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Abstract. We give a new proof of the following result (originally due to Linial and

Post): it is undecidable whether a given calculus, that is a finite set of propositional

formulas together with the rules of modus ponens and substitution, axiomatizes the classical

logic. Moreover, we prove the same for every superintuitionistic calculus. As a corollary,

it is undecidable whether a given calculus is consistent, whether it is superintuitionistic,

whether two given calculi have the same theorems, whether a given formula is derivable

in a given calculus. The proof is by reduction from the undecidable halting problem for

the so-called tag systems introduced by Post. We also give a historical survey of related

results.
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1. Introduction

Axioms for the classical propositional logic, i.e., formulas from which all tau-
tologies are derivable using the inference rules of modus ponens and substitu-
tion, are known since the dawn of formal logic. Axioms for the intuitionistic
propositional logic were proposed by Heyting in the late 1920s. A natural
and interesting question is how hard is to recognize whether a given finite
set of formulas axiomatizes these (and other) logics.

A pioneer work in this direction was due to Linial and Post dating back
to 1949. In [14], they announced a result that it is undecidable whether
a given finite set of propositional formulas axiomatizes all classical tautolo-
gies. Notably, it was only in 1964 that a complete proof of their result
appeared in the work of Yntema [32].

Almost at the same time, in 1963, Kuznetsov [13] proved that the same
holds for the intuitionistic propositional logic, as well as for each of its finitely
axiomatizable extension (including the classical logic and the inconsistent
logic). Yntema used semi-Thue systems for her proof, while Kuznetsov’s
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proof is based on a calculus for primitive recursive functions specially devised
by him for obtaining this result. Both proofs are rather involved.

Recently, a new proof was given in 2009 by Bokov [2] for the undecid-
ability of recognizing axiomatizations of the classical logics (i.e., the result
of Linial and Post). It is based on the so-called tag systems introduced by
Post [23]. The reduction given in [2] is simpler than the earlier ones. This
can be attributed to the fact that tag systems are easier to simulate in propo-
sitional calculi than semi-Thue systems or primitive recursive functions.

We managed to further simplify the proof from [2] and to adopt it for
obtaining an analog of Kuznetsov’s result, i.e., the undecidability of recog-
nizing axiomatizations of any fixed superintuitionistic calculus. This yields,
to the best of our knowledge, the simplest known proof of this result.

The paper is organized as follows. In the next section we introduce
the basic terminology and notation and state our main results. Section 3
gives a historical survey of relevant results. In Section 4, we recall what a
tag system is. Section 5 contains the proof of our results, where we give
a reduction from the halting problem for tag systems to the problem of
recognizing axiomatizations of any superintuitionistic calculus. Finally, in
Section 6 we discuss analogues of these results for other sets of connectives
and formulate some open problems.

2. Preliminaries and the main result

The language we consider has a denumerable set of propositional variables
{p0, p1, . . .} and the signature, i.e., the set connectives {¬,∧,∨,→}. Formu-
las are built up according to the following syntax:1

A,B ::= p | ¬A | (A ∧B) | (A ∨B) | (A→ B)

By a calculus we mean a finite set T of formulas (referred to as axioms of T );
the rules of inference are always assumed to be the same, viz., modus ponens
and substitution (we use Aσ as a notation for the σ-instance of A, i.e., the
result of applying the substitution σ to the formula A):

(MP) A, A→ B ` B (Sub) A ` Aσ

A derivation in (or from) a calculus T is a finite sequence of formulas in
which every formula is either an axiom of T or obtained by (MP) or (Sub)

1Throughout the paper, we omit the outermost parentheses in formulas, and assume
the customary priority of connectives, which allows us to omit even more parentheses.
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(→1) p→ (q → p) (∧1) p ∧ q → p
(→2) [p→ (q → r)]→ [(p→ q)→ (p→ r)] (∧2) p ∧ q → q

(∧3) p→ (q → p ∧ q) (∨1) p→ p ∨ q
(∨3) (p→ r)→ [(q → r)→ (p ∨ q → r)] (∨2) q → p ∨ q
(¬1) (p→ q)→ [(p→ ¬q)→ ¬p] (¬2) p→ (¬p→ q)

Table 1. Axioms of the intuitionistic propositional calculus Int.

from previous ones. A formula A is said to be derivable in (or from) T , or is
a theorem of T , written as T ` A, if A is the last formula of some derivation
from T . By [T ] we denote the set of all theorems of a calculus T .

We say that two calculi S and T are equivalent and write S ∼ T if they
have the same theorems, i.e., if [S] = [T ]. We write S 6 T (or, equivalently,
T > S) if [S] ⊆ [T ]; in other words, if every axiom (and hence every theorem)
of S is derivable in T . Clearly, S ∼ T iff both S 6 T and S > T . Finally, we
write S < T if [S] ( [T ].

Two most important calculi are the intuitionistic one Int (its axioms are
listed in Table 1) and the classical one Cl obtained from Int by adding2 the
law of the excluded middle (EM) p∨¬p, or double negation elimination (DN)
¬¬p→ p, or Peirce’s law (PL) ((p→ q) → p)→ p. A calculus T is called
superintuitionistic if T > Int. Examples of superintuitionistic calculi are Cl
and {p}. The latter calculus is inconsistent : by the rule (Sub), all formulas
are derivable in it. In this paper, we will prove the following result.

Theorem 2.1. Fix any superintuitionistic calculus S0. Then the following
problems are undecidable:

(1) given a calculus T , determine whether T ∼ S0;
(2) given a calculus T , determine whether T > S0.

Note that, for a fixed calculus S0, the remaining problem “T 6 S0” is
decidable iff the calculus S0 itself is decidable (i.e., it is decidable, given
a formula A, whether S0 ` A). The calculi Cl and Int are decidable. An
undecidable superintuitionistic calculus was first built by Shehtman [24, 25];
later Chagrov [3] did the same using axioms in only 4 variables (for 2 and 3
variables, the question is open, cf. [5, Sections 16.5 and 16.9]).

2In fact, (DN) can replace the axiom (¬2) in Int and still yield Cl; replacing (¬2) in
Int with (EM) or (PL) yields a weaker calculus, the so-called minimal classical logic, cf. [1].
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Corollary 2.2. The following problems are undecidable:

(3) given a calculus T , determine if it axiomatizes the classical logic: T ∼ Cl;
(4) given a calculus T ,decide if it axiomatizes the intuitionistic logic: T∼Int;
(5) given a calculus T , determine whether it is superintuitionistic: T > Int;
(6) given a calculus T , determine whether it is inconsistent: T ∼ {p};
(7) given two calculi T and S, determine whether T ∼ S;
(8) given two calculi T and S, determine whether T > S;
(9) given a calculus T and a formula A, determine whether T ` A.

Here (3)–(8) follow immediately from (1) and (2), while (9) follows
from (8), once we observe that checking T > S amounts to checking T ` A
for each of the (finitely many) axioms A of S.

In fact, we will prove Theorem 2.1 for every signature extending {→,∧}
and every calculus S0 containing the following five axioms of Int:

I := Int(→,∧) = { (→1), (→2), (∧1), (∧2), (∧3) }.

More precisely, the following is the main result obtained in our paper.

Theorem 2.3. Fix a signature S ⊇ {→,∧} and a calculus S0 > Int(→,∧)
in the signature S. Then the following problems are undecidable:

(1) given a calculus T in the signature S, determine whether T ∼ S0;
(2) given a calculus T in the signature S, determine whether T > S0.

Other signatures are discussed in Section 6. Before presenting the proof,
we give a survey of relevant results, using the terminology introduced above.

3. Historical survey of related results

In 1949, Linial and Post [14] announced the following result. Note that
they deal with the signature {¬,∨}, so that the rule of modus ponens must
be formulated appropriately. Also recall that a calculus T is said to be an
independent set of axioms if no axiom of T is derivable from the remaining
axioms of T , i.e., if T \ {A} ` A holds for no A ∈ T .

Theorem 3.1 (Linial, Post, 1949). The following problems are undecidable:

(a) given a calculus T , determine if it axiomatizes the classical logic: T ∼ Cl;
(b) given a calculus T and a formula A, determine whether T ` A;
(c) given a calculus T , determine whether it is an independent set of axioms.
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Comparing this to our results from Section 2, we see that (a) is (3)
and (b) is (9), but in a different signature. Note that [14] is only a half-
page abstract giving “a hint of a proof idea” (as Kuznetsov wrote later
in [13]). In 1958, Davis [7, pp. 137–142] gave a more detailed argument for
their results; however, as Yntema [32] remarked, Davis “reaches conclusions
that are not immediately obvious”. Later in 1965, Gladstone [9] gives an
account on where exactly the argument of Davis fails. Finally, in 1964,
Yntema [32] presented a complete proof of these results. Her proof uses semi-
Thue systems, for which derivability problem is known to be undecidable.

In 1963, Kuznetsov [13] (translation in [8, pp. 56–72]) obtained a much
stronger result, not only for the classical, but also for every fixed superin-
tuitionistic calculus. He deals with the signature {¬,∧,∨,→}. Recall that
two sets X and Y are said to be recursively inseparable if there is no recur-
sive (i.e., decidable) set Z such that X ⊆ Z and Y ∩ Z = ∅. Note that any
recursively inseparable sets are also undecidable.

Theorem 3.2 (Kuznetsov, 1963). Fix any superintuitionistic calculus S0.
Then the following two sets of calculi are recursively inseparable:

{T | Int 66 T < S0 } and {T | T ∼ S0 }.

As Kuznetsov noticed in his paper, this immediately implies result (1),
as well as result (2) for decidable calculi S0, and hence all the consequences
(3–9) of Section 2. Kuznetsov’s proof is rather involved; he uses a calculus
for primitive recursive functions specially devised to obtain this result.

Unfortunately, Springer translated the journal Algebra and Logic only
starting with volume 7 (1968); and although Kuznetsov’s work was trans-
lated later by Mendelson and published in 1966 in the book [8], it seems
to remain unfamiliar to researchers (it appears to be almost never cited).
In [13] Kuznetsov also mentioned the following problem, which seems still
to be open. Recall that a formula or a calculus is called implicational (or
sometimes implicative) if ‘→’ is the only connective occurring in it.

Open problem 1 (A. A. Markov (Jr.), 1961). Is it decidable whether a given
implicational calculus axiomatizes all classical implicational tautologies? The
same question for implicational fragments of other superintuitionistic calculi.

Singletary [26] presented (with proof sketches) the following results.

Theorem 3.3 (Singletary, 1964). There is a calculus T0 (consisting of tau-
tologies) in the signature {¬,→}, for which the following problems are un-
decidable: given a formula A, determine whether:
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(d) T0 6` A (i.e., whether a formula A is untrue w.r.t. T0);
(e) ∀σ (T0 6` Aσ ) (i.e., whether a formula A is completely untrue w.r.t. T0);
(f ) T0+A ` p (i.e., whether a formula A is false w.r.t. T0);
(g) ∀σ (T0+Aσ ` p ) (i.e., whether a formula A is completely false w.r.t. T0).

Additionally, it is undecidable, given a calculus T , whether

(h) ∀A [T 6` A ⇒ T +A ` p ] (i.e., whether T is closed);
(i) ∀A [ ∀σ (T 6` Aσ) ⇒ T +A ` p ] (i.e., whether T is completely closed).

Finally, the following problem is undecidable:

(j ) given two calculi S and T , determine if they have a common theorem.

In 1965, Gladstone [9] and independently Ihrig [12] constructed calculi
(consisting of tautologies) for which the problem of derivability of formulas
is of any required recursively enumerable degree of unsolvability. Moreover,
Gladstone obtained the same result for every signature (i.e., a finite set of
Boolean connectives), provided that implication is expressible in it. In 1968,
Singletary [28] constructed an undecidable implicational calculus (consisting
of tautologies) and also proved the following result.

Theorem 3.4 (Singletary, 1968). For every fixed natural number n> 1, the
following problem is undecidable, for the signatures {¬,→} and even {→}:

(k) given a calculus T , decide if it can be axiomatized by at most n axioms.

Marcinkowski [19] investigated the entailment problem for first-order
Horn clauses and, as a by-product, obtained the following result.

Theorem 3.5 (Marcinkowski, 1994). Fix a propositional formula A0 not of
the form p→ p, for any variable p. The following problem is undecidable:

(`) given a calculus T , determine whether T ` A0.

Several generalizations of the above results have been obtained. Harrop
[10, 11] considered similar problems for more general calculi, which allow
for additional rules of inference. Singletary [27, 28] investigated calculi with
infinite but recursive sets of axioms and showed that the problem of deter-
mining whether such a calculus is finitely axiomatizable is undecidable.

Numerous results were obtained on decision problems of the following
kind: given a formula A, determine whether the calculus Int ∪ {A} has
a particular property; if such a problem is decidable, then this property is
called decidable in the class of calculi extending Int. Here we mention several
positive results by Maksimova [17, 18] and negative results by Chagrov and
Chagrova [6, 4, 3]; see also [5, Chapter 17] for the terminology and proofs.
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Theorem 3.6 (Maksimova, 1972, 1977). The following problems are decid-
able in the class of calculi extending Int: tabularity, pretabularity, interpo-
lation property, consistency, coincidence with a fixed tabular logic.

Consequently, since Cl is tabular, the problem of determining whether
adding a given formula A to Int yields Cl, i.e., Int∪{A} ∼ Cl, is decidable.

Theorem 3.7 (Chagrov, Chagrova, 1990–1994). The following problems are
undecidable in the class of calculi extending Int: decidability, finite model
property, disjunction property, Kripke completeness, first-order definability
(on all or on countable frames), axiomatizability by implicational formulas,
axiomatizability by disjunction free formulas, Halldén-completeness.

Hence, it is undecidable whether an arbitrary given calculus is decidable.
Let us return to the subject of our paper. In 2009, Bokov [2] reestab-

lished the undecidability of the problem of recognizing axiomatizations of the
classical logic (i.e., essentially proposition (a) of Theorem 3.1 above). The
proof uses tag systems (also known as uniform Post production systems)
introduced in early 1920s by Post [23] (see also [30]), for which the undecid-
ability of the halting problem was established in 1961 by Minsky [21] (see [22,
Section 14.6] for a nice exposition). Notably, the reduction used in Bokov’s
proof is simpler than the one found in earlier works. In particular, the “re-
duction calculus” (which we present, in our notation, in Table 2 below) uses
only two “special” (fixed) axioms, while Yntema [32] and Kuznetsov [13]
used 6 and 11 “special” axioms, respectively. However, the proof in [2] con-
tains a serious error (a correction will be published soon). We managed to
reveal and eliminate the error, by introducing a wider set of formulas (see
our Definition 5.6) and strengthening intermediate propositions. We also
further simplified (in fact, significantly reworked) the proof and adapted it
for arbitrary superintuitionistic calculus, thus obtaining our Theorems 2.1
and 2.3. The resulting proof is presented in Section 5.

4. Tag systems

Given an alphabet Σ, by Σ∗ we denote the set all words in Σ, including the
empty word. The length of a word w is denoted by |w|.

Definition 4.1 (Post, [23]). A tag system is a triple Π = (Σ, P, `), where
Σ = {a1, . . . , am} is a finite alphabet, P : Σ → Σ∗ a function, and `> 1 an
integer. Denote the word ui := P (ai) ∈ Σ∗, for 16 i6m.

We say that Π is applicable to a word w ∈ Σ∗ if |w|> `. In this case, the
application of Π to w is described as follows: “if the first letter of w is ai,
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then remove in w the first ` letters and then append the word ui at the end.”
Precisely, if |ai x| = ` and z ∈ Σ∗, then Π transforms the word w = ai x z

into the word z ui. For this transformation, we use notation: ai x z
Π7−→ z ui.

A computation of a tag system Π on input w0 is a sequence of words
w0, w1, . . . such that wi

Π7−→wi+1 for all i. Note that computations are deter-

ministic. We write w
ΠZ=⇒ x if there are words w0, . . . , wn, n> 0, such that

w0 = w, wn = x and wi−1
Π7−→wi for all 16i6 n. In particular, by definition,

w
ΠZ=⇒ w. We say that a tag system Π halts on input w if the computation

of Π on input w reaches a word to which Π is not applicable; in other words,
if w

ΠZ=⇒ x for some word x with |x| < `.

Theorem 4.2 (Minsky, [21]). There is a tag system Π0 for which it is un-
decidable, given a word w ∈ Σ∗, whether Π0 halts on input w.

Moreover, Wang [31] showed that this holds even for some tag system
Π0 with ` = 2 and 16 |ui|6 3, for all 16 i6m. For this reason, to simplify
our proof, we will assume that all the words ui are nonempty. (Otherwise,
we only need to split axiom (Π1) in Table 2 into two axioms in an obvious
way and consider one more case in Lemma 5.9 accordingly.) In fact, we only
need a weaker result, viz., the undecidability of the following problem:

Halting problem: given a tag system Π (with nonempty words ui) and a
word w ∈ Σ∗, determine whether Π halts on input w.

5. The proof of undecidability

We will effectively reduce the above mentioned Halting problem to problems
(1) and (2) from Theorem 2.3. So, fix any signature S ⊇ {→,∧} and any
calculus S0 > I := Int(→,∧). Given a tag system Π = (Σ, P, `) and a word
w ∈ Σ∗, we will build a calculus T = T (Π, w;S0) in the signature S such
that the following equivalences hold:

Π halts on input w ⇐⇒ T ∼ S0 ⇐⇒ T > S0.

First, we encode letters and words as {→,∧}-formulas. Let us introduce
an auxiliary letter o = a0 /∈ Σ. Let p be a variable not occurring in S0. Then
the code of the letter ai ∈ Σ, for 06 i6m, is defined by induction:

o = a0 = (p→ p), ai+1 = (p→ ai).

The code of a nonempty word u = c1 . . . cn is the formula3 u = c1∧. . .∧cn.
Observe that a∧ u = a u, for any letter a and any word u. On the contrary,

3We will omit parentheses in ‘long’ conjunctions, assuming implicitly that they are
grouped to the right, e.g. A ∧B ∧ C ∧D ∧ E is a shortcut for A ∧ (B ∧ (C ∧ (D ∧ E))).
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(W) ow

(Π1) −−−→o ai x ∧ q → o ∧ q ∧ ui for all x ∈ Σ∗, |ai x| = `, 16 i6m
(Π2) o ai x → o ui for all x ∈ Σ∗, |ai x| = `, 16 i6m
(Π3) o x → A for all x ∈ Σ∗, |x| < `, A ∈ S0

(A1) (p ∧ q) ∧ r → p ∧ (q ∧ r)
(A2) (p→ q) → (r ∧ p→ r ∧ q)

Table 2. The calculus T = T (Π, w;S0).

u ∧ a 6= u a, unless |u| = 1. For this reason, we introduce the following
notation. For a nonempty word u = c1 . . . cn and a formula A, we write
−→u ∧A as a shortcut for c1∧ . . .∧ cn ∧A. Now −→u ∧v = u v, for all words u, v.

Lemma 5.1. Int(→,∧) ` u, for every (nonempty) word u ∈ (Σ ∪ {o})∗.

Proof. First, I ` p → p, so I ` a0. Whenever I ` A, we have I ` p→ A.
So, I ` ai implies I ` ai+1. Finally, I ` A and I ` B imply I ` A ∧B.

For a tag system Π and a word w, we build the calculus T = T (Π, w;S0)
with axioms listed in Table 2. Let us reveal the intuition behind these
axioms. A current word u ∈ Σ∗ in a computation of a tag system Π is
represented by the formula o u. A transition u

Π7−→ v is simulated by the
axiom (Π2) for |u| = `, and by (Π1) for |u| > `.

To see the latter, consider a transition ai x z
Π7−→ z ui with a nonempty

word z. Let us substitute the formula z for q in (Π1). The premise of
the implication will be the formula o ai x z representing the word ai x z. Its
conclusion will be o∧z∧ui, which is not a code of any word (unless |z| = 1).
However, Lemma 5.3 guarantees that axioms (A1) and (A2) are sufficient to
transform this formula into the formula o z ui representing the word z ui.

Lemma 5.2. T 6 S0.

Indeed, using Lemma 5.1, one can check that all axioms of T except (Π3)
are derivable in I and hence in S0. As for (Π3), note that p→ (q → p) and
hence A → (o x → A) is derivable in I and so in S0. Now, if A ∈ S0, then
S0 ` o x→ A by (MP), so the axiom (Π3) is derivable in S0.

Lemma 5.2 implies the equivalence: T ∼ S0 iff T > S0. Thus, in order
to establish Theorem 2.3, it remains to prove, for every tag system Π and
every word w ∈ Σ∗, the following equivalence:

Π halts on input w ⇐⇒ T > S0.
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Sections 5.1 and 5.2 below contain the proofs of the two implications.

5.1. Derivability

Here we prove that if Π halts on input w then T > S0. Consider two sub-
systems of the calculus T :

R = { (A1), (A2) }, TΠ = R ∪ { (Π1), (Π2), (Π3) }.

They are rather weak and not even capable to derive A → C from A → B
and B → C; for this reason the following notation appears useful. We
write R ` A⇒ B if there are formulas A0, . . . , An, n> 0, such that A0 = A,
An = B and R ` Ai−1 → Ai for all 16 i6 n. By definition, R ` A⇒ A.

Lemma 5.3 (Concatenation). R ` x∧y ⇒ x y, for all nonempty words x, y.

Proof. Induction on |x|. If |x| = 1, then simply x ∧ y = x y.
Now let |x|> 2, so x = a z, for a letter a and a nonempty word z. Then

R ` (a ∧ z) ∧ y (A1)−→ a ∧ (z ∧ y)
(A2)
=⇒ a ∧ z y,

where the implication ‘⇒’ uses induction hypothesis: R ` z ∧ y ⇒ z y and
axiom (A2). In the resulting chain of implications, we have x ∧ y at the
beginning and x y at the end, as required.

Lemma 5.4 (Simulation). If x
Π7−→ y then TΠ ` o x⇒ o y, for all x, y ∈ Σ∗.

In words: the calculus TΠ can “simulate” transitions of the tag system Π.

Proof. As Π is applicable to x, we have |x|> `. So, two cases are possible.
1) |x| = `. Let the first letter in x be ai, so x = ai z and y = ui. Then

TΠ ` o x→ o y by the axiom (Π2).
2) |x| > `. Assume that x = ai z v, where |ai z| = ` and |v|> 1, so that

y = v ui. We derive in TΠ:

o ai z v
(Π1)−→ o ∧ v ∧ ui

(A2)
=⇒ o ∧ v ui,

where the implication ‘⇒’ is due to Lemma 5.3 and the axiom (A2). The
premise of this chain of implications is o x and its conclusion is o y.

Corollary 5.5. If x
ΠZ=⇒ y then TΠ ` o x⇒ o y, for all words x, y over Σ.

We are ready to prove the desired implication. Assume that Π halts on
input w. Then w

ΠZ=⇒ x, for some word x of length less than `. The formula
ow is an axiom of T . By Corollary 5.5, we have TΠ ` ow ⇒ o x. Since
|x| < `, axiom (Π3) yields TΠ ` o x → A, for all A ∈ S0. Applying the rule
(MP) several times, we obtain T ` A, for all A ∈ S0. Thus, T > S0.
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5.2. Non-derivability

Assuming that T>S0, we will show that the tag system Π halts on input w.4

Since S0 > I by assumption and I ` o x by Lemma 5.1, we have that T ` o x,
for every word x ∈ Σ∗. Moreover, T ` o xσ, for every substitution σ. Note
that any derivation, considered as a tree, can be assigned the height n> 0,
as specified below.

Main idea. Let us take a word x ∈ Σ∗ of length |x| < ` and a
substitution σ such that the formula o xσ has a derivation from T of
the minimal height (among all formulas of this kind). Then we claim

that w
ΠZ=⇒ x and therefore the tag system Π halts on input w.

Now we proceed formally. Let Tn be the set of theorems of T with
derivations of height at most n, that is: T0 = T , Tn+1 = Rules(Tn), where

Rules(S) = {B | A, (A→ B) ∈ S for some formula A } ∪
{Aσ | A ∈ S and σ is a substitution }.

It is easily seen that Tn ⊆ Tn+1 (due to the identical substitution) and
the set of all theorems of the calculus T can be represented as [T ] =

⋃
n>0 Tn.

Now take the minimal N > 0 such that TN contains at least one formula of
the form o xσ with |x| < `:

N := min{n> 0 | o xσ ∈ Tn for some word x ∈ Σ∗ with |x| < `
and some substitution σ }.

Key Lemma. If o xσ ∈ TN then w
ΠZ=⇒ x, for all x ∈ Σ∗ and substitutions σ.

This lemma is sufficient to complete our proof. Indeed, by the choice
of N , we have o xσ ∈ TN , for some word x ∈ Σ∗ of length |x| < ` and some

substitution σ. Then, by the Key Lemma, w
ΠZ=⇒ x. So, the computation of

Π on input w reaches the word x of length |x| < `. Thus, Π halts on w.

Our plan is to prove the Key Lemma by induction on the length of a
derivation. In the course of this induction, besides formulas of the form o xσ,
we need to consider a wider family of formulas Conj defined below.5

4To this end, we will show that T derives only formulas of a certain kind, hence the
title of this subsection.

5This is a crucial correction to the proof from [2], where intermediate claims involved
only formulas of the form o xσ and were incorrect. A correction to [2] will appear soon.
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Definition 5.6. An alphabetic formula over the alphabet Σ (or a Σ-formula,
for short) is an arbitrary conjunction of the codes of letters from Σ. Formally,
a is a Σ-formula for each letter a ∈ Σ, and if A,B are Σ-formulas then so is
A ∧B. The notion naturally extends to the alphabet Σ ∪ {o}.

An example of an alphabetic formula is the code x of any nonempty
word x. Another example is ((a ∧ c) ∧ a) ∧ (e ∧ (c ∧ c)), where a, c, e ∈ Σ.

To every Σ-formula A we associate its word(A) ∈ Σ∗ by induction:
word(a) = a for each letter a ∈ Σ, and word(A∧B) = word(A) word(B). For
instance, the above example of a Σ-formula yields the word acaecc. Observe
that word(x) = x, for every nonempty word x.

The following interesting generalization of Lemma 5.3 can be easily
proved; however, we will not use it later, so we leave the proof to the reader.

Fact. R ` A⇒ x, for every Σ-formula A with word(A) = x.

Let us call two formulas A and B unifiable if Aσ = Bπ, for some (possibly
distinct) substitutions σ and π.

Lemma 5.7. No two distinct alphabetic formulas are unifiable.

Proof. Easily follows from two properties of our method of coding letters
and words: (a) the codes of no two distinct letters are unifiable; (b) the code
of a letter is not unifiable with the code of any word of length at least 2.

We came to the heart of our proof. Recall that TΠ is the calculus obtained
from the calculus T (see Table 2) by removing the axiom (W). Let us consider
the set Imp of all formulas of the form

A1 ∧ . . . ∧As ∧B → A1 ∧ . . . ∧As ∧ C, (∗)

where s>0, Ai are arbitrary formulas, and B → C is a substitution instance
of some axiom of TΠ. The following lemma shows that only formulas of the
form (∗) are derivable in TΠ.

Lemma 5.8. [TΠ] = Imp. (In fact, we will only need the ‘⊆’ inclusion later.)

Proof. (⊇) First, by the rule (Sub), derive the substitution instance B → C
of an axiom of TΠ. Then, using the axiom (A2), append conjuncts Ai to both
the premise and the conclusion of the resulting implication. This way we
can derive every formula of the form (∗) from TΠ.

(⊆) Axioms of TΠ are in Imp. The set Imp is closed under (Sub). It remains to
check that Imp is closed under (MP). Assume that D and D → E are in Imp.
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Then D → E has the form (∗), for some s> 0. Moreover, s = 0, since the
formula D is itself an implication, say, (F → G). Thus, (F → G)→ E is a
substitution instance of some axiom of TΠ. But (A2) is the only axiom of TΠ

whose premise is an implication. Hence, E has the form (A∧F )→ (A∧G),
for some formula A, and hence belongs to Imp, since F → G is in Imp.

Now let us consider another set of formulas:

Conj = { (o ∧A)σ | A is a Σ-formula, σ a substitution, w
ΠZ=⇒ word(A) }.

The next lemma means that only formulas that belong to Imp or Conj are
derivable in the calculus T with derivations of height at most N .

Lemma 5.9. TN ⊆ Imp ∪ Conj.

Proof. By induction on n6N , we will show that Tn ⊆ Imp ∪ Conj.

Induction base: n = 0, so T0 = T . The axiom (W) is in Conj, all other
axioms of T are in Imp.

Induction step: assume that n < N . Since both Imp and Conj are
closed under (Sub), we only need to consider the case of a formula, say E,
been obtained by (MP) from some formulas D, (D → E) ∈ Tn. By induction
hypothesis, Tn ⊆ Imp∪Conj. Clearly, (D → E) ∈ Imp. If D ∈ Imp, then also
E ∈ Imp, since Imp is closed under (MP) by (the proof of) Lemma 5.8. So,
it remains to consider the case of D ∈ Conj. We will show that E ∈ Conj.

Since D ∈ Conj, we have D = (o∧A)σ for some substitution σ and some

Σ-formula A with u := word(A) and w
ΠZ=⇒ u. Since the formula D → E

is in Imp, it has the form (∗) for some s> 0. Below, we will show that
E = (o ∧ B)σ for some Σ-formula B. Moreover, if we denote v := word(B),

then the following will be shown: if s = 0 then u
Π7−→ v, and if s > 0 then

u = v. In both cases it follows that w
ΠZ=⇒ v and thus E ∈ Conj, as required.

So, let us consider the following two cases.

Case s = 0. Then D → E is a substitution instance of some axiom of TΠ.
Which axiom is it?

(A2): impossible, for the main connective in the premise of (A2) is →,
whereas that in D is ∧.

(A1): impossible, for otherwise D would have the form (α ∧ β)∧ γ, but we
know that the formula D = (o ∧A)σ has the form (δ → θ) ∧ ξ.

(Π3): impossible, for otherwise we would have D = o xσ, for some word
x ∈ Σ∗ with |x| < `, which contradicts to that D ∈ Tn and n < N .
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(Π2): now (D → E) = (o ai x → o ui)
π, for some substitution π. Then

D = (o ∧ A)σ = o ai x
π. By Lemma 5.7, σ = π and A = ai x, so u =

word(A) = ai x. Furthermore, E = o ui
π = (o ∧ B)σ, where B := ui

and thus v = word(B) = ui. Finally, note that u = ai x
Π7−→ ui = v.

(Π1): now (D → E) = (−−−→o ai x ∧ q → o ∧ q ∧ ui)π, for some substitution π.
Then

(1) D = (−−−→o ai x ∧ q)π = (o ∧A)σ,
(2) E = (o ∧ q ∧ ui)π.

Comparing the first conjuncts in (1), we see that oσ = oπ, hence
pσ = pπ, by Lemma 5.7. Comparing the subsequent |ai x| conjuncts
in (1), we obtain that A = −−→ai x ∧ C, for some Σ-formula C with
Cσ = qπ. Now we substitute this in (2) and obtain:

E = (o ∧ q ∧ ui)π = oπ ∧ qπ ∧ uiπ = oσ ∧Cσ ∧ uiσ = ( o ∧ (C ∧ ui) )σ.

So, as we promised, E = (o ∧ B)σ for a Σ-formula B := (C ∧ ui).
Denote z := word(C). Then we have:

u = word(A) = word(−−→ai x ∧ C) = ai x z,
v = word(B) = word(C ∧ ui) = z ui.

It remains to note that u = ai x z
Π7−→ z ui = v.

Case s > 0. Then, for some formulas C1, . . . , Cs and a substitution instance
F → G of some axiom of the calculus TΠ, we have:

(1) D = C1 ∧ . . . ∧ Cs ∧ F = (o ∧A)σ,
(2) E = C1 ∧ . . . ∧ Cs ∧G.

Comparing the first s conjuncts in (1), we conclude that C1 = oσ and
A = A2 ∧ . . . ∧ As ∧ A0, where each Ai is a Σ-formula, Aσ0 = F and
Aσi = Ci for all 26 i6 s.
Recall that F → G is a substitution instance of some axiom of TΠ. Which
axiom is it? The axiom (A2) is impossible, since its premise has ‘→’ as
the principal connective, while that in F is ∧. The axioms (Π1), (Π2),
and (Π3) are impossible either, since their premises have the form o ∧H,
which, by Lemma 5.7, are not unifiable with the Σ-formula A0, because
o /∈ Σ. So, the only possibility is that F → G is a substitution instance
of the axiom (A1). Therefore, for some formulas α, β, γ,

F = (α ∧ β) ∧ γ = Aσ0 ,
G = α ∧ (β ∧ γ).
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Then A0 = (P ∧ Q) ∧ R, for some Σ-formulas P,Q,R, and so we have
G = (P ∧ (Q ∧R))σ. Thus, the formulas D and E have the form:

D = ( o ∧A2 ∧ . . . ∧As ∧ (P ∧Q) ∧R )σ = (o ∧A)σ,
E = ( o ∧A2 ∧ . . . ∧As ∧ P ∧ (Q ∧R) )σ =: (o ∧B)σ.

So, the Σ-formulas A andB differ only in how their conjuncts are grouped
by parentheses, hence word(A) = word(B), i.e., u = v.

Finally, note that Lemma 5.9 implies the Key Lemma: assume that
o xσ ∈ TN . By Lemma 5.9, we have TN ⊆ Imp ∪ Conj. Clearly, the formula
o xσ is not in Imp, so it is in Conj and thus w

ΠZ=⇒ word(x) = x.

This completes the proof of Theorem 2.3.

6. Altering the set of connectives

The main result of our paper, Theorem 2.3, was established for (every exten-
sion of) the signature {→,∧}. Here we address the issue of obtaining similar
results for other signatures. We confine ourselves to signatures containing
implication (since implication is needed for the rule of modus ponens), leav-
ing the case of signatures without implication outside the scope of our paper.

Our first observation is that the proof remains valid, with minor changes,
if we replace ∧ with ∨ in all (appropriate) places. Denote the calculus

J := Int(→,∨) = { (→1), (→2), (∨1), (∨2), (∨3) }.

Theorem 6.1. Fix a signature S ⊇ {→,∨} and a calculus S0 > Int(→,∨)
in the signature S. Then the following problems are undecidable:

(1) given a calculus T in the signature S, determine whether T ∼ S0;
(2) given a calculus T in the signature S, determine whether T > S0.

Proof. Let us replace ∧ with ∨ in the coding scheme for words u, in the
notation −→u ∧ A, and in all axioms of the calculus T listed in Table 2 (of
course, we leave the formulas A ∈ S0 in the axiom (Π3) unchanged).

Lemma 5.1, now stating that J ` u, is obvious. In the proof of Lemma 5.2
(which states that T 6 S0), the ∨-analogues of the axioms (Π1) and (Π2) are
derivable in J (and hence in S0) simply because their conclusions are. It is
easy to derive in J (using the Deduction Theorem) the ∨-analogues of the
axioms (A1) and (A2). The remainder of the proof, after replacing ∧ with
∨, does not require any further amendments.
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Let us mentioned some open problems. First, it is natural to ask whether
similar results hold for the signatures {→} (this is essentially Markov’s open
problem formulated in Section 3) and {→,¬}.

Interestingly, the implicational logics Int(→) and Cl(→) can be ax-
iomatized by the following single formulas, as shown by  Lukasiewicz [15]
(reprinted in [16]) and Meredith [20], respectively:

Cl(→) ∼ { [(p→ q)→ r]→ [(r → p)→ (s→ p)] }
Int(→) ∼ { [(p→ q)→ r]→ [s→ ((q → (r → t))→ (q → t))] }

In this respect, the following question (seemingly open) also makes sense.

Open problem 2. Is it decidable whether a given implicational formula A
axiomatizes all classical implicational tautologies, i.e., {A} ∼ Cl(→)? The
same question for other calculi and signatures.

7. Conclusion and further directions

In this paper, we reestablished the undecidability of the problem of deter-
mining whether a given finite set of formulas axiomatizes the classical logic,
the intuitionistic logic, the inconsistent logic, or any (fixed) superintuition-
istic calculus. These results were obtained for the signatures {→,∧} and
{→,∨} and any extensions thereof. The question if this holds for the signa-
ture {→} is left open (Markov’s problem). It would be natural to investigate
similar problems for other formalisms.

In particular, questions of these kinds are interesting in the context of
propositional modal logics. The latter are formulated in the language con-
sidered above augmented with a unary modal operator �, and typically
have three rules of inference: modus ponens, substitution, and necessitation
(A ` �A). Recently Chagrov announced the following result: it is undecid-
able whether a given finite set of modal formulas axiomatizes the minimal
normal modal logic K (for its definition, see [5, Section 3.6]) or the inconsis-
tent modal logic. The proof uses Minsky machines [21] and is similar to the
proofs of the results mentioned in Theorem 3.7 (see also [5, Chapter 17]).
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