and VR, .C' are added to the syntax; they correspond to
the inverse (or converse) modalities ;¢ and B;¢;

(Q) qualified number restrictions: concepts >k R;.C' (and >k R; .C, if inverse roles are avail-
able), for all k > 1, are added to the syntax; they correspond to the (forward and backward)
graded modalities O?k  and e? kgo.

Terminologies. A terminology (or a TBoz) is a finite set of azioms of the form C' T D, where

C and D are arbitrary concepts. A model satisfies an axiom C C D if, for every point z in it, if

C holds at = then so does D; in modal logic, this amounts to saying that an implication ¢ — ¥

is true in a model. A model is said to satisfy a TBox if it satisfies all its axioms. Besides the

TBox axioms, we need an additional kind of axioms; they form a so-called RBox:

(8) transitivity axioms Tr(R;); they correspond to saying that the modality [J; is transitive,
i.e., to considering the class of models in which the i-th relation is transitive.

12



So, the constructors (Z) and (Q) extend the syntax for concepts, while (S) reduces the class of
models.* Let us call the DL ALC extended with these 3 features the unrestricted STQ. In the
“restricted” SZQ (called just SZQ), the following condition is imposed on the syntax:

only non-transitive roles R; are allowed in concepts of the form >k R;.C and >k R;.C.

To be more precise, once we fix an RBox R and thus know which roles are asserted to be transitive
and which are not, the qualified number restrictions are only allowed for non-transitive roles.

Reasoning. The following reasoning problems in DL are relevant to our paper:

e concept satisfiability (with respect to an RBox R): given a concept C, decide if C' holds
in at some point of some model (satisfying R). This problem corresponds to the local
satisfiability of modal formulas (in the class of frames satisfying the RBox R).

e TBox consistency (with respect to an RBox R): given a TBox 7, decide whether there
is a model satisfying 7 (and R). Any TBox can be equivalently rewritten into a single
axiom of the form T C E: just take E to be the conjunction of concepts —~C'LI D for all
axioms C C D in 7. It is then clear that the TBox consistency problem corresponds to
the global satisfiability of modal formulas (in the class of frames satisfying the RBox R).

Intuitively, for a fixed RBox R, reasoning in the “unrestricted” SZQ corresponds to reasoning
with two groups of modalities that obey the modal logics GrIK and GrIK4, respectively; these
modalities correspond to the non-transitive and transitive roles in 'R. From this viewpoint, the
“unrestricted” SZQ corresponds to what is called the fusion (cf. [15]) of several copies of the
logics GrIK and GrIK4. Therefore, for a non-empty RBox, GrIK4 is a (notational variant
of a) fragment of SZQ. This observation implies the following result.

Theorem 5.1. In the “unrestricted” description logic STQ, the problems of concept satisfiability
(w.r.t. an RBoz) and TBox consistency (w.r.t. an RBoz) are undecidable. The result holds even
with one transitive role in the vocabulary.

On the contrary, the ordinary (i.e., restricted) DL SZQ corresponds to the fusion of several
copies of the decidable modal logics GrIK and IK4. It is known that reasoning in SZQ,
and even in a more expressive DL SHOZQ, is decidable [10], which agrees with the fact that
decidability is preserved under taking the fusion of logics [15].

6 Complexity of fragments of GrIK4

There are three directions in which the modal logic K can be extended: one can add inverse
modalities (I), or graded modalities (Gr), or the transitivity (4). The first two, I and Gr,
extend the syntax of formulas, whereas the third one, 4, reduces the class of frames. Adding
each feature has the effect of increasing the set of valid formulas. Since there are 8 possible
combinations of these features, this gives us 8 logics between K and GrIK4.

Here we give a survey of the complexity results of the local and global satisfiability problems
for these logics. Since DLs are closely related to these logics, as we explained above, we will
use known results on complexity of reasoning in DLs in order to obtain complexity results for
modal logics. The results are summarized in Table 1 and visualized in the two “cubes of logics”.

4This corresponds, for a modal logic L = (£, F), to extending the language £ and reducing the class F.
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’ Logic H Local satisfiability ‘Global satisﬁability‘

K

IK
GrK
GrIK

PSpPACE-complete
PSPACE-complete
PSpPAcCE-complete
PSPACE-complete

ExpPTIME-complete
ExpTIME-complete
ExpPTIME-complete
ExpPTIME-complete

K4
IK4
GrK4
GrIK4

PSpPACE-complete
PSPACE-complete
NEXPTIME-complete
Undecidable

NP-complete
ExpTIME-complete
NP-complete
Undecidable

Undecidable

NExpTime

Local satisfiability

(GriK4)

Undecidable

IK4 NP

Global satisfiability

Table 1: Complexity of some logics between K and GrIK4.

Collections of many complexity results for modal and description logics can be found in the
books [1, Ch. 3], [2, Ch.6], [3, Ch.4], [5, Ch. 18], [6, Sect. 1.6], and the theses [12, 14].

Let us say that a logic L is (locally or globally) C-complete, for C a complexity class, if
the problem of (local or global) satisfiability of formulas in L is C-complete. Similarly, a DL
will be called (locally or globally) C-complete, if the problem of concept satisfiability or TBox
consistency, respectively, for this DL is C-complete. For brevity, we drop the words “a notational
variant of” and simply say that a particular modal logic is a fragment of some DL. Below, we
give explanations and references to all the results.

Local complexity

e The logics K and K4 are locally PSPACE-complete [11].

e The DL ALCZQ, which is ALC with Z and Q, is locally PSPACE-complete [14, Th. 4.29].
Hence so are its fragments GrK, IK, GrIK, which contain K as a fragment; cf. [3, p. 186].

e The DL SZ, which is SZQ without Q, is locally PSPACE-complete [7, Th.4.9]. Hence so
is its fragment IK4 (also known as the temporal logic K4.t), of which K4 is a fragment.

e Recently, GrK4 (and GrS4) was shown to be locally NEXpPTIME-complete [8].

e The modal logic GrIK4 is locally undecidable by our Theorem 4.3.
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Global complexity
e The logic K is globally ExpTiME-complete [6, Th. 1.23].

The (restricted) DL SZQ (and even SHZ Q) is globally ExpTIME-complete [14, Corol. 6.29].
Hence so are its fragments IK, GrK, GrIK, which also contain K as a fragment.

Lemma 6.2 below shows that the logics K4 and GrK4 are globally NP-complete.

The modal logic IK4 (which is K4.t) is globally EXPTIME-complete [3, Ch. 4], [6, Sect. 1.6].

The modal logic GrIK4 is globally undecidable by our Theorem 3.3.

6.1 Global NP-completeness of K4 and GrK4

Denote by GSat(L) the set of L-formulas that are globally L-satisfiable. The antimonotonicity
obviously holds: if two logics L C L/ are in the same language, then GSat(L) O GSat(L’). Let
us recall the facts that we use below.

e The logic S5 of frames with total relation is (locally and globally) NP-complete [11].
e The logic GrS5 is (locally and globally) NP-complete, too [8].

e The logic Ver of an irreflexive singleton frame is (locally and globally) NP-complete.
Indeed, it is axiomatizable over K by the formula [J1, so in order to check if a given
formula is (locally or globally) satisfiable in Ver, it suffices to replace all its subformulas
of the form [y with T and check if the resulting propositional formula is satisfiable.

e The logic GrVer is (locally and globally) NP-complete, by the same argument, but with
replacing all subformulas of the form &>*¢ with L.

In [13, Prop.7] it was shown that GSat(S4) = GSat(S5). Hence S4 is globally NP-
complete. Similarly, one can show that GSat(GrS4) = GSat(GrS5), so that GrS4 is globally
NP-complete. By a slight modification of the argument from [13], we prove the following

Lemma 6.1. (a) GSat(K4) = GSat(S5) U GSat(Ver),
(b) GSat(GrK4) = GSat(GrS5) U GSat(GrVer).

Proof. (a) The inclusion (D) is due to the antimonotonicity of GSat. To prove the inclusion (C),
take any formula A that is true in some transitive model. It is known that the global satisfiability
(and even a more general global consequence relation) in K4 is determined by finite frames (see,
e.g., [6, Th.1.21]). Hence A is true in some finite transitive model M. The model M then has
a mazximal element, i.e., a point zg such that Vy (xg Ry = y Rxg). Let M’ be the submodel
of M generated by xo. By the preservation property for modal formulas, M’ = A. If 2y has no
successors, then M’ is an irreflexive singleton model, hence A € GSat(Ver). If 2y has successors,
then it is easily seen that the relation in M’ is total, hence A € GSat(S5).

(b) Similarly, using the preservation property for graded modal formulas. O

As an immediate consequence, we obtain the following result.

Lemma 6.2. For K4 and GrK4, the global satisfiability problem is NP-complete.
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7 Conclusion

In this paper, we considered the modal logic of transitive frames in the language that extends the
ordinary modal language, which has the modality <, with the inverse modality & and graded
modalities, both forward &>" and backward <=7, for all n > 2. This logic is called GrIK4; its
reflexive counterpart GrIS4 was also considered. For these logics, we proved that the problems
of local and global satisfiability of formulas are undecidable. As a consequence, we proved that,
in the “unrestricted” description logic SZQ, the problems of concept satisfiability and TBox
consistency (w.r.t. an RBox) are undecidable, which gives a first example of an undecidable
fragment of the unrestricted SHOZQ that does not include role hierarchy. Additionally, for the
logics between K and GrIK4, we gave a summary of complexity results for both problems.

For the aim of our undecidability proof, we introduced a ternary relation “a model is ex-
pressed in a logic by a modal formula”, and its local analogue. It might be interesting to
investigate model-theoretic properties of this notion, in various modal languages.

The logics for which we proved undecidability were formulated in the language {&, o} U
{02™,62™ | n > 2}. A natural question arises whether the logic becomes decidable if we disallow
the graded inverse modalities &>, n > 2. Notably, our undecidability proof did not use the
whole infinite stock of the graded (forward and backward) modalities: actually, we only needed
the modalities =2 and &22, or, more precisely, their negations ¢<! and &<!. Then we can ask
the same question for the language {<, €, 02}, So, let us formulate the question explicitly.

Open problem. Decidability of the local and global satisfiability problems for the logics of
(reflexive) transitive frames in the languages {<O,©} U{OZ™ | n =2} and {0, ©, 0Z?}.

The logic with such a restricted syntax is in fact meaningful from the viewpoint of appli-
cations in knowledge representation. The transitive relation that we dealt with in this paper
usually comes, in practice of ontological modeling, in the form of the (transitive) hasPart relation.
It is then useful if the language allows one to count things (of a particular kind) that are parts
of a given thing, by means of the graded modalities &=" (or their DL counterparts, qualified
number restrictions). On the contrary, it is usually less natural to count things of which a given
thing is a part.
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