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1 Introduction

One of the central notions in modal logic is that of validity of a modal formula on a frame (or at a point
of a frame). To mention few examples, Definability Theory explores classes of frames which validate
a given formula or a set of formulas; axiomatisability issues deal with finding a set of formulas that are
valid in a given class of frames; in Correspondence Theory, one is interested in conditions under which
a class of frames validating a given set of modal formulas is first-order definable, etc. Moreover, issues
about (un)satisfiability of formulas (or concepts, in Description Logic) are closely related to this notion,
since satisfiability is just a notion dual to validity.

The definition of the validity of a modal formula on a frame F involves the quantification over
arbitrary valuations of propositional variables (i.e., unary predicates, from the viewpoint of first-order
logic) on F, whereas the interpretation of accessibility relations (i.e., binary predicates) is fixed, in a
given frame F. As a consequence of this asymmetry, the typical issue in, e.g., the Correspondence
Theory is whether a modal formula expresses (locally—at a given point of a frame—or globally) a
property of frames definable by some first-order relational formula, i.e., a formula involving binary
predicates only, and when this first-order formula can be built efficiently. To sum up, the traditional
modal logic is a logic of constant modalities and propositional variables.

However, from theoretical standpoint, as well as for some applications (e.g., querying knowledge
bases), it is natural to consider a notion of validity, in which the role of unary and binary predicates is
symmetric. In this paper, we restore this balance in quantification. (If we were concerned with a polyadic
modal logic, then our new notion of validity would even symmetrically involve predicates of arbitrary
arities; however, here we confine ourselves to unary and binary predicates only.) We enrich the standard
modal language with variable modalities (i.e., modalities whose accessibility relation is quantified over,
in the definition of validity) and propositional constants (which are not quantified, but rather fixed in a
particular frame).

We give some preliminary results on definability and first-order correspondence for this logic (called
the mixed modal logic henceforth). In particular, we show that reasoning in this logic is not harder than
in the standard modal logic. At the same time, the new language turns out to be more expressive than the
standard one. We also show that the new language is useful by illustrating its applications to querying
Description Logic knowledge bases.



2 Syntax and semantics of the mixed modal logic

The vocabulary of the mixed modal logic consists of the following primitive symbols:

a countable set of propositional variables py, p1, .. .;

a finite set of propositional constants Ay, . .., A;

boolean connectives L and —;

a finite set of constant modalities Oy, ..., O,;

a countable set of variable modalities Hg, 4, . . ..

The set of well-formed formulas is defined by the following syntax:
pu=L | pi | A | o=y | Op | B

Other boolean connectives (T, =, A, V, etc.) as well as dual modalities <; and ©; are taken as standard
abbreviations, e.g., ;¢ := =;—¢.

Definition 2.1 (Semantics). A Kripke frame F = (A,A_)F ,ﬁF ) consists of a non-empty set A, a list
AF = (AF, ..., AF) of unary predicates on A (i.e., Al € A), which interpret the propositional constants
Ao, ..., A,, and a list RF := (RF, ... ,R') of binary relations on A (i.e., Rf C A X A), which interpret the
constant modalities Oy, . .., O,.

A Kripke model' M = (F, p™, §™My consists of a frame F and valuations of propositional variables
M= (py, p}, ..., where p¥ C A, and of variable modalities SM .= (SM M . ), where S¥ C A XA,
The notion ‘a modal formula ¢ is true at a point e € A of a model M’ (denoted as M,e |= ¢ and M
usually omitted when clear from a context) is defined in the standard way, with the relations R; and §;
corresponding to the modalities O0; and [, resp.:

e E pi iff eEle
eEA; iff eeAlf
elEDOy iff forall deA,if eRfd then d | ¢
eFOjp iff forall de€A,if eSfd then d E ¢

What is different in this framework is the notion of validity. A formula ¢ is valid at a point e of a frame F
(denoted as F, e I ¢) if, for any model M based on F, we have M, e = ¢. A formula ¢ is valid on a frame
F if it is valid at all points of this frame. Finally, a formula is called valid if it is valid on all frames.

Although the sentence for the definition of validity is literally the same as the standard one, it involves
an extra quantification over arbitrary valuations §; of variable modalities [;.

Example 2.2. Consider the mixed modal formula Op — Ep; denote it by ¢. Let us find the condition
under which a frame F = (A, R) validates this formula (note that a frame for ¢ contains only one relation).
If F - ¢ holds, then for arbitrary relation S on A, the frame F’ := (A, R, S) validates the formula ¢ in
ordinary sense. Now recall from the standard modal logic that a formula O, p — O,p is valid on a frame
(AR, Ry) iff Ry 2 R,. Hence, our formula ¢ is valid on a frame F' = (A, R) iff R contains any binary
relation on A. The latter is obviously equivalent to the condition R = A X A.

Therefore, the formula Op — Ep is valid on a frame iff the first-order condition YxVy xRy holds. It
is not hard to check that the same formula Op — Ep is valid at a point e of a frame iff e satisfies the
condition Yy eRy, i.e., e sees all other elements of the frame.

'In modal logic, the term model refers to what is usually called interpretation in other branches of logic.



Example 2.3. Let us find the condition that corresponds to the validity of the formula p — Ep on a
frame F = (A) (note that the frame contains no relations at all). If we introduce an equality relation
Id .= {{e,e) | e € A} and take a constant modality O that is interpreted on F by this relation /d, then we
can equivalently rewrite our formula as Op — Ep (because for any formula i, Oy is equivalent to ).
By the above example, this formula is valid on the frame F’ = (A, Id) iff Id is the total relation on A, i.e.,
Id = A X A. 1t is easily seen that the equality relation coincides with the total relation on A iff |A] = 1.
In other words, the original formula p — Ep is valid on a frame F = (A) iff the first-order condition
VxVy (x = y) holds.

In what follows, we are interested in the following issues:

Decidability How can one verify whether a given mixed modal formula is valid on all frames? And
what is the complexity of this problem?

Definability What classes of frames are definable (locally and globally) in the mixed modal language?
When these classes are first-order definable? Can one express, in the mixed modal language, any
first-order property that is not expressible in the standard modal language?

3 Decidability

Let us define the minimal mixed modal logic K’ as the set of all valid mixed modal formulas. Please note
that the decidability of this logic is closely related to the decidability of the satisfiability problem for the
mixed modal language. Namely, a formula ¢ is satisfiable (i.e., is true at some point of some model) iff
its negation — is not valid.

Theorem 3.1 (K’ = K). The logic K’ coincides with the standard (multimodal) logic K, where vari-
able modalities and propositional constants are understood as ordinary modalities and propositional
variables, resp.

Proor. A formula ¢ is valid on all frames of the form F' = (A,X, 13) iff the same formula ¢ understood
as an ordinary modal formula (i.e., A; are understood as propositional variables and [; as ordinary
modalities) is valid on all frames of the form F’ := (A, R: s ), where the modalities [; are interpreted by
the relations S ;. 4

Since the problem of validity of an ordinary modal formula on all frames (i.e., membership in K)
is PSpace-complete, we conclude that the logic K’ is also PSpace-complete. Despite this fact, in what
follows we will see that the mixed modal language is more expressive than the standard modal language.

4 Definability and first-order correspondence

When checking the validity of a mixed modal formula on a frame (or at a point of a frame), the variable
modalities occurring in the formula can be evaluated by arbitrary binary relations on the domain A. In
particular, we can instantiate [ with the minimal modality @, which is interpreted as the total relation
A X A, or with the maximal modality [, which is interpreted as the empty relation @. The former (@)
is the so called universal modality, whereas the latter (@) is just equivalent to T, in the sense that the
equivalence My < T is always valid. The words ‘minimal” and ‘maximal’ are explained by the validity
of the implications Mp — Ep and Ep — Mp. As a consequence, we obtain the following lemma, which
says that if a variable modality [0 occurs only positively or negatively in a formula, then the instantiation
of [ with @ or @ is sufficient for checking the validity of the formula. In fact, we have already used this
fact implicitly in Examples 2.2 and 2.3.



Lemma 4.1 (Monotonicity). Let ¢ be a mixed modal formula. Suppose that a variable modality [
occurs only positively (resp., negatively) in ¢. Then ¢ is valid on a frame (or at a point of a frame) iff the
Jormula obtained from ¢ by substitution of all occurrences of E with O (resp., @) is valid there.

Now we define the notion of first-order correspondence for the new modal language; as usually, it
comes in a local and a global versions. Consider the first-order language with equality, unary predicate
symbols® Ay, ..., A, and binary predicate symbols Ry, . .., R,. Formulas are built up from atomic ones
x =1y, x:A;, and xR;y (we use the notation from Description Logic ABoxes) using boolean operations
and quantifiers Vx, dx. First-order formulas considered below are always assumed to be in this language.

Definition 4.2. A first-order formula a(x) with a single free variable locally corresponds to a modal
formula ¢ (written as a(x) ¢ @) if, for any frame F and point e € A, we have: F = a(e) © F,e I ¢.

A closed first-order formula « globally corresponds to a modal formula ¢ (written as a «» ¢) if, for
any frame F, we have: F a © F I ¢.

It is not hard to see that local correspondence ¢ «~» a(x) implies global correspondence ¢ v Vx a(x)
(but the converse does not hold in general, even for the standard modal language, cf. [2]). From Ex-
ample 2.2 we conclude that the modal formula Op — Ep locally corresponds to the first-order formula
Vy xRy and hence globally corresponds to YxVy xRy; and Example 2.3 shows that the formula p — Ep
globally corresponds to YxVy (x = y).

Lemma 4.3. Mixed modal formulas within the following families locally correspond to first-order for-
mulas. Moreover, given a modal formula, the corresponding first-order formula is efficiently computable.

1. Closed formulas, i.e., formulas without propositional variables p; and variable modalities &;;

2. Uniform formulas, i.e., in which any propositional variable p; and any variable modality ; occurs
either only positively, or only negatively.

Proor. We will give a sketch of the proof; see [2, Sect. 3.5] for details concerning similar results.

1) Validity of any modal formula is equivalent to the truth of the second-order closure of its standard
translation into first-order language. However, there is nothing to take the second-order closure over,
since the original formula contained no variables or variable modalities.

2) Substitute L (resp., T) for all positive (resp., negative) occurrences of propositional variables, and
substitute @ (resp., @) for all positive (resp., negative) occurrences of variable modalities. Then we will
obtain a closed mixed modal formula (where universal modalities also occur). Its validity is equivalent
to the truth of its first-order translation. .

Next we present a number of results about first-order correspondence, in order to illustrate the expres-
sive power of the mixed modal language. Some results are for local, and some for global correspondence;
for brievity, we omit /' in F, e I+ ¢. All the results are collected in Table 1. In addition to that, each of the
formulas OEp —» BOp, ©Op - BOp, ©Hp —» OGp, OEp — EOp, and OLEp — S p is valid on
a frame F iff |[W| = 1. All these results are rather easy to obtain. We will prove only one of them here;
this one will be used later for querying knowledge bases.

Lemmad4.4. F,e + Op — EH(A — p) © A C R(e), or explicitly: Yy (A(y) — eRy).

Proor. Since [ occurs positively, it can be replaced by the universal modality M. Given a frame F =
(A, R, A) and its point e, we prove the following equivalence:

F,erOp — @A — p) =S A C R(e).

2We denote the predicate symbols by the same letters as propositional constants and binary relations in the modal language
above; the meaning of each symbol will always be clear from the context.
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Figure 1: Mixed modal formulas and their first-order correspondents.

(=) Assume on the contrary that A € R(e). Then, for some d € A, we have d € A and d ¢ R(e). Take
the following valuation of the propositional variable p: p™ := R(e). Then e | Op, since p is true at any
R-successor of e, by construction. But e | (A — p), since for the element d (which is accessible from
e by the universal relation) we have d = A and d ¥ p, because d ¢ R(e).

(&) Suppose that A C R(e). Take arbitrary valuation p” C A of the propositional variable p. Assume
that e = Op. To prove that e = M(A — p), take any d € A. To show thatd = A — p, assume that d = A.
Then by inclusion A C R(e) we have d € R(e), i.e., eRd, and applying e |= Op yields d = p. 5

4.1 Frame morphisms

Here we prove a preservation result for the mixed modal language. Namely, we introduce the appropriate
notion of frame mappings (usually called zig-zag morphisms) and show that it preserves the validity of
mixed modal formulas. Suppose we are given two frames F = (AF, ¥, A¥y and G = (A%, RG, A%). To
keep notation simple, we will write e € F instead of e € A’

Definition 4.5. A function z: A" — AC is called a zig-zag morphism from F to G if the following
conditions hold, for all R in R:

(zig) if eRFd then z(e)RCz(d), for all e, d € F;
(zag) if z(e)RCc, then there exists b € F such that eR"b and z(b) = c;
(atom) e and z(e) satisfy the same propositional constants: F,e = A; © G, z(e) E A;.

Lemma 4.6. If 7. F — G is a zig-zag morphism, then for any e € F and any mixed modal formula ¢
containing no variable modalities [J;, we have:

Fero = G,z(e) .

If, in addition, z is surjective, then the same holds for any mixed modal formula.



ProoF. Suppose on the contrary that G, z(e) ¥ ¢, i.e., there is a model N = (G, gV, s ) based on G such
that N, z(e) i ¢. Then we define a model M = (F, pM, §M ) based on F as follows: for any p and S,

o pM :={d € F | z(d) € p"}, or briefly: p™ := z71(p™);

o SM:=((e,dy € AT x AT | (z(e),z(d)) € SV}, or briefly: SM := z7'(SM).

(Of course, if the formula ¢ contained no variable modalities [J;, then the model N has no SN component,
and we omit the definition of S$™.) Now we show, by induction on a modal formula v, that for alld € F,
the following equivalence holds:

MdEy < N,z(d) E .

This is sufficient for proving our lemma, since it immediately implies that M, e |# ¢ and hence F, e ¥ ¢.

Induction base (i.e., when ¥ is p; or A;, resp.) holds by our definition of the model M and the condi-
tion (atom) in the definition of zig-zag morphism, resp. Induction steps for booleans are straightforward.
Now consider the modal steps.

First, suppose that i is &8 and we need to prove: M,d E QO iff N, z(d) E 6. If M,d E <8, then
there exists b € F such that dR"b and M, b k= 6. Then z(d)R®z(b), by the condition (zig), and N, z(b) E 6,
by induction hypothesis. Hence N, z(d) E 6.

Now assume that N, z(d) E <8, i.e., there exists ¢ € G such that z(d)R®c and N, ¢ | 6. By the condi-
tion (zag), ¢ = z(b) for some b € F such that dRFb. Then we rewrite the assertion N, ¢ = 6 as N, z(b) = 6
and infer, by induction hypothesis, that M, b |= 6. From this and dR"b we conclude that M, d | 6.

Finally, suppose that z is surjective, ¢ is 0, and let us prove that: M,d E ©0 iff N, z(d) E ©60. If
M,d = ©0, then for some b € F we have dS"b and M, b | 6. Then z(d)S Vz(b), by the definition of S,
and N, z(b) E 6, by induction hypothesis. Hence N, z(d) E ©6.

Now assume that N, z(d) E &4, i.e., there exists ¢ € G such that z(d)S"c and N, ¢ | 6. Since z is
surjective, ¢ = z(b) for some b € F. By the definition of S, from z(d)S ¥z(b) we infer that dR"b. Then
we rewrite the assertion N,c = 6 as N, z(b) = 8 and apply the induction hypothesis to infer M, b = 6.
This together with dRFb imply that M, d = 6. 4

Surjectivity is inavoidable in this lemma. Indeed, recall from Example 2.3 that the formula p — Ep
is valid at a point of a frame F iff F has exactly one element. Now, if F is a one-element frame and G a
two-element frame (with no relations or predicates), then in fact any mapping from F to G is a zig-zag
morphism, but at the same time, the formula p — Ep is not valid on G.

S Application to querying knowledge bases

The mixed modal logic described above is a notational variant of the Description Logic ALC, whose
vocabulary consists of concept names Ay, . .., A, Xo, X1, - .. and role names Ry,...,R,,S¢,51,... (we
will refer to Xo, X1,... and So,S1, ... as concept and role variables. Given a mixed modal formula ¢,
denote by C, the corresponding DL concept obtained from ¢ by replacing p; with X;, O0; by VR;, and [,
by VS, (symbols A; are left unchanged).

In the sequel, first-order formulas will also be called as queries. Among them, we distinguish con-
Jjunctive queries, i.e., formulas of the form 3y A, rerm;, where each term; is either of the form x: A; or
xRy, for some variables x and y; its free variables are traditionally called the distinguished variables of a
query. A query with one distinguished variable will be called unary, and a closed formula will be called
as a boolean query. A query is called relational if it contains no symbols A;.

Definition 5.1. We say that a query g(x) is answered by a concept C (written as g(x) =~ C) if, for any
knowledge base K8 in the vocabulary {/Y, E} = {Ag,...,Ap, Ro, . .., R,} and any constant a occurring in
it, the equivalence holds: K8 | g(a) © KB | a: C.

6



A boolean query q is answered by a concept C (written as g ~ C) if, for any knowledge base KB in
the vocabulary {A, R}, the equivalence holds: KB E g © KB E a: C, where a is a fresh individual name
(i.e., not occurring in K8, ¢, C.)

Note that in this definition, a knowledge base K8 is not allowed to contain concept or role variables.
This 1s similar to fixing valuations of A; and R; in a frame, but quantifying over valuations of p; and §;.

In what follows, we will establish a relationship between the notion of local correspondence (g <~ ¢)
in modal logic and query answering (in the form g ~ C,) in Description Logics. Ideally, it would be
desirable to have the equivalence between these two. However, we have not succeeded in proving this
yet (and at the same time we have no counterexamples to this equivalence). Below, we first prove 50%
of the equivalence (that g «» ¢ implies g ~ C,). Secondly, we prove another 25% of the equivalence
(g = C, implies that, for any frame F and its element e, the implication F' |= g(e) = F, e I+ ¢ holds). The
converse implication, i.e., the remaining 25% of the desired equivalence, is not yet proved in general
case, but we have established it for finitely branching frames, i.e., say, another 10%. After that, we prove
the similar results for boolean queries.

5.1 Answering unary queries

Theorem 5.2 (Unary queries, S0%). If a unary query q(x) locally corresponds to a mixed modal for-
mula ¢, then q(x) is answered by the ALC-concept C,. In symbols: q(x) «~» ¢ = q(x) = C,.

Proor. Suppose that g(x) «» ¢. Then, given a knowledge base KB in the vocabulary {A,R} and a
constant a, we will prove the following equivalence: K8 k g(a) < KB F a: C,.

(=) Suppose that KB E g(a). Take any model® 7 of KB. By assumption, 7 E g(a). We need to show
that 7 k= a: C, (independently of how the concept variables X; and role variables S; occurring in C, are
interpreted in 7). Let F = (A, AZ, RY) be the frame* underlying 7 and denote e := a’. By definition,
from g(x) «» ¢ it follows that, for these F and e, we have: F = g(e) © F, e I ¢. But we also know that
F = g(e), because I | g(a) and g(x) contains only symbols from {X, ﬁ}. Hence F,e IF ¢, i.e., M, e = ¢,
for any model M based on F.

Now we apply this to the model M := (F,pM ,S™y that is “read-off” from our interpretation J
by putting p™ := X! and S¥ := S7. It is easily seen that, for any element d € A and any mixed modal
formulay, M,d = ¢  d € CZ, since Cy is just a notational variant of ¢, whereas M and 7 are essentially
the same. As shown above, M, e | ¢ and so a’ = e € C, hence 1 = a: C,.

(<) Suppose that KB | a: C,. Take any model I of KB. By assumption, I | a: C,. Let F be a frame
underlying 7 and put e := a’. We need to show that T = g(a); since g(x) contains only symbols from
{A, R}, it suffices to show that F q(e). By the assumption g(x) «» ¢, it remains to show that F, e I ¢.

To this end, take any model M = (F, p™, §™) based on F and show that M, e E ¢. Let J be an
interpretation that differs from 7 only in how it interprets concept variables X and role variables S,
namely it is “read-off”” from the model M by putting le :=p”and S lj := SM. Then, for any d € A and
formula ¥, we have d € C,,,,j © M,d E ¢, since Cy, is just a notational variant of i, whereas M and J are
essentially the same. Since J and I agree on interpretation of all symbols from KB, we conclude that
J = KB. Now we use our assumption KB k a: C, to infer that J k= a: C, and so e = a’ = a7 € CY,
whence M, e = ¢.

This completes the proof of Theorem 5.2. 5

3Note that I interprets all concept and role names in our DL language, in particular, X; and S;.
“This is indeed a frame for the mixed modal language.



In [7], this theorem was proved for the standard modal language (without A; and ;) and hence for
relational queries only. Note that Theorem 5.2 holds for arbitrary first-order formula g(x), and not only
for DL knowledge bases K8, but for arbitrary first-order theories in the vocabulary {A, R}.

Lemma 5.3 (Unary queries, 25%). Let g(x) be a conjunctive query, ¢ a mixed modal formula. If
q(x) = C,, then for any frame F and its element e, F \= q(e) implies F, e I+ ¢.

Proor. The query g(x) has the form 3y A7, term;(x,¥). Suppose that g = C,, take any frame F and
its element e, and assume that F | g(e). Then there exist ¢ € A such that F | term;(e, d) for all i < n.
Now we build the canonical ABox for g(x): A, := {term;(a,&) | 1 <i<n}, where a and ¢ are fresh
constants, and consider the knowledge base KB, := (@, A,). Since KB, = AL, term;(a, ), we have
KB, E IV A\, termi(a,¥), and hence KB, [ q(a). Applying our assumption (¢(x) ~ C,), we obtain
that KB, E a: C,,.

Now to prove that F, e I ¢, take any model M based on the frame F and show that M, e |- ¢. Let
7 be an interpretation based on F such that it is “read-off”” from M by putting Xf :=pMand$ f =8M,
and extended it to the new constants as a’ := e and &% := &. Since 7 is based on F and F = term;(o, @),
we have I [ term;(a, ), for all i < n, and hence 7 = KB,. As shown above, KB, k= a: C,. Therefore,
T EaC,andsoe=ale Cj: . Finally, it is easily seen that for any d € A and formula ¢, we have
de Ci © M,d E ¢, since Cy, is just a notational variant of i, whereas M and I are essentially the same.
Hence M, e | ¢. 4

This lemma is easily generalised to the case of g(x) being a disjunction g(x) = ¢;(x) V ... V g(x) of
conjunctive queries g;(x). Indeed, in its proof, from F | g(e) we first derive that F [ g;(e), for some i,
and then proceed the same proof. Note that in this case, DL knowledge bases (in the definition of =) are
still enough to complete the proof. However, they are not enough if we want to generalise Lemma 5.3
to the case of arbitrary first-order formulas g(x). In that case, we can use arbitrary first-order theories
instead of KBs, and the proof of Lemma 5.3 for this case remains literally the same. The only difference
is that, instead of the canonical knowledge base K'B,, one should take the first-order theory T, := {g(a)}.

5.2 Answering boolean queries

Now we realise the same scenario for boolean queries.

Theorem 5.4 (Boolean queries, S0%). If a boolean query q globally corresponds to a mixed modal
Sformula ¢, then q is answered by the ALC-concept C,. In symbols: g «» ¢ = g =~ C,.

Proor. Suppose that g «~» ¢. Take any knowledge base KB in the vocabulary {A, R} and a fresh constant
a and prove the equivalence: K8 | g © KB | a: C,.

(=) Assume that KB | g. Take any model 7 F K8 and show that 7 = a: C,. Since 7 F KB, we
have 7 [ g. But g contains only symbols from the vocabulary {A, R}, hence F = q, where F is the frame
underlying 7. Using the assumption g «» ¢, we infer that F I ¢, in particular, F, a’ I ¢, which implies
that 7 = a: C,,.

(<) Assume that KB E a: C,. Take any model 7 F K8 and show that 7 | g. Since 7 F KB, we
have I k a: C,. Moreover, if we vary the interpretation of the constant a and of the concept and role
variables occurring in C,, then 7 remains to be a model of K'B. This shows that F I ¢, where F is the
frame underlying 7. By the assumption g «» ¢, we infer that F' |= ¢. Finally, since 7 is based on F, we
conclude that 1 F q. .

As above, this theorem holds for arbitrary (closed) first-order formulas g and arbitrary first-order
theories in the vocabulary {A, I?} in place of DL knowledge bases.



Lemma 5.5 (Boolean queries, 25%). Let g be a boolean conjunctive query, ¢ a mixed modal formula.
If g = C,, then for any frame F, F | q implies F I+ ¢.

Proor. The query g(x) has the form 3y AL, term;(¥/). Suppose that g ~ C,, and take any frame F such
that F = g. Then there exist ¢ € A such that F | term;(d), for all i < n. Now we build the canonical
ABox for g: A, := {term;(¢) | 1 <i< n}, where ¢ are frech constants, and consider the knowledge base
KB, = (2, A,). Since KB, £ AL, term;(¢), we have KB, E Iy AL, term;(¥), and so KB, k q.
Applying our assumption (g = C,), we obtain that KB, | a: C,, where a is another fresh constant.
Now to prove that F' I ¢, take any model M based on the frame F and show that M, e = ¢, for all
elements e € A. To this end, take the interpretation J based on F that is “read-off” from M by putting
XlI = le and Sf =9 f” , and extended it to the new constants as a! := e and &7 := 3. Since 7 is based
on F and F = term;(é), we have I k= term;(¢), for all i <n, and hence I = KB,. As shown above,
KB, E a: C,. Therefore, we have I k a: C,, so thate = a’ € C;; . Finally, it is easily seen that for any
d € A and formula , we have d € Cﬂ © M,d [ , since Cy, is just a notational variant of y, whereas
M and I are essentially the same. Hence M, e = ¢. .

Again, Lemma 5.5 is easily generalised to the case of a disjunction of boolean conjunctive queries.
But if we want to generalise it further to the case of an arbitrary (closed) first-order formula g, then we
need to resort to first-order theories in place of DL knowledge bases, and use the theory T, := {g} instead
of the knowledge base KB, in the proof.

5.3 Another 10%, or From Query Answering back to Modal Logic

In this section, we confine ourselves to the language without variable modalities [; (in fact, we do not
know how to extend the result presented obtained below to the language involving variable modalities).
We will show (see Theorem refThmAnswLoc) that, under conditions of Lemma 5.3, if g(x) = C,, then
for any finitely generated frame F and its element e, F, e I ¢ implies F |= g(e). Whether this holds for
arbitrary frames is an open question.

First we need the means of representing a frame F = (AF R by a (possibly infinite) knowledge
base KB in some DL, in the sense that any model of that KB has a subframe “similar” to F. A natural
way to build such a KB is to introduce individual names (constants) for all nodes of F, so we do:
INamesy := {a, | e € AF}). The mapping from e to (the interpretation of) a, will serve the desired
embedding of F' into models of K'B. The notion of homomorphism is too weak for our purposes,
whereas the notion of isomorphism is too strong. What will suit us is the notion of bounded morphism,
or zig-zag morphism introduced in Section 4.1. We are interested in transferring the local validity of
modal formulas on a frame to logical entailment from a knowledge base. To this end, we introduce the
following notion.

Definition 5.6. A (possibly infinite) knowledge base KB the vocabulary (A, R} is called characteristic
for a frame F = (AF, R, AT if, for any model 7 |= KB, the mapping z: ¢ — a is a zig-zag morphism

from F to 7. (Note that an interpretation 7 of the vocabulary {A_), ﬁ} can be considered as a modal frame.)

We are ready to prove our main lemma. Recall that if ¢ is a modal formula, then C, denotes its DL
counterpart obtained from ¢ by replacing O, with VR,. and propositional letters p; with fresh concept
names X; (which cannot occur in any KBs under consideration).

Lemma 5.7. Let KB be a characteristic knowledge base for a frame F. Then for any modal formula ¢
and element e € F:
Fer¢ = KBEa,:C,.



Proor. Suppose that F,e - ¢. To prove that KB [ a,:C,, take any model I E KB. Since KB
is characteristic for F, the mapping z:e — a! is a zig-zag morphism from F to 7. By Lemma 4.6,

7, z(e) E ¢ (independently of how 7 interprets the propositional variables p; occurring in ¢). But since
@ is just a notational variant of C, and z(e) = af , we conclude that 1 = a,: C,. =

Now it is the right time to show how to build a characteristic knowledge base for any finitely branch-
ing frame (and explain why it is related to query answering). Recall that a frame F = (A", R) is called
finitely branching if, for any e € F and any R from R, the set R" (e) := {d € F | eR"d} is finite.

Lemma 5.8. Every finitely branching frame has a (possibly infinite) characteristic knowledge base in
the Description Logic ALCO.

Proor. Given such a frame F = (AF, R)), consider the knowledge base KBy = (@, Ar) in the Description
Logic ALCO consisting of the following ABox only:

Ap :={a,:A;| ec A} U {a,;:=A;| e¢ AT} U
{a.Ray | e,d € F,eRFd} U {a,:VR.{ay|d € RF(e)} | e F, R € R).

Since F is finitely branching, then each expression of the form {a, | d € Rf(e)} is finite and hence an
ALCO-concept (if this set is empty, then the correspondind assertion in the ABox is a.: YR.L). To see
that KB is characteristic for F, observe that the condition (atom) is satisfied due to the first and second
parts of the ABox Ay, (zig) is guaranteed by the third part of the ABox Ap. To show that the condition
(zag) also holds, assume that 7 is a model of Ap, and I = a,Rb, for some element b € AZ. Then the
condition 7 E a,:VR.{a, | d € R"(e)} implies that b = af; for some d € RY (e), so we are done. 4

This construction of a characteristic knowledge base can be used for proving the following theorem.

Theorem 5.9 (10% for finitely branching frames). Let g(x) be a conjunctive query, ¢ a mixed modal
Sormula (without ;). If q(x) is answered by the concept C, (in symbols: q(x) ~ C,), then q(x) locally
corresponds to the modal formula ¢ over the class of finitely branching frames: F,e v ¢ & F = q(e).

Proor. Suppose that g(x) = C,, take a finitely branching frame F and its node e € F. We have already
proven that F' |= g(e) implies F, e I- ¢ (see Lemma 5.3), so it remains to prove the converse implication.
Assume that F, e I ¢. Then build a (possibly infinite) characteristic knowledge base KB in the language
ALCO, as in Lemma 5.8. By Lemma 5.7, we have KBy k= a,: C,,.

Claim. The Description Logic ALCO is compact: if T = A (where T U {A} is a set of KB assertions in
the language of ALCQ), then there exists a finite subset I" C T such thatT" | A.

Indeed, I' U {A} can be expounded as set of closed formulas in the first-order language with equiality,
for which the Compactness Theorem (cf. [4]) holds.

This statement implies that there exists a finite subset K8 C KB such that KB k a,: C,. Since g(x)
is answered by C, (w.r.t. any KB), we conclude that K8 k g(a,).

Finally, take an interpretation 7 based on the frame F with constants interpreted as a’ := d, for all
d € AF. Then I = KBr and hence I E KB. Therefore I = g(a,). But the formula g(x) contains only
the symbols in the vocabulary {A_), ﬁ}, thus F' E q(af ), 1.e., F | q(e). 4

5.4 Examples of query answering

Let us illustrate how these theorems can be applied to querying DL knowledge bases.

Example 5.10 (Querying for properties of roles). Suppose we are given a knowledge base K'B; in
the context of applications, it is reasonable to assume here that the ABox part of KB is empty, however
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all the results obtained below hold even without this assumption as well. We are interested in checking
whether some properties of roles are entailed from the knowledge base. Let us start with the properties
of transitivity and role inclusions. The following statement is easy to show.

Lemma 5.11. Assume that the constants a, b, ¢ do not occur in a knowledge base KB. Then:

1. KBERC S < aknowledge base KB U {aRb, —aRb} is inconsistent.
2. KB E Trans(R) < a knowledge base KB U {aRb, bRc, —aRc} is inconsistent.

An assertion of the form —aRb can be expressed as a: -3R.{b}. But can we achieve the same goal
without introducing nominals? The answer is Yes, due to the following lemma.

Lemma 5.12. Assume that a constant ¢ and a concept name X do not occur in KB. Then:

1. KBERLCS < KBE c:(-3R.X L 3S.X).
2. KB E Trans(R) < KB E c¢: (-3TR.IR.X L IR.X).

Proor. This is a consequence of Theorem 5.4, since role inclusion is expressed by a modal formula
Orp — Osp, whereas transitivity by a modal formula OOp — Op. 4

Moreover, a similar statement holds for any property of roles that is first-order local correspondent of
some modal property (in the r.h.s. of the statement we should put the DL counterpart of that modal prop-
erty). Therefore, we can query a knowledge base for various properties of roles (reflexivity, transitivity,
symmetry, euclideanness, being an equivalence relation, Church-Rosser, density, etc.), by reducing the
problem to the knowledge base satisfiability. A few more examples:

3. KB E Func(R) <= KB E ¢: (YR.X LIYR.—X).

4., KB E Symm(R) < KB E c: (=X LU VR.IRX).

5. KB E Dense(R) < KB E c:(-dR.X LU dR.IR.X).

6. KB E ChRoss(R) & KB = ¢: (YR.AR.—~X LU YR.AR.X).

Neither asymmetry (Yx, y—(xRy & yRx)) nor antisymmetry (Yx,y(xRy & yRx — x =y)) can be ex-
pressed by a modal formula (and even by a graded modal formula). However, they can be expressed by a
hybrid modal formulas (cf. [1]): @,—~<O<i and @,;0(<1 — i), resp. Question: can we extend our results
so that to obtain the following consequences? Again, a constant ¢ does not occur in K'B:

7. KB E Asymm(R) < KB E c: -dR.AR.{c}.
8. KB E Antisym(R) < KB = c: YR.(-AR.{c} Ll {c}).

Remark. One would argue that role inclusion and role transitivity in, for instance, the DL SH7Q are
checked before giving a definition of concepts, because we need to know which roles are simple (i.e.,
do not contain a transitive subrole). However, in this way we only check whether a role inclusion or
a transitivity of a role follows from an RBox only (i.e., from a set of role inclusion and transitivity
axioms). Moreover, this is sufficient for restricting the language to a decidable one. But it appears that
role inclusions and transitivity may also follow from concept inclusion axioms (and even from ABox
part of a knowledge base, but we do not consider these cases here).

For example, it is easily seen that the role isAuthorOf that links a person with his/her publications is
transitive. Moreover, its transitivity is entailed by the following TBox:

disAuthorOf. T C Person, T C VisAuthorOf.Paper, Person rn Paper C L.
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The same holds for any role with disjoint domain and range. Note that in this case it is reasonable not to
add the transitivity axiom to the knowledge base, even though it is its consequence, because adding such
an axiom would disable us to use expressions of the form (>3 isAuthorOf.T). To conclude the remark,
here is an example of role inclusion R C entailed by concept inclusions:

Ran(R) C {a}, Ran(S) C {a}, Dom(R) C Dom(S).

Example 5.13 (Mary likes all cats). Suppose that we have a knowledge base KB, an individual
Mary, a concept Cat and a role name Likes. If we want to query this knowledge base of whether
Mary likes all cats, then this would be usually formulated as the following concept subsumption:
Cat C dLikes™.{Mary}. In this formulation, we need role inverses and nominals, even if the knowl-
edge base KB did not contain some of these two constructors. But it appears that, using a fresh concept
name SomeConc and fresh role name SomeRel, we can do this within the logic ALC. Indeed, from
Theorem 5.2 and Lemma 4.4 it follows that K8 entails the above subsumption iff

KB E Mary: (ISomeRel.(SomeConc 1 Cat) — dLikes.SomeOne),

where we have applied the contraposition to the modal formula from Lemma 4.4.

The solution to this problem proposed in [6] involves extension of the DL language with role nega-
tion. Namely, the assertion “Mary likes all cats” can be expressed as: Mary: V-Likes.-Cat. In that
paper it was shown that such an extension results, for the logic ALC, the increase of the complexity
from PSpack to ExpTiMe. Here we succeeded to express the same statement without increase in complex-
ity. However, please note that our approach has the following deficiency: the usage of fresh concept and
role names makes sense only on the right hand side of the entailment sign (=), since it is only in this case
that the entailment implicitly assumes the universal quantification over arbitrary interpretations of the
fresh names. If we would want to add to a knowledge base (i.e., to the left hand side of the entailment)
an assertion with fresh concept or role names, then we will have to prefix this assertion with the universal
(second-order) quantifiers over all fresh names, which takes us beyond the DL scope.

Example 5.14. This example is similar to the previous one, but involves a boolean query. Given a knowl-
edge base KB, a concept C and a role R, one can query the KB of whether C contains or is contained in
the domain or the range of the relation R. Three of these four queries can be formulated as subsumption
between ALC-concepts, whereas the fourth cannot (Can we prove this negative statement?):

Dom(R)CC ©dR.TCC CCDom(R) & CC AR.T
Ran(R) C C © TCVR.C CCRan(R) © CC IR .T

Now, by Lemma 4.4, we have that the formula Op — EH(A — p) globally corresponds to the query
VxVy (A(y) — xRy). However, we need C C Ran(R), which is YVydx (A(y) — xRy). Ooops...

6 Discussion on the “10%°’ result

Analysing the proof of this theorem, we come up to a conclusion that, in order to prove the same for the
class of all frames, we must be able to build a characteristic KB for an arbitrary frame. Note that if we
apply the same construction as above for arbitrary frame F, then we will obtain a knowledge base KBr
in the language ALCO”, where in addition to ordinary syntax of ALCO, it is allowed to form a concept
from an infinite number of constants: if a; (i € I) are constants, then {a; | i € I} is a concept expression.
The resulting KB will indeed be characteristic for F', which is easily verified.

However, there are two difficulties here: first, g(x) ~ C, does not imply that g(x) has the same answer
set as C, w.r.t. KB in the logic ALCO™ (this holds only for finitary logics). Secondly, the logic ALCO”
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is not compact. Indeed, take I" consisting of the assertions a: =3R.{b;} for all i >0, and let A be the
assertion a: ~3AR.{by, by, ...}. Then it is easily seen that I' = A, but no finite subset of I" entails A.

A candidate of characteristic KB for arbitrary frame F = (AF, R): for each e € AF and R; € R,
introduce a concept name A,;, which will be thought of as the set Rf (e) of all R;-successors of e. If
we could express in an ordinary DL the inclusion A,; E {a, | d € Rf (e)} (the converse inclusion is
expressible by taking, for all d € Rf (e), the assertions a,: A.,;), then our task would be accomplished.
But this seems impossible, so we need to find a roundabout way to do this. Let an ALCZO-KB be as

follows: KBr := (Tr, Ar), where

Tr
Ar

{
:= {a,Ray | e,d € AF,eR'd} U {a,:VR;.A,; | e € A", R; € R}
U {ad:Ae,i | F I:eR,d} U {ad: _'Ae,i | F I#eR,d}
U {a;:—3Ri.(A,i \ay,,--.,aq,)) | n<Card(Ri(e)), I E a.Riay, )

AT 3R {a}or AR.A,; C {a,) | e € AT, R, € R),

1. To prove the full converse of Theorem 5.2 we need in fact the following construction: given a frame
F, its node e € F, and a modal formula ¢ such that F, e I ¢, build a K8 such that K8 [k a,: C,.
KB is supposed to be formulated in a DL with the set of constants including INamesy = {a, |
e € AT}, If not in DL, then at least in a language with the compactness property.

2. A sufficient (but probably not necessary) construction for 1): given a frame F, build a (possibly
infinite) KB such that Ye € A" Yy if F, e I ¢ then KB [ a,: C,.

3. A sufficient (but probably not necessary) construction for 2): given a frame F, build a characteristic
KB, i.e., for any 7 E KB the mapping z: e — a’ is a zig-zag morphism from F to 7.

e

Example 6.1. To see that 3) is not necessary for 2), consider a Countable Hedgehog: F = (N, R), where
R = {(0,i) | i > 0}. In this case INamesy = {ay, a1, . ..}. Now take the knowledge base KBr = (2, Ar),
where the ABox is:

Ar ={apRa; | i >0}U {ag: YR-AR. T }.

Note that this frame can be turned into finitely branching one by inversing the role R.

Claim 1. For any modal formula ¢ and i € N, if F, i - ¢ then KBy F a;: C,.

Claim 2. There is a model 7 | KB such that z:i +— a! is not a zig-zag morphism from F to 7.
Take 7 to be an Uncountable Hedgehog. Do the Countable and Uncountable Hedgehogs have the same
modal formulas valid at its root? Is it equal to K + OT,00.17

Example 6.2. An example of not finitely branching frame for which we have built a characteristic KB.
Consider the frame F = (N, <). Then take KB = (T, Ar), where 7 = {Trans(R)} and

A= {aiRaiH, —|a,~+1Ra,-, a,-—|EIR.3R.{a,~+1}, a;: (<1 R)(ER’{a,} M —ElRf.HRf.{ai}) | i> 0}
Claim. This KBy is characteristic for F.

More generally: given a frame F = (AP, R), let Th!(F) be the first-order theory of F, i.e., the set of all
closed FO formulas in the language with equality, binary relations from R, and constants from INames;
(and no unary predicates) that are true on F. This theory, in particular, covers KBs in most standard DLs,
say SHOIQ. Then is it the case that, for any modal formula ¢, if F, e ¢ then Th'(F) | a,: C,? (The
sentence a,: C, can be regarded as a first-order closed formula.)

Yet more generally: for a given frame F, take the monadic second-order theory of F, to be more
exact, the 2-order translations of ABox assertions that are valid on F: Th*(F) = {S T‘%(ae) | F,e I+ ¢},
where S T;(x) is the stadnard translation of the modal formula ¢ into a first-order formula with 1 variable,
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universally quantified over all unary predicates occurring in it. For example, if ¢ is Op — OOp, then
S Tj(x) is
VP [ Vy(xRy — P(y)) — Yy(xRy — Yz(yRz — P(2))) |.
Then it is straightforward to show that if F, e I ¢ then TH(F) E a,: C,.
Note that we could not avoid using second-order quantifiers here: if we take only the first-order
sentences of the form a,: Cy for all e,y such that F,e I ¢ (where all Cy use concept names different
from those used in ), then this theory does not entail a,: C,,. Hint: S Tlup_m(a) HS Tlqu_’q(a).

Question. Is MSO compact? If not, is the ”guarded”, i.e., Th>(F)-sublanguage of MSO compact? Is it
the same as the compactness of the notion of validity of a modal formula in a frame?
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