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Abstract

In this paper, we introduce a formal framework for describing Semantic Web Services using
Description Logic. Specifically, for information providing services, the notion of a service
description is proposed. From syntactic point of view, it is an extension of the way services
are described in OWL-S Service Profile (namely, of its part concerning description of inputs
and outputs). However, from the semantical viewpoint, the definition of service matching
introduced here (based on the proposed descriptions) appears to be more appropriate for
service discovery purposes.

The extended notion of service description includes, besides the types of its inputs and
outputs, a specification of relationships between inputs and outputs. This part has the form
of a conjunctive query. We show that the reasoning problem of service matching for this kind
of descriptions is reducible to checking subsumption between two conjunctive queries w.r.t. an
ontology, which is a standard reasoning task.

1 Introduction

Semantic Web Services are programs available on the Web that can be executed by a user (a
human or another program, so called a software agent). Their distinctive feature is that they are
semantically marked up, i.e., supplemented with a semantic annotation — a formal description of
functionality and other properties, which enables an automated discovery, execution, composition,
and ezecution monitoring of services. These annotations (also called service descriptions) are
formulated using terms (concepts and roles) whose semantics is well-defined in ontologies that are
available on the Semantic Web.

Among others, one can distinguish information providing services. When such a service is
executed, it accepts from a user an input data of a specified format (“typed data”) and returns
back to the user some information as an output. Most services of this kind are stateless, i.e., they
only provide information about the current state of the world, but do not change that state.

Service descriptions can be divided into two logically different kinds (though they can share
the same language). A service provider supplies a description of his service and puts it into a
repository, so that the service could be found on the Web with the help of a search engine. This
kind of description can be called a service advertisement. On the other side, a user specifies a
description of a service that is to be found on the Web; this type of description will be referred to
as a service request.

One of the most important reasoning task concerning services is so called service discovery.
Given a service request (), a search engine, using its reasoning system, compares the request
with service advertisements stored in a repository, taking into account the background ontologies
available on the Web (the request and the advertisements may refer to different ontologies). If an
“appropriate” service S is found, the search engine returns to the user the location of S (its URL,
port, etc.) together with a supplementary information (which inputs and outputs of @ correspond
to input/outputs of S; does S match @ exactly, and if not, then how the service found is related
to the user’s request).

In this paper we present a formal framework for describing information providing (stateless)
services. Let us point out the distinguishing features of this framework. Firstly, a description of



a service is entirely based on standard background ontologies (in particular, we do not introduce
any concepts or roles specially devoted to describing web services). The benefit of this is twofold:
a) this enables to reuse, in service descriptions, the terminology from the existing and emerging
ontologies available on the Web, thus making the descriptions succinct and equipped with well
defined semantics; b) this allows to use, for service matching purposes, the semantics of the terms
that occur in the descriptions, thus increasing the precision and recall of service discovery, as
compared to the keyword-based search algorithm.

Secondly, we are concerned with (stateless) information providing services only. Consequently,
service descriptions need not to contain pre- or post-conditions, since these services are always
executable, and the state of the world after their execution is the same as before.

Thirdly, our primary aim is to provide a solution for the service discovery problem formulated
above. We will formalise, for service descriptions introduced in our paper, the notion of service
matching. We also show that the problem of matching services is decidable and is in fact reducible
to the query subsumption w.r.t. an ontology, which is a standard reasoning task (cf. [3, 4, 5]).
Hence, for deciding service matching, we can reuse the existing reasoning systems that are capable
to decide query subsumption for corresponding Description Logics.

2 Motivating examples

Recall that, in OWL-S Service Profile, the functionality of an “information providing” (stateless)
service is described by specifying (the types of) its inputs and outputs. Accordingly, when two
services — a service advertisement S and a user’s service request ) — are tested for matching, only
information about the types of their inputs and outputs is taken into account (see, e.g., [10]).
The typical matching condition is: each input of S must subsume at least one input of @, and
each output of @ must subsume at least one output of S. This notion of service matching is not
satisfactory for discovery information providing services, as illustrated by the following examples.

Example 2.1. Our first example is adopted from a short discussion in [9]. Consider a service S
with an input of type GeoRegion and an output of type Wine. This description may correspond to
a service that, given a name of a geographical region (e.g., ‘France’), retrieves the list of (names
of) wines that are produced in this region. On the other hand, suppose that a user (or a software
agent) wants to find a service @ that, given a name of a geographical region as an input, would
return the list of wines that are sold in that region. Using OWL-S Service Profile, one cannot
distinguish between these two services, and as a result, a search engine will return this service S
to the user, even though it is irrelevant to his request Q.

The next example illustrates the opposite situation, when a search engine based on OWL-S
descriptions rejects services that in fact match user’s request.

Example 2.2. Let S be the above considered service (which takes a GeoRegion as input and returns
the list of Wines produced in this region). Now suppose that a user is looking for a service @) that
takes a FrenchGeoRegion as input and returns the list of only FrenchWines produced in this region
as output. Observe that the service S returns wines that, in general, may not be FrenchWines, and
hence S does not match @ according to a trivial matching algorithm. However, from a background
ontology it follows that S returns only FrenchWines when called with a FrenchGeoRegion, and thus
should be matched to this request Q).

Remark 2.1. In the latter example, we were able to match these two services because we used
some information from our background ontology. What kind of information did we need for that?
First, it is natural to assume that the ontology contains the following concept definitions:

FrenchWine = Wine M 3 producedIn.France
FrenchGeoRegion = GeoRegion M JisPartOf.France

Now recall that our inference was: “If a wine is produced in a FrenchGeoRegion, then it is produced
in France” (and hence is a FrenchWine). This can be formalised as a concept inclusion axiom:

JproducedIn.3isPartOf.France C 3 producedIn.France.



Moreover, a similar axiom holds for all other countries, not only for France. A general statement
that covers all these cases can be formalised as a complex role inclusion axiom:

producedIn o isPartOf C producedIn.

To sum up, a matching algorithm that takes into account only the types of inputs and outputs
of services does not yield a satisfactory solution to the service discovery problem. Our work
is intended to overcome these deficiencies. As follows from the above discussion, in addition
to the types of inputs and outputs, a service description must be enriched with a specification
of relationships between inputs, outputs, and possibly some ‘intermediate’ objects. Analysing
numerous examples of services (including those in bioinformatics), it was observed that a notion of
conjunctive query can be adopted for these purposes of expressing these relationships. Moreover,
the properly formulated notion of service matching appears to be reducible to query containment
w.r.t. an ontology — a task whose decidability and complexity is extensively explored (see, e.g.,
[2, 3, 4]). Now we proceed to the formal presentation of our framework.

3 Services as queries

We assume the reader to be familiar with syntax and semantics of Description Logics (cf. [1]). When
describing web services, we will assume the existence of a background ontology (or a TBox) 7,
which includes the definitions of all terms (concepts and roles) involved in our service descriptions.
In reality, different service providers and users may describe their services using different ontologies.
We take this issue into account by assuming that 7 is the union of all those ontologies.

Furthermore, when a particular web service is executed by a user at a particular moment of
time, it deals with a partial description of the world (or an ABox) A, which contains an information
about the current state of affairs (i.e., about the membership of individuals in some classes and
relationships between individuals). All services considered here are assumed to be stateless, i.e.,
after their execution the ABox A is left unchanged, and the states of the world before and after
the execution of a service are identical. As a consequence, there is no need to include pre- and
post-conditions in a service description. Finally, we can assume that both a TBox and an ABox are
formulated in some Description Logic, say SHZQ, whose vocabulary contains the sets of concept
names Concepts, role names Roles and individual names (or constants) Const. The union of a
TBox 7 and an ABox A is called a knowledge base and denoted by KB = (T, A).

3.1 Describing services

Since inputs and outputs of services are assumed to be typed (with types usually being some DL
concepts), we introduce the following notion.

Definition 3.1. A typed tuple (of variables) is a tuple of variables together with concepts assigned
to each variable: Z:X := (x1: X3,...,2,:X,,), where z; are variables and X; are concepts. The
length of a tuple # is denoted by |Z|, and if |Z| = n then Z is said to be an n-tuple.

Now let us formulate our basic notion of service description; see Section 6 for extended versions.
Definition 3.2. A service description (or a service, for short) is an expression of the form
S=(7:X; §:Y; O(.7))

where 7: X is a typed tuple of inputs, i/: Yisa typed tuple of outputs, and ®(Z,¥) is a conjunctive
query, i.e., an expression of the form

3z (terml(f,j,,?)/\...Atermk(f,gf,,?)),

where each conjunct term;(Z, ¥, Z) is either an expression of the form w: C' with C being a concept,
or wRw' with R being a role and w, w’ variables from the lists &, %, 2, or individual names.

In other words, ®(Z, ) is a conjunction of ABox assertions about inputs #, outputs ¢, known
objects (individual names) and unknown objects Z' (the latter are existentially quantified). In



practice, this multi-component description of a service can be written down with the help of
additional roles hasInput and hasOutput that relate the service S with its inputs z; and outputs
y; (and possibly, with a new role that links the service S to the specification ®). We will not go
into these details of implementation syntax here.

3.2 Intended meaning

The tuple z stands for inputs and ¥ for outputs of the service S, and their “types” are declared
to be X and Y respectively. The meaning of the whole expression is that, given an input a from
X , the service returns as its output the (unordered) set of all tuples of objects b that belong to Y
and satisfy the condition ®(@, b ).

More precisely, suppose that a service description S is formulated using a terminology (TBox)
7. A user who executes a particular service s (i.e., a software program that works with a data
stored in a knowledge base), submits a tuple of individual names as input for s, and the service s
returns as output some tuples of individual names. These individual names come from the current
partial description of the world (i.e., an ABox) A (which is usually subject to permanent changes).
It is natural to expect that if a service provider declares that S is a description of a particular
service s (w.r.t. a background ontology 7'), then this should hold for any data that can be stored
in an ABox. To formalise this, let us give a definition of what it means for a service s to implement
a description S.

Definition 3.3 (Service semantics). A service s implements a description S over a TBox 7 if|
for any ABox A and any individuals aq, . .., an, in the knowledge base B = (T, A), it KB = X;(a;)
for all 1 < ¢ < m, then

1. s accepts @ = (a1, ...,am) as input (i.e., does not return an error) and

2. when executed with @ as input, the service s returns the set of all those tuples of individuals
b = (b1,...,b,) from KB that satisfy the condition

KBEb:Y A ®@,b).

From this semantics it can be observed that the role of concepts X and Y in a service description
is not symmetric: the concepts X define exactly the set of inputs of the service S (i.e., each tuple
@ from X must be accepted by the service), whereas Y specifies only a superset of all outputs (a
tuple b from Y is in the answer set of the service, for a given input @, only if it additionally satisfies
o(a, b )). In fact, we could define, from the very beginning, a service description consisting of only
Z:X and ®(Z,y) and consider §: Y as just a part of ®(Z,7); then all the subsequent exposition
should be modified in an obvious way (and even look a bit simpler). However, we decided to
keep the types of outputs explicit, to make it evident that our descriptions are straightforward
extensions of the standard ones (in particular, of OWL-S descriptions).

Let us illustrate how this definition works on the example discussed in Section 2. The two
services that take a geographical region and return all wines that are produced (resp., sold) in this
region can be described now as follows:

S = (x: GeoRegion; y: Wine;

Jz (z: WineGrower A zisLocatedlnz A zproducesy))
Q@ = (x: GeoRegion; y: Wine;

3z (z:Shop A zisLocatedlnz A zsellsy))

The first description can be read as: given a object x of the type GeoRegion, the service returns
all objects y of the type Wine such that there exists an object z which is a WineGrower, isLocatedIn
the region denoted by z and produces the wine denoted by y. Similarly, the service Q' that takes
a FrenchGeoRegion as input and returns the list of only FrenchWines produced in this region as
output can be described as follows:

Q' = (z: FrenchGeoRegion; y: FrenchWine;
3z (z: WineGrower A zisLocatedlnaz A zproducesy))



In what follows, we will define the notion of service matching in such a way that the service S will
not match the request @@ (even though they have identical types of input and output), but .S will
match @' (even though, in general, the outputs of S are not contained in those of Q).

Let us give a few more examples of services that can be described in this framework.

Example 3.1. The database of politicians. Suppose we have a database of politicians with a
lot of information about them, say full dossier: their biographies, all results of their voting in
parliament, their being members of committees and panels. A typical service that a user may
be interested in is “given names of two politicians, return the list of bills they both voted for”,
(inputs: pairs of politicians (x1, z5), outputs y comprise the set of all bills they voted in the same
way). Another service would be: “give the list of all politicians, whose children are classmates
in King Edward School” (no inputs, outputs (y1,y2), pairs of politicians). The first service is a
combination of invocations of a basic service “given a politician, return his voting results”, the
second is a combination of invocations of a basic service “given a politician, return the exact
affiliations of all of his children”.

Example 3.2. The database of residents in a block of apartments. A typical service would be
“return the list of all residents in this block of flats with their family relations indicated” (no
inputs, output an ABox in the language of, say, three roles: {parentOf, livesInFlat, marriedTo}.

Example 3.3. The database of hospital records of people in the UK. A typical service would be:
“given a town or city in the UK, give the list of children between 5 and 11 that had flu this year”.
However, here we need a more general version of service descriptions, namely the ones that can
take as inputs and return as outputs some values from concrete domains.

3.3 Service matching and subsumption

Now we develop the means of comparing the service descriptions, i.e., a notion of one service
matching another. To keep exposition as easy and readable as possible, we first confine ourselves
to the services having only one input and one output. As a matter of fact, these are the most
typical services one can encounter. After that we will explain how to deal with services that have
multiple inputs and outputs.

Since we develop our framework in the context of the automated service discovery problem, in
the definitions of service match given below we will call one service (denoted by S) just service and
another one (denoted by @) a request. This is only for the sake of convenience; all definitions are
applicable to any two service descriptions. Our task is to formulate reasonable conditions when a
service S can be considered as an “appropriate” candidate to be returned by a search engine to
a user who specified a request (). We assume that service descriptions are formulated using an
ontology (TBox) 7.

Definition 3.4 (Service matching; single input/output). Given two services with only one
input and one output:
Service: S =(z:X; y:Y; ®(x,y)), (1)
Request: Q = (z:Z; w:W; ¥(z,w)),

we say that the service S matches the request (Q w.r.t. an ontology 7 if the following holds:

(i) Applicability: 7 = X J Z. Intuitively, this means that all input data that the user intends
to provide (i.e., the inputs of @) are acceptable by the service S.

(ii) Coherence: in any model of T, the set of pairs {e,d) satisfying the conditions e: Z, d:Y,
and ®(e,d) coincides with the set of pairs (e,d) satisfying the conditions e:Z, d:W, and
U(e,d). In other words, the following two formulas with the free variables x and y:

v Z N yY A O(z,y) 2)
v Z N yWA ¥(z,y)
are equivalent w.r.t. 7, i.e., define the same binary relation in any model of 7. Note that
the concept X does not occur here, since it is already used in condition (i).

Intuitively, this means that, on any input that conforms to the user’s request (), the services
S and @ return the same answers.



Condition (i) is quite standard; for example, it can be found in definitions for matching of
OWL-S services (cf. [10]). In contrast, condition (ii) is—to the best of our knowledge-new, and it
is not expressible in terms of OWL-S service profiles. As we will see in Section 4, this condition is
in fact reducible to checking subsumption between two conjunctive queries w.r.t. a TBox, which is
a standard reasoning task.

Now we generalise the notion of service matching to the case of multiple inputs and outputs.
Here we will give a definition for services S and @ that have equal number of inputs and equal
number of outputs. Other possibilities are considered in Section 5.

Definition 3.5 (Service matching; multiple inputs/outputs). Given two services:

Service: S

(@
Request: @ Z:

(

with |Z| =m = |Z| and || = n = |&|, we say that the service S matches the request @ w.r.t. the
ontology 7 (in symbols: 7 = S: Q) if there exist two permutations

X, §:Y; o2,
Z

7, w:W g»’ ®)

g
;oW Wy (7,

7 A{L,...,m} = {1,...,m}
o:{l,...,n} —{1,...,n}

such that the following two conditions hold:
(i) Applicability: 7 = X; J Z,(;, for all i <m, i.e., the type of x; subsumes the type of z,;
w.r.t. the ontology 7.
Intuitively, this means that one can map the inputs of S to inputs of @ so that all input data

that the user intends to provide will be acceptable by S.

(i) Coherence: for any model Z of 7 and any tuples of elements® &,d in Z with |¢| = m and
|d| =n, if 7 = €: Z then the following equivalence holds:

ITlko(d):Y A ®((@),0(d)) if ITlkd:W A UEd).

In other words, the following two formulas with free variables (Z, @ ):

2 N o(@):Y A B(7(2),0()) (4)
Z N WA U(Z, )

Ny Ay

are equivalent w.r.t. 7, i.e., define the same relation in any model of 7. Again, the concepts
X; do not occur here, since they are already used in condition (i).

Intuitively, condition (ii) means that, modulo some re-arrangement of the input and output
vectors, the services ) and S return the same answers on any input that conforms to the
user’s request Q.

Some remarks are in order here. The need to permute inputs and outputs of a service S to
“fit” the ones of @ (so that their types match accordingly) is by no means new—it is present in
any reasonable definition of service matching. Thus, in order to check whether S matches @, a
reasoning system must “guess” two appropriate permutations 7 and o or exhaustively explore all
possible ones.

The notion “S matches @” is not symmetic (since we restrict the service S to inputs that
conform to the request @, not vice versa). This is justified by the fact that it is natural to count
a service S as matching a request Q even if S can perform a more general task, but on inputs
provided by a user it works exactly as user desired.

One would argue that this definition of service matching does not reflect the intuition behind
it (and does not comply with the semantics of service description introduced in Definition 3.3).
Indeed, a real service does not operate with arbitrary elements € of interpretations (i.e., models
of an ontology). Instead, it accepts as inputs and returns as outputs only individual names, i.e.,

1The vector #Z := & plays the role of the input, and @Z := d the output of the requested service Q. Since

# =7(2) and § = o(10), the vector #Z = 7(&) can be considered as the input and §Z = o(d) as the output of the
service S. Here 7(Z) is the permutation of the vector 2, i.e., (zr(1), s Zr(m))-



named objects. Therefore, it would be more natural to formulate the service matching criterion
that takes into account only the behaviour of services over individual names, not over arbitrary
elements of a model. This is done in the definition given below. However, this definition is in fact
equivalent to the one given above, as will be shown in Section 4.

Definition 3.6 (Service matching; ABox-based definition). Given two services:

Service: S = (Z:X;
zZ

SERCICRE
Request: @ = zZ

A w(z @), )

with |Z| =m = |Z| and |§| = n = |&|, we say that the service S matches the request @ w.r.t. the
ontology 7 (in symbols: 7 = S: Q) if there exist two permutations

{1,....m}—={1,...,m}
o:{l,...,n} —{1,...,n}

such that the following two conditions hold:
(i) Applicability: 7 |= X; 3 Z.(;), for all i < m. This condition is the same as in Definition 3.5.

(ii) Coherence: for any ABox A and any tuples of individuals @,b in the knowledge base
KB =(T,A) with |@d| =m and |b| =n, if KB = d: Z, then the following equivalence holds:

KBlEob):Y A ®(r(@),ob)) if KBEbL:W A U(@,b).

Again, this means that, after some permutation of inputs and outputs, the services S and @
return the same answers on any input that conforms to the request Q.

Finally, we give a definition of service subsumption; since we have done much work above, this
definition can be formulated easily. It can be based on either Definition 3.5 or Definition 3.6.

Definition 3.7 (Service subsumption). A service S subsumes (or is more general than) a re-
quest Q w.r.t. an ontology 7 (in symbols: 7 = S 3 Q) if the following conditions hold: take
condition (i) exactly as in Definition 3.5, and in condition (ii), replace the equivalence by impli-
cation, namely, the second formula in (4) must imply the first one.

If we assert in (4) that the first formula implies the second one, then we say that S is less
general than (or more specific than, or subsumed by) the request @ (in symbols: 7 = S C Q).

Intuitively, S subsumes @ iff S accepts all the input data that @ does and on any such an
input, the answers of S contain those of @) (and possibly some additional answers).

Clearly, for many users, a more general service may be equally relevant as exactly matching,
and users would be interested to discover services that subsume their request. For example, after
finding a service S that subsumes his request (), a user may want to find another service that
would extract the answers he needs from those returned by S.

The usefulness of the notion of service subsumption is also justified by the fact that it is unre-
alistic to assume that all web services are supplied with a precise description of their functionality.
Rather, it will be typically the case that, from time to time, a service provider will supplement his
service description with more and more information (e.g., he can add conjuncts into the formula
® or modify the existing conjuncts) in order to increase the accuracy of the description. From this
perspective, it is reasonable to count a service S as matching a request @ even if, according to the
currently available description of S, it is more general than Q.

3.4 Automatic description of service composition

In this section, we will show that, from the service descriptions Si,...,S, that comply with
Definition 3.2, we can automatically construct a description of the sequence of services S10...05,
that again complies with Definition 3.2. This is another important advantage of our approach, since
it decreases the annotation workload for the web service provider. For the beginning, suppose that
we are given two service descriptions in a repository, both having only one input and one output:

S =(x:X; yY; ®x,y))
S =" X"y Y (2 y))



Our task is to formulate reasonable conditions when the composition of services S o S (to be read
as ‘first S runs, then S’ runs on the output produced by S’) is meaningful (i.e., when these services
are compatible) and when it matches a user’s request

Q={(z:Z; w:W; ¥(z,w)).

First, let us give a definition in the style of Definition 3.5, i.e., as if services deal with elements
of a model.

Definition 3.8 (Service composition; model-based definition). A composition of services
S 05" matches a request @Q w.r.t. a TBox 7 if the following conditions hold:

(a) Applicability: 7 = X J Z. This ensures that S accepts all inputs described in the
request (). The concept X will not occur in the remaining part of the definition.

(b) Compatibility: for any model Z of 7 and any elements e, d in Z,
if ITEeZA®(e,dANd:Y  then ZIEd:X'.

This ensures that, if S runs on user’s inputs, then its outputs are accepted by S’. The concept
X’ will not occur in the remaining part of the definition.

(c) Coherence: for any model Z of 7 and any elements e,d in Z, if 7 |= e: Z, then
ITEYedAdW < IEIy(Pley)Ay:Y Ad (y,d))AdY’

This means that, on the user’s inputs, the application of S and then S’ yields the same
answers as @.

Conditions (b) and (c) can be rewritten without explicit referring to models:

(b) TEVz,y(s:ZA®(z,y) Ay:Y — y: X)),
(c) T EVz,w(V(z,w) ANw:W — Jy(®(z,y) Ay: Y AP (y,w)) Aw:Y').

Observe that the notion of service composition is request dependent in the sense that the
composition of services S oS’ is built for a particular request (). This is so because, in general,
the services S and S’ may not be compatible—S may return outputs that S’ cannot accept—yet
on inputs that a user intends to provide, S returns only outputs acceptable by S’. Moreover, the
definition given above suggests to assign to the composition of services the following description:

SoS =(z:X; y:Y'; H(P(z,t) Nt:Y AND'(L,9))),

provided that we have checked beforehand the compatibility of the services S and S’ on the
inputs of the service @ (i.e., condition (b) above). Indeed, conditions (a) and (c) in this case are
precisely the same as conditions (i) and (ii) from Definition 3.4.

Now we give an analogue of this definition in the style of Definition 3.6, i.e., for services that
deal with individuals from an ABox.

Definition 3.9 (Service composition; ABox-based definition). A composition of services
S 05" matches a request Q w.r.t. a TBox 7 if the following conditions hold:

(a) Applicability: 7 = X J Z. This ensures that S accepts all inputs described in the
request (). The concept X will not occur in the remaining part of the definition.

(b) Compatibility: for any ABox A and any individuals a,b in KB = (T, A),
if KBE@ZA®(b AbY  then KBEbX'.

This ensures that, if S runs on user’s inputs, then its outputs are accepted by S’. The concept
X’ will not occur in the remaining part of the definition.



Given two services:
S =(@X; yY; ®(z,y)),
S = (" X'y Y @' (2, y),
in order to describe their composition S o S’ for matching to a request Q:
Q= (2:Z; w:W; ¥(z,w)),
first check their compatibility on the inputs of @:
T EVaVy (2: ZA®(z,y) Ay Y — y: X)

and then annotate the composition S o S’ as follows:

SoS =(x:X; Y I(B(x,t) N Y AD (L,9))).

Figure 1: Automatic description of service composition.

(c) Coherence: for any ABox A and any individuals a,c in KB = (7T, A), if KB |= a: Z, then

KBEY(@acheW —
KB = ®(a,b) Ab:Y A®'(bye) ANe: Y, for some individual b in KB.

This means that, on the user’s inputs, the application of S and then S’ yields the same
answers as Q.

In Section 4 we will show that although these two definitions of service composition are not
equivalent to each other, they are both reducible to standard reasoning problems. The ABox-
based definition suggests the way of describing a composition of services S o S’, as summarised in
Figure 1. Therein, the symbol ‘3¢’ denotes (informally) ‘there exists an individual ¢'; how to define
such an expression formally, and how to reason about it is discussed in [8]. Therein, it is shown
that reasoning with this kind of quantifiers is reducible to query answering and subsumption, and
thus decidable.

More generally, if we are given several services S, ..., .S,, each with one input and one output:
Si = <(EZ X’L? Yy Y;; (I)Z(xv y) >a

then we can easily modify Definition 3.9 accordingly. Condition (b) will say that the outputs
of S1 (on user’s inputs) are accepted by Sa, the outputs of Sy (on inputs coming from Sp) are
accepted by S3, etc. Condition (¢) will look as follows: for any ABox A and any individuals a, ¢
in KB=(T,A),if B a:Z, then KB | ¥(a,c) A c: W iff, for some individuals by, ..., b, in KB,
where by := a and b, := ¢, we have

KB = /\:=1 D;(bi—1,b;) N1 Y.

Finally, this notion of composition of services can be further generalised to the case of several
services having multiple inputs and outputs. No fundamental difficulties arise here, but the notation
becomes cumbersome due to permutations of variables.

4 Decidability of reasoning about services

Here we show that the problems of service matching and subsumption are reducible to the standard
reasoning problem, namely to conjunctive query subsumption (also called query containment).
We also briefly overview the state-of-the-art results on decidability and complexity of the query
subsumption problem for different Description Logics.

4.1 Query subsumption

First we recall briefly the notions of a conjunctive query and query subsumption (see [7] for details
and extensions).



Definition 4.1. A conjunctive query is an expression of the form

q(Z) — G (L@, F)N... ANt(Z, 7)),

where & and ¢ are tuples of (distinguished, resp., non-distinguished) variables, and each term
t;(Z,y) is either w:C or wRz, where C is a concept, R a role, and w, 2z are either are either
variables from the lists #,% or individual names. In other words, a conjunctive query is an
existentially quantified conjunction of ABox assertions about individual names and variables.

In literature, one can find two different, but equivalent, definitions of query subsumption w.r.t.
a TBox. The first one (adopted in [3, 4]) is based on the notion of evaluation of a query. Given an
interpretation Z = (A, %), a query q(x1,...,2,,) is evaluated in T as the following subset of A™:

g ={€eA™ | TEIF (L@ F)A...Ata(€,7))}-

Definition 4.2. A query p(Z) subsumes a query ¢(Z) w.r.t. a TBox 7 (written as 7 = p Jd q)
if, for any model Z of 7, the inclusion p D ¢ holds. Two queries p(Z) and ¢(¥) are equivalent
w.r.t. a TBox 7 (written as 7 |= p = q) if they subsume each other.

The second definition (cf. [1, p. 481]) is based on the idea that queries are used to retrieve
information from knowledge bases, and so it is natural to say that a query p subsumes a query ¢
if the answers of p always contain the answers of ¢ (and possibly some additional ones). Here the
word “always” is understood as “for any KB based on the given TBox”. This definition involves
the notion of the answer set of a query, let us recall it.

Definition 4.3. The answer set of a query ¢(Z) over a knowledge base KB is denoted by ¢(KB)
and defined as the set of all tuples of individuals names that satisfy the query in all models of KB:

q(KB) = {d@ € Const | KB}=q(ad) }.

Definition 4.4. A query p(Z) subsumes a query ¢(Z) w.r.t. a TBox T (written as 7 = p d q) if,
for any ABox A, the inclusion p(7,.A4) D ¢(7,.A) holds.

Lemma 4.5. Definitions 4.2 and 4.4 of query subsumption are equivalent.

PROOF. Suppose we are given a TBox 7 and two queries p(z) and g(z).

(Def.4.2 = Def.4.4) Assume that 7 = p 3 ¢ according to Definition 4.2. Take any ABox A
and show that p(7,.A) 2 ¢(7,.A). Let @ € q(7T,.A), and in order to see that @ € p(7,.A), take an
arbitrary model Z = T + A. By Definition 4.2, the inclusion p D ¢% holds. Since @ € ¢(7,.A),
we have @Z € ¢%, hence @Z € p?, i.e., T |= p(@). This holds for arbitrary model Z of 7 + A, so we
conclude that 7 + A = p(@), i.e., d € p(7T,.A) and we are done.

(Def.4.2 < Def.4.4) Assume that 7 |= p O ¢ according to Definition 4.4. Recall that ¢(Z)
has the form 3y /\f:1 t:(Z,7). Now we introduce fresh individuals @ and b with |@| = || and
Ib| = |7| and define the canonical ABox Ag for ¢(Z) as

A, = {t:@,b) | 1<i<k}

Obviously @ € ¢(7,A,), since T + A, = t;(a, 5) for all 4. Hence @ € p(7, A,).

To show that 7 = p 3 ¢ holds according to Definition 4.2, consider an arbitrary model Z = T
and show that p? D ¢Z. Take any tuple of elements € € ¢Z, i.e., Z = ¢(€), then there exists a tuple
of elements d in Z such that Z |= t;(¢, d ), for all i. Now extend the interpretation Z to the constants
@ and b by putting @Z := & and bZ := d. Then Z = t;(@,b), for all i, and so Z |= T+ A,. Above
we have shown that @ € p(7,.A,), so we conclude that Z = p(@), or equivalently, & = @Z € p?.

Observe that the ‘= implication in this lemma holds for any first-order formulas p(Z) and
q(&), whereas the converse implication is specific for conjunctive queries.

10



4.2 Deciding the service matching problem
Now we are ready to reduce the reasoning about services to the query subsumption problem.

Theorem 4.6 (Reduction). The service matching (resp., service subsumption) problems w.r.t.
an ontology are reducible to equivalence (resp., subsumption) of conjunctive queries w.r.t. a TBoz.

PROOF. We consider only service matching; for service subsumption the proof is carried out anal-
ogously. Condition (i) in Definition 3.5 and 3.6 is the standard concept subsumption (which is
a special case of query subsumption). Now consider condition (ii) in Definition 3.5. Recall that
®(Z, %) in (4) has the form of a conjunctive query. If we write the existential quantifiers explicitly,
then ®(Z,y) has the form 34 F(Z,y,u). Similarly, ¥(Z,@) has the form 3¢ G(Z, 4, 7). Sub-
stituting these expressions into (4) and pushing all quantifiers outside, we obtain two conjunctive
queries with m + n distinguished variables. Therefore, the equivalence of the formulas from (4) in
all models of 7 is the same as equivalence of these two queries w.r.t. 7 (according to Definitoin 4.2).

Similarly, condition (ii) in Definition 3.6 states precisely the equivalence of the same two
queries w.r.t. 7 (according to Definitoin 4.4). Thus, the desired reduction consists of guessing
the assignment (of variables # to some of Z' and @ to some of §) and then checking concept
subsumptions in condition (i) and a query subsumption in condition (ii). =

In theory, this guessing step increases the complexity of service matching in comparison to that
of query subsumption by the factor m™ x n™. However, in practice, the vast majority of services
has small number of inputs and outputs. Besides that, this process is amenable to optimization.
For example, when consecutively trying all possible permutations, if one observes that the type of
x1 does not subsume the type of z; (i.e., the subsumption X; J Z; does not hold w.r.t. 7), then
one can skip all other permutations that map z; to z1.

4.3 Reasoning about service composition

Our aim in this section is to show that the matching problem for composite services introduced in
Definitions 3.8 and 3.9 is reducible to the query subsumption and query answering problem. To
this end, we need some preliminaries on reasoning about queries. Namely, we introduce a notion of
a composition of conjunctive queries, which again comes in two versions — for queries that “deal”
with elements in models or with individuals in ABoxes. Although these two definitions are not
equivalent, we will show that the problem of checking the subsumption relationship between a
composition of queries (for both definitions of a composition) and other queries is reducible to
query subsumption or answering. Finally, we observe that Definitions 3.8 and 3.9 correspond
special cases of the two definitions of query composition, and hence they are equivalent and both
reducible to query subsumption or answering problem. This section is based on the technical
results that are obtained in [8].

Suppose that we want to define the composition of conjunctive queries ¢; (z,y) and g2 (y, z) with
two distinguished variables. If we consider the queries as formulas that define, in each interpretation
T = (AT, 1) a binary relation ¢Z on the set AT (cf. Definition 4.2), then it is natural to define
their composition as a formula that is interpreted in Z as the composition of those binary relations.
Clearly, the following definition achieves this goal.

Definition 4.7 (Query composition; model-based definition). The composition of conjunc-
tive queries g1 (x,y) and ga2(y, 2) is the following conjunctive query:

(1og)(z,2) == y(a(z,y) N2y, 2)).

According to another approach, queries are used to retrieve individuals that satisfy certain
conditions in (all models of) a knowledge base. In this setting, the composition must be defined
in such a way that, given a knowledge base, ¢ o ¢o retrieves a pair of individuals (a, ¢) if and only
if there is an individual b in the knowledge base such that (a,b) satisfies ¢; and (b, c) satisfies ¢s.
This gives rise to the following definition.

Definition 4.8 (Query composition; ABox-based definition). The answer set of the com-
position of conjunctive queries q1(x,y) and g2 (y, z) over a knowledge base KB is defined as follows:

(q1 6 q2)(KB) := {{a,c) | there is an individual b in B such that KB |= ¢1(a,b) A g2(b,¢)}.
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The two definitions just given are not equivalent: the inclusion (g 6 g2) C (g1 o ¢2) always holds,
but the converse inclusion does not hold in general, as follows from the results obtained in [8] (see
item (0) of Theorem 4.2 there). However, what we are interested in is not the composition of
queries per se, but rather in deciding the subsumption relationship between the composition and
other queries. The following theorem, which is a corollary of the above cited theorem, give a
complete answer to these issues.

Theorem 4.9 (Subsumption of composite queries). Let q1(x,y), g2(y,2), and p(z,z) be
conjunctive queries and T a TBox. Then the following conditions hold:

(1) TE@nd@Epiff TEqno@RTp.
(2) An analogous statement does not hold for the converse subsumption ‘1. But the problem
T = pC q1 6 qo is reducible to query answering.

PRrROOF. Take ¢(,y, 2) := q1(,y) Agz(y, z). Then q1 0qs = Iy q(x,y,2) and q1 6 ¢z = y q(x, y, 2).
Now apply Theorem 4.2 from [8]. o
Now we can apply the results obtained. Items (a) in both Definitions 3.8 and 3.9 are concept
subsumption, items (b) in both definitions have the form of query subsumption, Finally, items (c)
in both definitions have the form “q; o go = p” and “qy 6 g2 = p”, resp., for the following queries:

p(z,z) = x:ZANU(x,z) Nz W,
a(zy) = wZAP(z,y)Ay:Y,
QQ(y,Z) = CID’(y,z) /\Z:Yla

and thus reducible to query subsumption or answering, by Theorem 4.9.

4.4 An overview of the complexity of query subsumption

Here we will briefly discuss results on the decidability and complexity of query containment w.r.t.
ontologies. In general, query containment is at least as hard as concept subsumption or satisfia-
bility. Hence, the lower bound for its complexity immediately follows from the lower complexity
bound of a Description Logic itself.

As for upper bounds, there are several results in this direction. In [3] the query containment
problem for the Description Logic DLR,., was explored. This is a logic with n-ary relations
and boolean operations on them, and regular expressions for binary relations. The logic itself is
ExpTime-complete, whereas the upper bound for query containment is shown to be exponential in
size of TBox and double exponential in size of queries. To be more exact, the problem of checking
that 7 |= ¢ C p is shown to have the complexity exp(polynom(|7|x |¢|'?!)). In that paper, however,
only so-called simple properties are allowed in query terms. Hence it does not completely suite our
setting: most of our example services involve a transitive and thus non-simple property hasPart.
It is also proved there that if we allow inequality in queries, then the problem becomes undecidable.

In [4], the query containment problem for the logic DLR was reduced to checking ABox satis-
fiability for the same logic, which, in turn, was reduced to knowledge base satisfiability for the DL
SHZQ. The latter problem is successfully solved using an implemented highly optimised reasoner
FaCT. However, it suffers from the same restriction to simple properties in queries.

In a recent paper [2], the complexity of query answering and query containment was explored.
For many fragments of expressive Description Logics, the data complexity was studied, i.e., the
complexity of the query answering in size of ABox. Numerous results (from LogSpace to coNP)
were presented for queries with possibly non-simple properties.

Continuing this line of research, in [11] the upper bound for data complexity of query answering
is established for the DL SHZ Q, namely, it is shown that this problem is coNP in the size of the
ABox. As for the complexity of query containment, the results obtained in [11] for the logic
SHZQ state the following: if the underlying knowledge base has no transitive relations, then the
complexity is 3coNExpTime in size of the knowledge base; otherwise there are some difficulties in
obtaining the complexity estimates for query answering.

There is ongoing work on obtaining tight upper complexity bounds for various Description
Logics. In particular, for the DL SHOZ Q, which is the underlying logic of the W3C recommended
web ontology language OWL-DL, the upper complexity bounds are investigated, as well as tableaux
algorithms are been devised.
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Summing up, service matching w.r.t. OWL ontologies is known to be decidable, and decision
procedures for this problem are available. Yet, to the best of our knowledge, neither tight com-
plexity bounds nor an implementation are currently available.

5 Generalisations of service matching

First of all, we give a more general definition of service matching, which is applicable to the case
when some inputs in the user’s request ) and/or some outputs of the service S are “redundant”.
We assume that, when invoking a service, a user will not need to “convert” inputs and outputs,
or build a complex input from simpler ones, or extract a simpler output from a complex one. In
other words, inputs and outputs are passed between a user and a service “as is”. This justifies the
assumption, in definitions below, that the number of inputs of the service S is not greater than
the number of inputs of the service @), whereas the number of outputs of the service S is not less
than the number of inputs of the service (). How to deal with cases when these inequalities do not
hold is discussed later in this section.

Definition 5.1 (Service matching, redundant inputs/outputs). Given two services:

Service: Sz(f:)?; 7:Y; (Z,7)), (6)
Request: Q= (z:Z; :W; ¥(Z, @

with |Z| < |Z] and || = |@W |, we say that the service S matches the request @ w.r.t. an ontology 7
(in symbols: 7 = S: Q) if there exist two injective mappings

such that if we denote .
Z'=(2r1)y s Zr(m))s 2

¥ = (Zo(1)s+» Za(n))s y' =
then the following two conditions hold:

(i) Applicability; 7 = X; 3 Z,(;, for all i < |Z], i.e., the type of z; subsumes the type of z,(;
w.r.t. the ontology 7.

This means that one can assign each input x; of S to some input z;(;) of @ in such a way that
all input data that the user intends to provide will be acceptable by S. Since |Z| < |Z], such
an assignment 7 is possible combinatorically. In particular, here one determines those inputs
7" in the request @ that will be submitted to the service S, and the “redundant” ones 7.

!’

(ii) Coherence: The following two formulas with free variables (Z,7’) and (Z’, @), resp.:

(22 N B(E, ) A F:Y) )
(2 Z N V(Z, W) A dW)
are equivalent w.r.t. 7, i.e., represent the same relation in any model of 7, if we identify the
vector of variables ¥ = (x1,...,2m) With 2/ = (z;1), .., 2r(m)) and ¥ = (25(1), -+ -, Zo(n))
with @ = (wy,...,w,). Again, the concepts X; do not occur here, since they are already

used in condition ().

Intuitively, condition (ii) means that, after dropping “redundant” inputs of the request @) and
“redundant” outputs of the service S and permuting the remaining inputs and outputs, the
services @ and S will return the same answers on any input that conforms to the request Q.
Note that we get rid of the “redundant” inputs and outputs by existentially quantifying over
them, as can be seen from formulas (7).

Now we consider the remaining cases for the numbers of inputs and outputs. Suppose that
|Z] > |Z], i.e., the service S requires more input arguments than the user @ is able to provide.
Then a possible solution is to “instantiate” some inputs of S with constants (individual names) and
thus decrease the number of inputs required by S. This discussion leads to the following notion.
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Definition 5.2 (Service instance). Given a service S := (Z: X;7:Y;®(Z, 7)), a partition of its
inputs? ¥ = #’Z", and a tuple of individual names @ of the length |@ | = |#'| such that KB | @: X’
(“type matching” condition), the following service is called an instance of the service S:

Sl )z = (&":X"; §:Y; ®@,z",7q)).

If a user submits a service request ) to a search engine (SE), and the SE finds in repository a
service S that has more inputs than @, then the SE can try to instantiate S with some individual
names. Afterwards, the SE verifies whether the service instance obtained in this way matches (or
subsumes or is subsumed by) the service request Q.

Example 5.1. Suppose that the service S takes as inputs the name of a UK citizen and a city of
his/her residence, and returns the names of all his/her children. The description of this service is:

S = (x7: Person, x: City M JisLocatedIn.UK;
y: Person; xy livesln 29 A 1 hasChild y ).

A user requests for a service () that retrieves the names of children of any women living in
Liverpool, and he describes his service as follows (the user did not specify the type of output, and
the system takes T as a default type):

@ = (z:Woman 1 JlivesIn.Liverpool; w:T; =z hasChild w).

Obviously, the service S is suitable for user’s purposes, even though it has more inputs than the
user is able to provide. We will show now that notion of service instance we introduced works
properly in this situation.

We assume that, in the background ontology B, the concept Woman is defined as Person I
Female, there is an axiom Person C V hasChild.Person, and the assertions Liverpool: City and Liverpool
isLocatedIn UK are stored in the ABox of the XB. We also need a concept inclusion axiom

dlivesIn.disLocatedIn.UK C dlivesin.UK
or a more general complex role inclusion axiom:
livesin o isLocatedIn C livesin.

A search engine, using its reasoning system, infers from these facts that KB = Liverpool: Xs.
Then the SE “instantiates” the variable x5 in .S with the constant Liverpool and obtains a service
S’ := S|z /Liverpool] having only one input z;. Afterwards, the SE verifies that the service
obtained in this way indeed matches the request @), namely:

(i) KB = X1 3 Z, i.e. that Person subsumes Woman 1 JlivesIn.Liverpool;

(ii) if we substitute Liverpool for z5 in S, then the equivalence of the corresponding formulas
in (7) becomes almost trivial.

After all these conditions are verified, a SE returns S as an “appropriate” service to a user,
together with informing him which inputs and outputs of S correspond to inputs and outputs of @,
as well as how to instantiate extra inputs of S.

Another option (in the same case when |Z| > |Z|) is to merge some inputs of S, provided that
their types are compatible. The inputs x; and x; have compatible types if the concept X; M X is
satisfiable w.r.t. the ontology 7. The corresponding definition is rather easy to formulate, and we
leave the details to the reader.

Next, suppose that |¢/| < |[&|, i.e. the service S has less outputs than a user desired. In this
situation, it is reasonable that a SE does not reject such a service S, but tries to find out whether
S produces at least part of outputs suitable for user. To be more exact, SE can verify whether
S matches (or subsumes) a service ' obtained from ) by dropping some its outputs (but still
preserving their relation to inputs and remaining outputs). In this case we will say that a service
S partially matches (resp., subsumes) a query (. These notions are based on the following one.

2 Although this notation does not reflect the order of variables (the variables &’ can alternate with &’ in the
list Z), we use it for simplicity.
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Definition 5.3 (Subservice). Given a service Q = (Z: Z;@: W; ¥(Z,17)), and a partition of its
outputs W = w'w", the following service is called a subservice of Q:

Q38" = (Z:Z; @ W'; " (@"- W' ANV(Z,7))).

All the definitions given in this section do not introduce any new reasoning problem. Rather,
they are reduced to service matching and subsumption defined earlier. The reduction consists in
guessing of a subtuple of inputs of S that should be replaced by constants (and finding suitable
constants), or in finding a subtuple of outputs of @ that can be produced by a service S. A priori,
we need to look through an exponential number of subtuples of a tuple of inputs (or outputs).
However, since we are concerned with typed inputs and outputs, this can decrease an algorithm
complexity drastically, for, in general, only a small number of inputs or outputs of two services
can correspond to each other w.r.t. their types.

6 Extentions to service description

In the subsequent sections, we consider several extensions to the service description framework
introduced above. Although these extensions are considered separately, this is done only for sim-
plicity purposes, and one can readily combine various extensions together. This is mainly due
to the fact that reasoning about these extra items in service descriptions is usually carried out
independently from each other.

6.1 Services with structured outputs

Recall that, according to Definition 3.3, a service returns a set of outputs satisfying some conditions.
However, a realistic web service does not behave like this; instead, it returns output values (tuples)
successively one by one, or returns a file (or table, etc.) containing the output values in some
order. This order can be either arbitrary (depending on some occasional circumstances, like order
of the data stored in a database, or the order in which other invoked services have replied, etc.)
or a predefined order w.r.t. some (linearly ordering) relation (say, a list of names in alphabetic
order, or a list of goods from cheapest to more expensive, etc.). There can be imagined non-
linearly ordered data types like trees and multi-dimensional arrays. Here we generalize the notion
of service description to (partially) capture this expressivity.

Definition 6.1 (Service with structured output). A service with structured output is a formal
expression of the form
Sf<:17XyY (2, 7); AR>

where, in addition to ordinary service (cf. Definition 3.2), we have finite lists of concept names
A= (Ay,..., A) and role names R = (Ry,..., Ry).

The semantics of this description is that, given a tuple of individuals @ of the type 2 X _the service
returns as its output the set of all tuples b of individuals that satisfy the condition b:Y A <I>(a b)
and, additionally, the service returns the full atomic diagram of the set Obj in the language {A, R},
where Obj is the set of all individuals occurring among the returned tuples b. In other words, the
service provides the answers, for each individual in Obj, whether it is an instance of A4; (for every 1)
and, for each pair of those individuals, whether they are in R; relation (for every j).

Example 6.1. A service returns a set of (names of) all children of an employee of a certain
company, and R consists of the only one role name isYoungerThan (or, AlphabeticallyPreceds). We
know that this relation is a linear order (and we assume that the background ontology contains the
corresponding axioms). Therefore we can say that a service returns a set of (names of) children
together with the linear order on them according to their age (resp., alphabetical order). Given this
kind of output, a user (or a shim-service) can readily reorder the output data of the service into a
list or array or any other data type suitable for a user in accordance with that linear order. From
this perspective, we do not need to explicitly consider these numerous data types and translations
between them, and leave it to an implementation level.

The notion of service matching is naturally extended to this kind of services as follows.
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Definition 6.2 (Structured service matching). Given two services with structured outputs:

S=(1:X; 7:¥; o(.9); A R) ®
Qz(E:Z; 1U:V_[7; V(2,0 ); é, }3>,

with |Z| < |Z]| and |§| > ||, we say that the service S matches the request @ w.r.t. an ontology 7
if conditions (i), (ii) from Definition 5.1 hold together with the following condition:

(iii) there exist two injections
o {1,...,|1§|}_>{1,...,|4’|}
B:{L,...,|P|} = {1,...,|R|}
such that 7 |= B; = A,y and T |= P; = Ryj), for all i < |B| and j < |P|.
Intuitively: each additional concept_'name _,BZ and role name P; in @ is equivalfnt to_‘some
concept name and role name from A and R in S. In particular, we have that |A| > |B| and

|| > |P|, i.c., we allow the output of the service S to be “more structured” than it was
required in the user’s request Q).

6.2 Services with boolean outputs

Sometimes it can be too resource consuming for a service to return the whole set of output values
satisfying some conditions. Instead, for a given input, a service may evaluate a certain formula
and return a boolean value. An important class of services of this kind is the family of services, in
which these formulas are conjunctive queries (see Definition 4.1).

Definition 6.3 (Boolean service). A service with boolean outputs (or boolean service, for short)
is a formal expression of the form

S=(Z:X; (7)),
where #: X is a typed tuple of input variables, and 7)) = {1 (Z),...,q(Z)) is a list with each
¢;(Z) being a conjunctive query with the distinguished variables among & .

The semantics of such a description is that, for an input @ of the type X , the service S returns
a tuple of boolean values corresponding to the queries ¢'(@).

Note that we have dropped all other ingredients of a service description here, since one can
easily combine various extensions of the basic notion of service (see Definition 3.2), as we already
mentioned at the beginning of Section 6.

Definition 6.4 (Boolean service matching). Given boolean services S := (: X;7 (%)) and
Q := (Z:Z;7 (%)) with |Z| = |Z| and |F| < |7], we say that the service S matches the request Q
w.r.t. an ontology 7 if condition (i) from Definition 3.5 holds and there exists an injection
m:A{L ..., |p|} — {1,...,|q]} such that T = p;(7(Z)) = ¢x(;)(¥) for all i <|[p]|, where 7 is the
permutation from condition (i).

Intuitively, modulo permutations of inputs and outputs and after removing “redundant” outputs
of S, the services S and () return the same answers on each input that conforms to the request Q.

Clearly, this definition does not introduce any new reasoning problems — the problem of match-
ing boolean services is reducible to query subsumption w.r.t. an ontology.
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7 Related work

In this section we compare the service description formalism presented in this paper to other
approaches to the service discovery problem, namely the ones based on OWL-S and WSMO. We
argue that, on the one hand, our framework is compatible with them and can be incorporated into
them with little effort; on the other hand, it adds extra expressivity in description of functionality
of web services, without need to increase the expressivity of the underlying language.

7.1 OWL-S Service Matchmaking
To be done.

7.2 WSMO Web Service Discovery

The service discovery framework based on the Web Service Modeling Ontology (WSMO) is de-
scribed in [12] (with implementation issues considered in the unfinished work [13]). To align our
framework to WSMO, one should keep in mind the difference in terminology: in [12], a service
advertisement and request are referred to as a service and a goal.

Furthermore, they make a strict distinction between service discovery and web service discovery;
we recall it briefly by virtue of an example. If a customer wants to travel from one city to another,
then he is looking for a service (an airline, a train, or a bus company) that can provide this to him.
For this aim, a customer is looking for a web service that can help him to find that service (e.g.,
by providing information or allowing to buy a ticket, etc.). The latter search is based on semantic
annotation of web services. The principal consequence of such a distinction is that the semantic
annotation of a web service should not contain the exhaustive information about all the services
(or databases, or knowledge bases) it allows to access. In our example, the description of a web
service need not contain the complete information about available departures, destinations, times,
prices, etc. To put it in another way, web service discovery should not try to replace or duplicate
the functionality of the services (or databases).

Both the WSMO approach and our framework comply to this requirement. Indeed, we do not
include a complete set of pairs “input—output” into a service description, but rather specify, in a
generic way, the relationship between inputs and outputs of a web service. On the contrary, it is
pointed out in [12] that the approach proposed in the paper [14] assumes a superfluously detailed
(neither realistic, nor desirable) annotation of web service.

In [12], three approaches to service discovery are considered, which require different effort in
annotation of services and requests and deliver discovery results of different accuracy. The basic
one — the keyword-based discovery — briefly considered there and is not of much interest to us as
well. The other two are based on so called “simple” and “rich” semantic description of services.

Simple Semantic Description of Services
A simple semantic description of a web service or a request consists of two components:

o (a description of) a set of relevant objects;
e an intention, which can be either existential (3) or universal (V).

Relevant objects are objects that a service provides information about, or objects that a user
wants to know about. This set can be described by a DL concept or, more generally, by a formula
in some (e.g., first order) language. For example, if a service provides (or a user wants to find)
information about flights between European cities, then the set of relevant objects is (cf. [12, p. 16])

{ f | 3s,e(flight(f,s,e) A isLocatedIn(s, Europe) A isLocatedIn(e, Europe)) },

where flight(f, s, e) is the relation “f is a flight from location s to location ¢”. Notably, the formula
in this example has the form of conjunctive query. But this is only a coincidence, as one can easily
imagine a service that provides information about flights or train services.

From the exposition in [12], however, it is not clear how the set of relevant elements is related
to the outputs of a service (but these notions are definitely not the same, in general), and there is
no clear explanation of how one can systematically assign a set of relevant objects to a service. For
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instance, what is the set of relevant objects for the service “given a name of a region, return the list
of wines that are produced in that region”? Apparently, it is not the class Wine, nor GeoRegion.
The most relevant would be the set of pairs (r,w) with r being a region and w a wine that is
produced in r. But this is precisely how we propose to describe services in our framework: this
set of pairs is specified by the formula ®(r,w). More interesting question is: how could one assign
relevant objects (other than pairs) to services so that to distinguish the previous service from the
following: “given a name of a region, return the list of wines that are sold in that region”?

If we forget about the second component (intention) in service descriptions, then services are
matched by checking the equality (or inclusion, or intersection) of the sets of relevant objects
specified by a service provider and requester. The intention component was introduced in order to
add extra flexibility in describing services or requests. If a provider advertises his web service with
the intention V (resp., 3), this means that he guarantees that the service delivers information about
all (resp., some, but not necessarily all®) objects from the set of relevant objects. Similarly, if a
user formulates his request with the intention V (resp., 3), then he needs an information about all
(resp., some, but not necessarily all) relevant objects. In the case of a request with the intention 3,
the user will be satisfied if he finds a service that delivers information about at least one relevant
object, whereas the intention V indicates that he will be satisfied only after finding a service (or a
group of services) that provide (altogether) information about all relevant objects.

The matching conditions that take the intention component into account can be built on top of
a “usual” matching condition in a straightforward way. In [12], this is done explicitly for the case
of simple service descriptions;* for “rich” descriptions (see below), it is said that it can be done
analogously. Several kinds of the notion of match are considered in the cited paper, where the
intention component plays an important role. Namely one can distinguish between ezact match
(service delivers all the requested information), subsumption match (service delivers only part of
the requested information, and nothing “irrelevant” to the request), plugin match (service delivers
all the requested information and, possibly, some irrelevant information), and intersection match
(service delivers at least some of the requested information and, possibly, some irrelevant one).

Let us show that the intention component can be naturally built into service descriptions
within our framework. Definition 3.2 of a service is extended by a new component o € {3,V}. In
Definition 3.3, we say (in item 2) that a service s implements a description S if it returns all (for the
case o = V) or some (for the case o = 3) tuples b that satisfy the condition KB |=b:Y A ®(a,b).
Now consider two service descriptions from Definition 3.4 enriched with intensions:

Service: S =(x:X; y:Y; ®(x,y); a), ()
Request: Q= (z:7Z; w:W; U(z,w); B),

where «, 5 € {3,V}. Definition 3.4 itself can be regarded as giving the matching conditions for
the case « = 8 =V. If 8 = 3, then (whatever « is) the service S matches the request @ if, on any
input of @, all answers of S are contained in answers of @), i.e., when S is less general than
according to Definition 3.7. Finally, in the case « = 3 and 8 =V, we cannot guarantee a perfect
match, and we can only say that S partially matches @ (i.e., the subsumption match holds here).

Rich Semantic Description of Services

As opposed to the simple descriptions presented above, where a service characterised by a single
set, here the relationship between inputs and outputs is taken into account. Hence these rich
descriptions are closer to our framework. However, a service request is still modelled as a single
set (the desired information).

According to [12], a rich semantic description of a web service with n inputs and one output
(for several outputs, the definition extends in a straightforward way) consists of two components:

e an (n + 1)-ary predicate w(¥,y);
e an intention, which can be either existential (3) or universal (V).

3This may happen if, for instance, a service is supplied with a incomplete (temporary) annotation, which is
subject to further refinements.

4By considering 5 different relationships between the sets of objects relevant to a request (R) and to a service (W),
namely equality (R = W), inclusions (R C W or R 2 W), intersection (R N W # @) and disjointness (R N W = @),
and 4 different combinations of intensions. In total, 20 combinations are considered.
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The meaning of w(Z,y) is that the value y will be delivered by the web service if it is invoked with
the input values Z. In the simplest case, it can be given by a single formula (cf. [12, p. 34]):

w(i,y) = Yre(F) AYPe(E ),

where ¢P"¢(Z ) and P! (Z, y) are arbitrary first-order formulas describing pre- and post-conditions.
Now it is easy to observe that preconditions ¥P"¢(Z) correspond to what we called types of inputs
7 X , with the only difference that in our framework, these types are DL concepts, not arbitrary FO
formulas. Furthemore, 1)?°5*(Z,y) corresponds to our conjunction y: Y A ®(F,y), again restricted
syntactically to a conjunctive query over a DL (see also the discussion after Definition 3.3).

In contrast to this rich description of services, requests are still described by a set of relevant
objects, and this set is defined by an arbitrary first-order formula g(y). From this one can conclude,
in particular, that here and in the previous approach with simple descriptions of services, the set
of relevant objects is nothing more than the set of outputs of a service, or more exactly, the
union of its outputs over all possible inputs. Now it remains to observe that, for a service of
the form S = (Z: X;y:Y; ®(Z,y)), this union is equal to the set defined by the formula g(y) :=
37 (fX A ®(Z,y) Ay:Y), which has the form of a conjunctive query with one distinguished
variable y and describes a service with no inputs and a single output. Therefore, it becomes
evident that the “simple semantic description” approach is embedded (except for the restriction
of the underlying language) into our framework as a special case for services with no inputs and a
single output (indeed, the matching condition in this approach coincides with that in our framework
for this special kind of services).

The notion of service matching within this approach is twofold: given a service described by
a formula w(Z,y) and a request g(y), one is interested in whether the service w can produce the
requested information in a single execution or in multiple executions. We will discuss here only the
notion of exact match, since it extends to other ones (plugin match, etc.) in an obvious way. We
also leave the intention component of descriptions apart, as it is always clear how to handle it.

The matching condition for the case of a single execution is: there exists an input tuple £ such
that the set of outputs returned by the service on the input & coincides with the requested set.
This can be expressed by the formula:

T = 3y (g9(y) < w(@,y)).

In fact, this “pure” existential quantifier does not reflect the intuition behind the matching con-
dition we define. Even if we check this entailment, the user is interested in executing the service
with the suitable input. Hence he wants not only to know that such an input exists, but to have
it explicitly, as a tuple of individual names. Therefore, it is more appropriate to reformulate the
condition as follows: there exists a tuple of individuals @ such that the set of outputs returned by
the service on the input @ coincides with the requested set: 7 = ¢g(y) = w(d,y). Clearly, this is
the notion of service instance (as introduced in our Definition 5.2) matching another service.

For the case of multiple executions, the matching condition is: an element is in the requested
set iff it is returned by the service on at least one input. This is expressed by the formula:®

TE Yy(g(y) < T w(@,y)).

As follows from this definition, in order to obtain the whole requested information, one should
need a potentially infinite number of invocations of the service with different inputs (since the set
defined by the formula g(y) has no restrictions on cardinality). On practice, however, the requested
information is always finite, since it is returned as the set of individuals, and there is a finite number
thereof in a knowledge base. Therefore, a more suitable would be the following formulation of this
matching condition: an individual is in the requested set iff it is returned by the service on some
tuple of individuals as an input; formally, 7 | g(y) = 3z w(Z,y) (we use the notation from [8],
where it is also shown that this kind of problem is reducible to standard reasoning problems).

5Tn the cited paper, this matching condition is written as Yy3% (g(y) « w(Z,y)), cf. formula (13) in [12], which
is an obvious mistake: this formula can be equivalently rewritten as

Yy [(g(y) — IFw(,y)) A (mgly) — IF-~w(Z,y))].

Its first conjunct is correct, but the second one says: for any element y beyond the requested set, it is not returned by
the service on at least one input (whereas it should not be returned at all). A similar mistake occurs in formula (15)
in [12], which is actually identical to the second conjunct of the above conjunction.
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On the expressivity of the underlying language

In [12], it is also pointed out that one of the advantages of their approach is that the language
for describing services and requests is not fixed: the set of relevant objects may be defined in a
way not expressible in DLs. Although this yields to higher generality and increase in expressiv-
ity, the drawbacks are the possible loss of decidability and thus the limited possibility (or even
impossibility) to build an automated service discovery engine.

Generally speaking, the logical part of a framework and a choice of the underlying object
language are quite mdependent In particular, in our framework, we could also allow the types of
inputs X and outputs Y to be not DL concepts, but arbitrary formulas with free variables £ and
7, resp., and ®(Z,7) to be a formula. Following this way, we do not need even to modify any other
definitions (except for considering arbitrary theories instead of knowledge bases). Also note that,
strictly speaking, service descriptions in our approach are not pure DL (i.e., tree-like) expressions:
in order to describe relationships between inputs and outputs, we had to invoke conjunctive queries,
which may not be tree-like only, but are cyclic in general.

Our choice of the object language is supported by two reasons. First, it should lead to a
decidable notion of service matching. At the same time, no decidability or complexity results are
obtained in [12] or, to the best of our knowledge, in any later papers on this approach. However,
this is one of the main objectives in building a service discovery formalism.

Secondly, the generality of the approach should be as high as is necessary for its applications, so
that one should be able to use the standard ontologies that are developed (or under development)
for many application domains that are formulated using expressive DLs.
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