
Query Answering Based on
Modal Correspondence Theory

Evgeny Zolin

School of Computer Science
University of Manchester

Manchester, UK
ezolin@cs.man.ac.uk

Abstract. We propose a query answering technique applicable to a wide
family of cyclic conjunctive queries with one distinguished variable. It
exploits the fact that, given such a query, one can build in linear time a
concept of some Description Logic (DL) such that to answer the query
w.r.t. any knowledge base (KB) is the same as to find all instances of that
concept. Notably, the method is uniform: the concept does not depend
on a KB and even on a DL in which the KB is formulated. Thus, for these
conjunctive queries, the problem of query answering is reduced to concept
instance retrieval, which in turn is reducible to KB (un)satisfiability. The
technique presented here is based on the modal correspondence theory
(and close relationship between modal and description logics) and can
be regarded as a practical application of that theory.

1 Introduction

Description Logics are family of knowledge representation formalisms closely re-
lated to first-order and modal logics. Most of them can be viewed as decidable
fragments of the first-order logic. Their complexity was thoroughly investigated,
and practical reasoning algorithms were designed (e.g., [9, 11, 14]) and imple-
mented as highly optimised reasoning systems, e.g., Racer [7], FaCT [8], and
Pellet [18]. Typical reasoning services provided by these systems are checking
KB satisfiability, concept subsumption (and building a taxonomy, i.e., a com-
puting subsumption relationships between all concept names occurring in a KB),
concept instances retrieval etc. (see [1, Chap. 8] for an overview).

Among reasoning tasks, querying is a fundamental mechanism for extract-
ing information from a KB. Two most important reasoning services involving
queries—query answering and query containment, also called subsumption—
were extensively explored [3–6, 10, 12, 17], but have not got a complete solution.
A typical obstacle is the presence of cycles in a query (cf. [6]). In general, query
containment and answering are reducible to each other and are at least as hard
as concept subsumption or satisfiability problems (whence their lower complex-
ity bounds). However, to the best of our knowledge, no tight upper bounds for
their complexity are obtained so far. To illustrate the situation, recall that the
Description Logic SHIQ is known to be ExpTime-complete [11]. At the same

time, the complexity of query answering over SHIQ KBs is shown in [5] to be
3coNExpTime, if a KB has no transitive roles, and 4coNExpTime otherwise.

In this paper, we concentrate on the query answering problem. We show that
that for a wide family of conjunctive queries (with one distinguished variable) one
can build in linear time a concept (usually, in a very simple DL) whose instances
are exactly the answers to the query (w.r.t. any KB). As a consequence, within
this family, the query answering problem is reduced to concept instance retrieval,
which in turn is reducible to KB unsatisfiability. Note that the reduction is
applicable to many cyclic queries, and the resulting concept is not in general
equivalent to the query. The technique presented here is based on the modal
correspondence theory; this theory explores the relation between the properties
of frames expressible in modal and first-order languages.

To illustrate the method, consider the following instance retrieval request:
KB |= a: (¬X t∃R.X), where the concept name X does not occur in the knowl-
edge base KB. The task is to find all individuals a (called constants in first-order
logic) occurring in KB that belong to the concept ¬X t ∃R.X in any model
of KB. It is not hard to show that exactly thos individuals a will be retrieved that
satisfy (in all models of KB) the condition aRa. Hence, the concept ¬X t ∃R.X
can be used for answering the cyclic query q(x) ← xRx. Similarly, the request
KB |= a: (∃R.¬X t ∃S.X), where X does not occur in KB, returns exactly those
individuals a that are answers of the query q(x) ← ∃y(xRy ∧ xSy). Thus, con-
cepts involving fresh concept names can be used to compute the answers of even
cyclic queries.

Now recall from modal logic that the formula p→ ♦p is valid at a point e of a
frame iff this point is reflexive, i.e., eRe holds. Similarly, the formula �Rp→ ♦Sp
is valid at a point e iff there is a point d such that eRd and eSd holds, i.e.,
e satisfies the first-order condition α(x) := ∃y(xRy ∧ xSy). Comparing this with
the above observations, we can generalise it as follows: whenever the validity of
a modal formula at a point of a frame is equivalent to some first-order condition
(and this condition has the form of conjunctive query), we can use this fact
for query answering. This is the main result of this paper (Theorem 7), and an
open question is whether the converse implication holds. An important feature
of this approach is its uniformity: a concept used to answers a query is not only
independent of a KB against which the query is answered, but also independent
of a DL in which a KB is formulated. Therefore, extending the expressivity
of a DL does not destroy our query answering algorithm (in contrast to other
approaches where, e.g., introducing transitive roles can invalidate an algorithm).

In the next section we recall some notions concerning DLs and query an-
swering. Section 3 contains the main theorem of the paper, which enables us to
transfer results from modal correspondence theory to query answering. As an
application, Sect. 4 and 5 present two families of queries that can be handled by
this approach. As a by-product, in Sect. 5 we obtain an (at least syntactic) ex-
tension to the well-known in modal logic Sahlqvist theorem. Numerous examples
of queries captured by this technique are shown in Sect. 6. We give conclusions
and an outlook in Sect. 7. An Appendix contains all the proofs.

>I = ∆I {a}I = {aI} (C uD)I = CI ∩DI

(¬C)I = ∆I \ CI (R−)I = {〈e, d〉 | 〈d, e〉 ∈ RI}
(>n R.C)I = { e ∈ ∆I | #{d ∈ CI : 〈e, d〉 ∈ RI}> n }

Fig. 1. Semantics for Description Logics.

2 Preliminaries

First let us recall the notions related to the DL ALC and its extensions.

Definition 1. (Syntax) The vocabulary consists of finite sets of concept names
CN, role names RN, and individual names IN (also called as constants). Concepts
of the logic ALC are defined by the following syntax:

C ::= > | A | ¬C | C uD | ∃R.C,

where A is a concept name, R a role name, and C and D are concepts. Other
connectives are taken as customary abbreviations, e.g., (C tD) := ¬(¬C u ¬D),
(C → D) := ¬(C u ¬D), ⊥ := ¬>, ∀R.C := ¬∃R.¬C.

A terminology (or a TBox) T is a finite set of axioms of the form C v D,
where C,D are arbitrary concepts. An ABox A is a finite set of assertions of
the form a:C and aRb, where a, b ∈ IN, C is a concept and R a role. Finally, a
knowledge base KB = 〈T ,A〉 consists of a TBox T and an ABox A.

Appending the letters I, Q, O, or H to the name of the logic refers to the
following syntax extensions:

I: inverse roles: if R is a role, then R− is a role;
Q: qualified number restrictions: if R is a role, C a concept, and n > 0, then

(>nR.C) is a concept; then we can use an abbreviation ∃R.C := (>1R.C);
O: nominals: if a ∈ IN, then {a} is a concept;
H: role hierarchy : axioms of the form R v S are allowed in a TBox.

Replacing ‘ALC’ with ‘S’ in the name of a logic refers to allowing transitive
roles, i.e., axioms of the form Trans(R) in a TBox. To maintain decidability,
in presence of S, H, and Q together, the restriction is imposed on the concept
syntax: expressions of the form (>nR.C) are regarded as well-formed concepts
only if the role R has no transitive subroles w.r.t. given TBox (cf. [9]).

Definition 2. (Semantics) An interpretation I = (∆I , ·I) consists of non-
empty domain ∆I and an interpretation function ·I that maps:

– each constant a ∈ IN to an element aI ∈ ∆I ,
– each concept name C ∈ CN to a subset CI ⊆ ∆I ,
– each role name R ∈ RN to a binary relation RI ⊆ ∆I ×∆I ;

and is extended to all concepts and roles by inductive clauses shown in Fig. 1. The
unique name assumption (UNA) is customary made, i.e., only interpretations
mapping distinct constants to distinct elements of the domain∆I are considered.

An interpretation I satisfies an axiom C v D, R v S, or Trans(R) resp., if
CI ⊆ DI , RI ⊆ SI , or the relation RI is transitive, resp.; I satisfies an assertion
a:C or aRb if aI ∈ CI or 〈aI , bI〉 ∈ RI , resp. An interpretation is a model of a
knowledge base if it satisfies all its TBox axioms and ABox assertions. The fact
‘I satisfies Φ’ is written as I |= Φ. A knowledge base KB entails Φ (written as
KB |= Φ) if, for all models I of KB, we have I |= Φ.

Definition 3. (Queries) A conjunctive query is an expression of the form1

q(~x) ← t1(~x, ~y) ∧ . . . ∧ tn(~x, ~y),

where ~x, ~y are tuples of (distinguished , resp., non-distinguished) variables, and
each atom ti(~x, ~y) is of the form w:C (concept atom) or wRz (role atom), where
C is a concept, R a role, and w, z are either variables from ~x, ~y or constants. The
arity of a query q(~x) is the number of its distinguished variables: ar(q) := |~x|.
Queries of arity 1 are called unary. Given an interpretation I = 〈∆, ·I〉, a query
q of arity m is interpreted as follows:

qI := { ~e ∈ ∆m | I |= ∃~y (t1(~e, ~y) ∧ . . . ∧ tn(~e, ~y)) }.

The answer set of a query q(~x) w.r.t. a knowledge base KB is defined as the set
of tuples of constants satisfying the query q in all models of KB:

ansKB(q) := { ~a ∈ IN | KB |= q(~a) }.

Note that the answer set is always finite: | ansKB(q)| 6 |IN|ar(q), and corre-
sponds, in a model I of KB, to a subset (a named part) of qI , i.e., the inclusion
ansKB(q)I ⊆ qI always holds.

It is worth saying that the query answering problem is closely related to the
query subsumption problem addressed by many researches [3, 10]. Recall that
a query q(~x) subsumes a query q′(~x) w.r.t. a KB (written as KB |= q w q′) if
qI ⊇ q′I holds for every model I of KB. In fact, these two reasoning problems
are reducible to each other. Indeed, a tuple ~a belongs to the answer set of q(~x)
iff the subsumption KB |= > v q(~a) holds. Conversely, given a subsumption
KB |= q(~x) v q′(~x) to be tested, let ~y be the list of non-distinguished variables
in q(~x). Then we introduce tuples of fresh constants ~ax and ~ay corresponding to
~x and ~y, resp., and define the canonical ABox Aq for q as the set of atoms of
q(~x) with constants ~ax and ~ay substituted for variables ~x and ~y:

if q(~x) =
∧n

i=1 ti(~x, ~y) then Aq := { ti(~ax, ~ay) | 1 6 i6 n }.

Then it is not hard to show that KB |= q v q′ iff the tuple ~ax belongs to the
answer set of q′(~x) w.r.t. the knowledge base KB ∪Aq, i.e., KB ∪Aq |= q′(~ax).

1 The existential quantifier ∃~y in front of the r.h.s. of the query is customary omitted
(and so we did), though implicitly assumed, as follows from the semantics below.

3 Queries answered by concepts

In the remainder of the paper, we will be concerned with unary queries only.
The traditional query answering algorithms are usually based on the so called
rolling-up technique (see [17] for definitions). In its basic form, when applied
to a unary query q(x), it can be viewed as a method of building a concept C
that is equivalent to q(x) (in the sense that qI = CI for all models I of KB),
so that to answer the query q(x) is the same as to retrieve all instances of the
concept C. However, the equivalence of a concept C to a query q(x) is sufficient,
but not necessary for query answering purposes. Moreover, a rather simple query
q(x)← xRx is not equivalent to anyALC-concept; this can be easily shown using
the tree model property for ALC. Rolling-up techniques work particularly good
for tree-like queries, but face certain problems when applied to cyclic ones (see,
e.g., [6]). To overcome these difficulties, we introduce the following main notion
of our paper.

Definition 4. A unary query q(x) is answered by a concept C (written as
q(x) ≈ C) if q(x) and C (considered as a query x:C) have the same answer
sets w.r.t. any knowledge base KB: ansKB(q) = ansKB(x:C). In other words,
q(x) ≈ C iff, for any KB and any a ∈ IN, we have: KB |= q(a) ⇔ KB |= a:C.

Notice the quantification over any KB in this definition. Strictly speaking, we
should formulate the definition as follows: a query q(x) is answered by a concept
C over a description logic L if ansKB(q) = ansKB(x:C) for any KB formulated
in the logic L. However, we will not complicate the matters in this way, since
all the results in our paper will have the form: a certain query q(x) is answered
by a concept C over any DL L (at least containing the syntax necessary for
formulating C and q) and even over any first-order theory etc. The following
lemma will be useful for us later.

Lemma 5. If the queries q1(x)← α(x, ~y) and q2(x)← β(x, ~z) are answered by
concepts C and D, resp., and ~y, ~z are disjoint lists of non-distinguished variables,
then the query q(x)← α(x, ~y) ∧ β(x, ~z) is answered by the concept C uD.

Proof. Follows from: ∃~y ∃~z (α(x, ~y) ∧ β(x, ~z)) ≡ ∃~y α(x, ~y) ∧ ∃~z β(x, ~z). a
Our task is to determine what kind of queries can be answered by concepts

and when these concepts can be found efficiently (and preferably in the same
language as the query). We will see that this can be done for a wide range
of unary queries, provided that we are allowed to use “fresh” concept names
not occurring in KBs and queries under consideration, i.e., specially reserved for
query answering purposes. This is a rather customary assumption: in the rolling-
up technique, new (“representative”) concept names are also freely introduced
(cf. [17]). But, unlike rolling-up, we do not need to add assertions involving these
fresh concept names to a KB. Fresh concept names will be denoted by capital
letters from the end of alphabet (X, Y , Z, etc.), possibly sub- or superscripted.

The remainder of the section is devoted to formulation and proof of the main
theorem of our paper. This theorem allows us to transfer results from the modal

correspondence theory to the query answering field. The background information
on that theory can be found in [2, Chap. 3]; here we will recall its basic notions.

It is known (cf. [16]) that the DL ALC with role names R1, . . . , Rn is a
notational variant of the propositional multi-modal language with modalities
�1, . . . ,�n, whose formulas are defined inductively: ⊥ and propositional let-
ters p0, p1, . . . are formulas; if ϕ and ψ are formulas, then so are ϕ→ ψ and
�iϕ. Exploiting this fact, whenever ϕ is a modal formula, we denote by Cϕ the
concept obtained from ϕ by replacing �i with ∀Ri and pj with fresh concept
name Xj . Kripke semantics for the modal language is introduced as usually
(cf. [2]). A modal formula ϕ is valid at the point e of a frame F (written as
F, e
 ϕ) if, for any valuation ν on F , ϕ is true at e in a model 〈F, ν〉.

Consider also the first-order language (with equality) having only binary
predicate symbols R1, . . . , Rn. Note that conjunctive queries containing no con-
cept atoms (we will call them relational queries) belong to this first-order lan-
guage. The following is the key notion in modal correspondence theory.

Definition 6. A first-order formula α(x) with a single free variable locally cor-
responds to a modal formula ϕ (written as α(x) ! ϕ) if, for any frame F and
its point e, the equivalence holds: F |= α(e) ⇔ F, e
 ϕ.

Now we are ready to prove the theorem that establishes a connection be-
tween the notion of local correspondence and the query answering problem for
relational queries. Later on, we will extend the family of queries covered by this
approach to the ones containing concept atoms as well.

Theorem 7 (Reduction). If a unary relational query q(x) locally corresponds
to a modal formula ϕ, then the query q(x) is answered by the ALC-concept Cϕ.
In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.

The proof can be found in the Appendix. This theorem allows us to reuse
positive results from the modal correspondence theory for query answering pur-
poses. For example, it implies that the query q(x) ← xRx is answered by the
concept X → ∃R.X (where X is a fresh concept name). Other applications will
be demonstrated in the subsequent sections. A natural question is whether the
converse of this theorem holds; it would enable also to transfer negative results.
We have succeeded to prove only a half of the converse, in the following sense
(the proof is again in the Appendix).

Lemma 8. Suppose that a unary relational query q(x) is answered by a concept
Cϕ, i.e., q(x) ≈ Cϕ, for some modal formula ϕ. Then for any frame F and its
point e, the condition F |= q(e) implies2 F, e
 ϕ.

In what follows, we consider only queries with no constants in role atoms,
since the general query answering problem is reducible to this case, at the price of
introducing nominals in concept atoms: we can equivalently rewrite an atom yRa
as yRz ∧ z: {a}, for a new non-distinguished variable z, and similarly for aRy.
2 Replacing this implication by equivalence would yield the converse of Theorem 7.

After this paper has been accepted, the author has succeeded to prove the converse
implication, but only for finitely branching frames.

4 Application 1: Queries and the Sahlqvist fragment

The notion of local correspondence is extensively explored in modal logic. The
most prominent in this direction is the result that a wide family of modal for-
mulas (known as Sahlqvist formulas) locally correspond to first-order (FO) con-
ditions, and moreover, there is an algorithm that takes a Sahlqvist formula and
returns the corresponding FO condition (see [2, §3.5–3.6] for details; originally
in [15]). We will use here a sort of converse of this result, obtained by M.Kracht
(see [2, §3.7]; originally in [13]), who described syntactically the class of all those
FO formulas (now called Kracht formulas) that locally correspond to Sahlqvist
formulas, and provided the corresponding algorithm. We will apply this result
to those Kracht formulas that have the form of a (unary relational) conjunctive
query and then extend it to queries containing also concept atoms.

First, recall the definition of Kracht formulas. Consider a FO language having
only binary relation symbols R1, . . . , Rn. Formulas of the form ∃y(xRy ∧ α(y))
and ∀y(xRy → α(y)) will be abbreviated3 as (∃yRx)α(y) and (∀yRx)α(y), resp.
A formula is called clean if no variable occurs both free and bound in it, and no
two distinct occurrences of quantifiers bind the same variable. The formulas>,⊥,
and xRσy are called quasi-atomic, where σ = (i1, . . . , ir) is a sequence of indices
from {1, . . . , n}, and xRσy stands for ∃z2 . . .∃zr(xRi1z2∧z2Ri2z3∧ . . .∧zrRir

y).

Definition 9. A formula is restrictedly positive if it is built up from quasi-
atomic ones using conjunction ∧, disjunction ∨, and restricted quantifiers (∃yRx)
and (∀yRx). A variable y in a clean formula is called inherently universal if either
y is free, or y is bound by a restricted universal quantifier (∀yRx) which is not
in the scope of any existential quantifier. Finally, a Kracht formula is a clean,
restrictedly positive formula such that every of its quasi-atomic subformulas
contains at least one inherently universal variable.

For example, (∀yRx)(∀zRx)(∃wRy)zRw is a Kracht formula, whereas the
formula (∃yRx)(∀zRx)yRz is not. Now we present a family of relational queries
that belong to the Kracht fragment. We will not prove that this family is exhaus-
tive, in the sense that it covers, modulo equivalence, exactly the intersection of
the Kracht fragment and conjunctive queries (although this is likely to be true).

Lemma 10. Any relational conjunctive query of the following form is (equiva-
lent to a Kracht formula and hence) answered by an ALC-concept:

q(x) ← ∃~y
(

Tree(x, ~y) ∧
∧

i,j xRσi
yj ∧

∧
k,` ykRτ`

x
)
,

where Tree(x, ~y) is a conjunction of role atoms forming an oriented x-rooted
tree.4 In other words, q(x) states the existence of an x-rooted oriented tree with
additional oriented chains linking x with other nodes (in any direction).

3 This is similar to designating a formula ∃y(x 6 y ∧ α(y)) by (∃y > x)α(y).
4 An oriented tree is a connected oriented graph without cycles (and loops 〈e, e〉) s.t.

each node has at most one incoming edge. Its root is a node with no incoming edges.

Proof. The conjunct Tree(x, ~y) allows to equivalently rewrite the quantifier
prefix ∃~y into a restricted one:

∃~y (Tree(x, ~y) ∧ α(x, ~y)) ≡ (∃y1R1y
′
1) . . . (∃yrRry

′
r)α(x, ~y),

where the condition y′i ∈ {x, y1, . . . , yi−1} holds, since the formula is clean and
x is the only free variable. It is easily seen that the r.h.s. is a Kracht formula,
and hence locally corresponds to a modal formula. Now we apply Theorem 7 to
conclude that the query q(x) is answered by some ALC-concept. a

Next we describe an algorithm for answering these queries; it also captures
queries with concept atoms. By Lemma 5, we can consider queries q(x) without
atoms of the form x:A and xRx, since adding these atoms is equivalent to adding
the conjuncts A and X → ∃R.X to the concept that answers the query.

The algorithm for answering queries within the Kracht fragment

Assume that we are given a conjunctive query of the form

q(x) ← ∃~y
(

Tree(x, ~y) ∧
∧

i,j xRσi
yj︸ ︷︷ ︸

α(x,~y)

∧
∧

k,` ykRτ`
x︸ ︷︷ ︸

β(x,~y)

∧
∧

t yt:Bt︸ ︷︷ ︸
γ(~y)

)
, (K)

where Tree(x, ~y) is a conjunction of role atoms forming an oriented x-rooted tree;
expressions of the form yRσz are role chains linking y with z; the components of
the query are denoted by α, β, γ for easy reference. We assume that the conjuncts
in the above formula (K) are distinct. Then we proceed as follows:

1) Introduce fresh concept names: Yi,j for each conjunct xRσi
yj in α(x, ~y), and

Xk,` for each conjunct ykRτ`
x in β(x, ~y).

2) Build two conjunctions pre and con (for ‘premise’ and ‘conclusion’, resp.)
by first putting pre := x:> and con := y1:>∧ . . .∧ yr:> and then proceed
as follows (here ∀Rσ.Y stands for ∀Ri1 . · · · ∀Rir

.Y , if σ = (i1, . . . , ir), and
similarly for ∃Rτ .X):
– for each xRσi

yj in α, add x:∀Rσi
.Yi,j to pre and yj :Yi,j to con;

– for each ykRτ`
x in β, add x:Xk,` to pre and yk:∃Rτ`

.Xk,` to con;
– for each yt:Bt in γ, add the conjunct yt:Bt to con.

3) In pre and con obtained, merge conjuncts related to the same variables,
i.e., replace z:C∧z:D by z: (C uD). After this, pre will be of the form x:C
and con of the form: y1:D1 ∧ . . . ∧ yr:Dr, for some concepts C and Di.

4) Form the expression pre→ ∃~y (Tree(x, ~y) ∧ con ∧ x:>), or explicitly:

x:C → (∃y1R1y
′
1) . . . (∃yrRry

′
r) (y1:D1 ∧ . . . ∧ yr:Dr ∧ x:>)

where y′i ∈ {x, y1, . . . , yi−1}. Now apply the standard rolling-up technique to
turn the restricted quantifiers (∃yiRiy

′
i) into DL-quantifiers, starting from

the innermost one. For example, assuming for notational simplicity that
y′r ≡ y1 (the case y′r ≡ x is similar), the variable yr is eliminated as follows:

(∃yrRry1) (y1:D1 ∧ . . . ∧ yr:Dr ∧ x:E) ≡
y1: (D1 u ∃Rr.Dr) ∧ y2:D2 ∧ . . . ∧ yr−1:Dr−1 ∧ x:E.

After eliminating all the variables yi, con will be of the form x:D. Hence the
expression considered at the beginning of Item 4 is equivalently transformed
into x:C → x:D. The desired concept answering the query q(x) is (C → D),
or, in the traditional DL notation, ¬C tD.

Note that the resulting concept belongs to the minimal DL containing the
concepts Bt occurring in the original query. In particular, for a relational query
we obtain an ALC-concept. We will illustrate how this algorithm works in Ex. 5
(see Sect. 6). The algorithm described above is taken from the general Kracht’s
Theorem (see [2, §3.7]) and simplified for the case of FO formulas having the
form of conjunctive queries (and slightly modified to capture concept atoms).
One can follow the proof of Kracht’s Theorem to show that the algorithm indeed
returns a concept that answers the original query. We sum up with the following

Theorem 11. The query answering problem for unary conjunctive queries from
the family K is linearly reduced to the problem of concept instance retrieval (which
in turn is reducible to knowledge base unsatisfiability).

5 Application 2: Parallel-serial queries

It is known that the Sahlqvist fragment does not cover all modal formulas having
FO correspondents, as well as the Kracht fragment does not contain all FO
formulas that locally correspond to modal formulas. In this section we show that
the family K of queries (which are equivalent to some Kracht formulas) does not
cover all the conjunctive queries answered by ALC-concepts. This result can be
regarded as syntactic extension to Kracht’s theorem. Since we did not prove
that the family K is exactly the restriction of the Kracht fragment to the set
of conjunctive queries, we cannot conclude that the queries considered below
form a semantically proper extension to the Kracht fragment. At the end of this
section we also describe a wider family of queries answered by ALCI-concepts.

First, we define the family of parallel-serial queries (or ps-queries, for short)
with two poles x and y (where x is the distinguished and y a non-distinguished
variable) inductively. A query q(x)← xRy is an atomic ps-query with the poles
x and y. If q1(x)← α(x, y, ~u) and q2(x)← β(x, y,~v) are ps-queries with the poles
x and y and the tuples ~u and ~v are disjoint, then q(x)← α(x, y, ~u)∧β(x, y,~v) is
a ps-query with the same poles x and y called a parallel connection of q1 and q2
and denoted as q1‖q2. If q1(x)← α(x, y, ~u) is a ps-query with the poles x and y,
q2(y)← β(y, z,~v) is a ps-query with the poles y and z, and α and β have only y
as a common variable, then q(x)← α(x, y, ~u) ∧ β(y, z,~v) is a ps-query with the
poles x and z called a serial connection of q1 and q2 and denoted as q1 ◦ q2.

To a ps-query q(x) we associate a role expression R(q) built from role names
using intersection and composition: for an atomic query q(x) ← xRy, we put
R(q) := R; and inductive steps are: R(q1‖q2) := R(q1) u R(q2), R(q1 ◦ q2) :=
R(q1)◦R(q2). By induction, it is straightforward to show that any ps-query q(x)
is answered by (and even equivalent to) the ALC(u, ◦)-concept ∃R(q).> (note
that this concept contains no concept names).

Unfortunately, for most DLs used in practice, this solution to query answer-
ing is unsatisfactory, since adding role intersection and composition to a logic
(together with arbitrary concept and role inclusion axioms in a TBox) leads to
undecidability. Therefore, our next aim is to find conditions under which a ps-
query is answered by an ALC-concept. For convenience, we extend Definition 4
to the case of two concepts: we say that concepts C and D are similar (written
as C ≈ D) if they have the same instances w.r.t. any knowledge base KB, i.e.,
KB |= a:C ⇔ KB |= a:D, for any a ∈ IN.

Lemma 12 (Elimination Lemma). The concept ∃(RuS).C is similar to the
concept ∀R.Y → ∃S.(Y u C) (where Y is a fresh concept name). In general:

∃(R0 u . . . uRn).C ≈
(
∀R1.Y1 u . . . u ∀Rn.Yn → ∃R0.(Y1 u . . . u Yn u C)

)
.

Proof. The concept ∃(R u S).C is equivalent to the conjunctive query q(x)←
(xRy ∧ xSy ∧ x:C), which belongs to the family K from Sect. 4. Applying the
algorithm described there, we obtain that q(x) is answered by the concept
∀R.Y → ∃S.(Y u C). The proof for several roles is completely analogous. a

Now we introduce a new family Z of queries: it consists of queries whose
relational part is a ps-query built up from atomic ones using parallel connections
and restricted serial connections: q1 ◦ q2 is allowed only if q2 is atomic.

Theorem 13. Any query from the family Z is answered by a concept that can
be built in linear time. Relational queries from Z are answered by ALC-concepts.

The proof is in the Appendix. The families K and Z are incomparable w.r.t.
inclusion: indeed, the following query belongs to K \ Z:

Query: q(x) ← xRy ∧ yRz ∧ yRw ∧ xPz ∧ xQw
Concept: ∀P.Z u ∀Q.W → ∃R.(∃R.Z u ∃R.W)

whereas the following one belongs to Z \K (but we do not know whether it is
equivalent to any Kracht formula beyond the family K):

Query: q(x) ← xRy ∧ xSy ∧ yPw ∧ xRz ∧ xSz ∧ zQw
Concept: ∀R.(Y u Z) u ∀S.(Y → ∀P.W)→ ∃S.(Z u ∃Q.W)

It is straightforward to “lift” Theorem 13 to modal logic, thus obtaining the
statement: any first-order formula q(x) from the family Z locally corresponds to
a modal formula that can be obtained efficiently. This is a syntactic extension to
Kracht’s theorem (as already pointed out, we do not know if this is a semantically
proper extension). At the same time, this can be regarded as an argument in
favour of the (unproved) converse of Theorem 7: the family Z did not bring us
a counterexample to the converse of Theorem 7.

Notice that all relational queries considered so far were answered by ALC-
concepts. What if we allow inverse roles? If we “forget” the direction of edges in
the queries from the families K and Z, then we arrive to the following family Y
of queries (formulated in terms of the underlying graph of a query, whose nodes
are variables and edges correspond to role atoms): Y is the family of connected

queries q(x) without cycles (even non-oriented) consisting of non-distinguished
variables only, i.e., every cycle in q(x) must contain the distinguished variable x.
We conclude with the following theorem (its proof is in the Appendix).

Theorem 14. Any query from the family Y is answered by a concept that can be
built in linear time. Relational queries from Y are answered by ALCI-concepts.
The family Y includes both families K and Z, i.e., K ∪ Z ⊂ Y.

6 The harvest

Here we present concrete examples of the results obtained. As already mentioned
above, we can consider queries q(x) without an atom of the form x:A.

Example 1. Since reflexivity is expressible by the modal formula p→ ♦p, we
conclude that the query q(x)← xRx is answered (over any DL knowledge base)
by the concept X → ∃R.X. Similarly, the results from Sect. 4 yield the following
(cyclic) queries and corresponding concepts:

Query Concept
q1(x)← xRy ∧ ySx X → ∃R.∃S.X
q2(x)← xRy ∧ xSy ∀R.Y → ∃S.Y
q3(x)← xRy ∧ ySx ∧ y:B X → ∃R.(B u ∃S.X)
q4(x)← xRy ∧ xSy ∧ y:B ∀R.Y → ∃S.(B u Y)

The query q1(x) can be easily generalised to the case of an oriented cycle of the
length n starting and ending at x, and iterating ∃R in the corresponding concept.
Similarly, one can generalise the query q2(x), replacing R and S by chains of the
length n and m both going from x to y, as shown in our next example.

Example 2. For any m> 0 and n> 0 with m+ n > 0, the query5

q(x)← xR1y2 ∧ y2R2y3 ∧ . . . ∧ ymRmy ∧
xS1z2 ∧ z2S2z3 ∧ . . . ∧ znSny

is answered by an ALC-concept ∀R1. · · · ∀Rm.Y → ∃S1. · · · ∃Sn.Y , and the query

q(x)← xR1y2 ∧ y2R2y3 ∧ . . . ∧ ymRmy ∧ y2:B2 ∧ . . . ∧ ym:Bm ∧
xS1z2 ∧ z2S2z3 ∧ . . . ∧ znSny ∧ z2:C2 ∧ . . . ∧ zn:Cn ∧ y:D

(with Bi, Cj , D being concepts in a language L) is answered by the L-concept

∃R1.(B2 u ∃R2.(B3 u . . . (Bm u ∃Rm.¬Y) . . .)) t
∃S1.(C2 u ∃S2.(C3 u . . . (Cn u ∃Sn.(Y uD)) . . .)).

The query q2(x) in Example 1 can be generalised in another direction: instead
of two roles linking x with y, we can take several ones. This leads to the following
example; and it is the first time where we need more than one fresh concept name.
5 For m = 0 the first line in q is dropped and y replaced by x; and similarly for n = 0.

Example 3. A query q(x)← xR0y∧ . . .∧xRny is answered by the ALC-concept

∀R1.Y1 u . . . u ∀Rn.Yn → ∃R0.(Y1 u . . . u Yn).

Now if we stretch each Ri into a chain linking x with y, we obtain the following.

Example 4. The query of the form q(x)← q0(x) ∧ . . . ∧ qn(x), where each qi(x)
is a chain of mi edges linking x with y:

qi(x)← xRi
1y

i
2 ∧ yi

2R
i
2y

i
3 ∧ . . . ∧ yi

mi
Ri

mi
y,

(superscripts are indices not powers) is answered by the ALC-concept

∀R1.Y1 u . . . u ∀Rn.Yn → ∃R0.(Y1 u . . . u Yn),

where ∀Ri stands for ∀Ri
1. · · · ∀Ri

mi
and similarly for ∃R0. We leave adding con-

cept atoms to this query as an exercise.

All these queries belong to the family K from introduced in Sect. 4: in the
last example, the chain q0(x) can be regarded as a Tree(x, ~y), while the other
chains qi(x) together constitute the conjunct α(x, ~y). An example of the query
from the family Z (to be more exact, from Z \K) was given after Theorem 13.
Now we will illustrate how the algorithm presented in Sect. 4 works.

Example 5. Consider the query q(x)← Tree(x, ~y) ∧ α(x, ~y) ∧ β(x, ~y), where

Tree(x, ~y) ≡ xR1y1 ∧ y1R2y2 ∧ y1R3y3 ∧ y1R4y4 ∧ y4R5y5 ∧ y4R6y6,
α(x, ~y) ≡ xS1y1 ∧ xS4y6,
β(x, ~y) ≡ y2S2x ∧ y5S3x.

We introduce fresh concept names Y11 and Y46 for atoms in α(x, ~y), and X22

and X53 for atoms in β(x, ~y). Next we build the expressions pre and con; they
contain conjuncts that correspond to atoms in α(x, ~y) and β(x, ~y):

pre: x:∀S1.Y11 ∧ x:∀S4.Y46 ∧ x:X22 ∧ x:X53,

con: y1:Y11 ∧ y6:Y46 ∧ y2:∃S2.X22 ∧ y5:∃S3.X53.

Then the expression pre→ ∃~y (Tree(x, ~y) ∧ con) will look as follows:

x:
(
∀S1.Y11 u ∀S4.Y46 uX22 uX53

)
→

(∃y1R1x)(∃y2R2y1)(∃y3R3y1)(∃y4R4y1)(∃y5R5y4)(∃y6R6y4)(
y1:Y11 ∧ y6:Y46 ∧ y2:∃S2.X22 ∧ y5:∃S3.X53

)
.

Now we roll up the restricted quantifiers, starting from the innermost one. After
rolling-up the quantifiers first over y6 and then over y5, we will obtain:

x:
(
∀S1.Y11 u ∀S4.Y46 uX22 uX53

)
→

(∃y1R1x)(∃y2R2y1)(∃y3R3y1)(∃y4R4y1)(
y1:Y11 ∧ y2:∃S2.X22 ∧ y4: (∃R6.Y46 u ∃R5.∃S3.X53)

)
.

When all quantifiers are rolled-up, we end up with an expression of the form
x: (C → D), where the concept (C → D) answering our original query q(x) is:(

∀S1.Y11 u ∀S4.Y46 uX22 uX53

)
→

∃R1.
(
Y11 u ∃R2.∃S2.X22 u ∃R3.> u ∃R4.(∃R6.Y46 u ∃R5.∃S3.X53)

)
.

7 Conclusions and outlook

One of the achievements of this paper is the established relationship between
the notion of local correspondence from modal logic and the notion ‘a concept
answers a query’ (Theorem 7). As an application, this enabled us to reuse the
results from modal correspondence theory for answering a wide range of conjunc-
tive queries with one distinguished variable. We have also found a syntactic (and
probably semantic) extension to Kracht’s theorem. Please note that, although at
the first glace, only ALC or ALCI occur explicitly in Theorems 11,13,14, these
should not be misunderstood as giving a query answering method for ALC or
ALCI knowledge bases only. In fact, as we pointed out earlier, the results ob-
tained provide us with algorithms for query answering over KBs formulated in
any DL (extending ALC), using as minimal means as possible (i.e., the resulting
concept belongs to a simple logic ALC or ALCI).

Analysing these families of queries, one can observe that the inherent com-
plexity of query answering lies in the relational structure (i.e., the underlying
graph) of the query. This structure was captured by concepts of ALC (Theo-
rems 11 and 13) or ALCI (Theorem 14). A natural extension would be to in-
voke into this framework the correspondence theory for richer modal logics. The
usage of qualified number restrictions (i.e., ALCQ-concepts) for answering rela-
tional queries would involve the correspondence theory for graded modal logic.
However, to the best of our knowledge, no general results similar to Sahlqvist’s
theorem are known for graded modal logic. Another possible direction is to ex-
tend this technique to DLs with relations of arbitrary arity, thus involving the
correspondence theory for polyadic modal logics (which is explored extensively).

The need to investigate extensions stems from the restricted applicability of
the technique we developed so far. For example, we have not succeeded to find an
ALC-concept answering the query q(x)← xRy∧ySy. Moreover, if the converse of
Theorem 7 holds (which is still an open question), then it would imply that such
an ALC-concept does not exist, since the property of frames expressed by q(x)
is not modally definable (see [2, Chap. 3], discussion after Corollary 3.16). At
the same time, this and other queries shown in the table below can be answered
by concepts involving extra role operations (whether they can be answered by
any ALCQI-concept is unknown):

Query Concept
q(x)← xRy ∧ ySy ∃R.∃(S u id(>)).>
q(x)← xRy ∧ ySz ∧ yPz ∃R.∃(S u P).>
q(x)← xRy ∧ xSz ∧ yPz ∧ zQy ∀S.Z → ∃R.∃(P uQ−).Z
q(x)← xRyR′w ∧ xSzS′w ∧ yPz ∀S.Z → ∃R.∃(P u (R′◦S′−)).Z

Finally, it is interesting whether all conjunctive queries can be answered by
some concepts. As an example, for the following “tetrahedron” query

q(x) ← xRyR′w ∧ xSzS′w ∧ yPz ∧ xQw

we have neither found a concept in any DL that would answer it, nor proved
that such a concept (in a certain DL) does not exist.

Acknowledgements

The research has been supported by EPSRC, Grant No. GR/S63168/01. The
author would like to thank Dr. Ulrike Sattler and Dr. Ian Horrocks for guiding
him in Description Logic and the help during the research. The author is also
grateful to Birte Glimm for fruitful discussions on the subject of query answering
and some useful suggestions.

References

1. F. Baader, D.Calvanese, D.McGuinness, D.Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge University Press, 2003.

2. P. Blackburn, M. de Rijke, and Y.Venema, Modal Logic. Cambridge University
Press, Theoretical Tracts in Computer Science, 2001.

3. D.Calvanese, G.De Giacomo, and M.Lenzerini. On the decidability of query con-
tainment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS’98), pp. 149–158, 1998.

4. D.Calvanese, G.De Giacomo, D. Lembo, M. Lenzerini, and R.Rosati. Data Com-
plexity of Query Answering in Description Logics. In Proc. of the Int. Workshop
on Description Logic (DL’05), 2005. (ceur-ws.org)

5. D.Calvanese, M.Magdalena Ortiz de la Fuente, T. Eiter, and E. Franconi. Data
complexity of answering conjunctive queries over SHIQ knowledge bases. Techni-
cal Report. 2005.

6. B.Glimm and I.Horrocks, Handling cyclic conjunctive queries, In Proc. of the Int.
Workshop on Description Logic (DL’05), p. 219, 2005. (ceur-ws.org)

7. V.Haarslev and R.Möller. Racer: An OWL Reasoning Agent for the Semantic Web.
In Proc. of the Int. Workshop on Applications, Products and Services of Web-based
Support Systems, in conj. with the 2003 IEEE/WIC Int. Conf. on Web Intelligence,
Halifax, Canada, pages 91–95, 2003. http://www.racer-systems.com/

8. I. Horrocks. FaCT and iFaCT. In Proc. of the Int. Workshop on Description Logics
(DL’99), pages 133–135, 1999. (ceur-ws.org)

9. I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In Proc.
of 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 2005. Morgan-
Kaufmann Publishers (to appear).

10. I. Horrocks, U. Sattler, S. Tessaris, and S.Tobies. How to decide query containment
under constraints using a Description Logic. In Proc. of the 7th Int. Conf. on
Logic for Programming and Automated Reasoning (LPAR’2000), Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2000. Accompanying technical report:
Query containment using a DLR ABox. LTCS-Report 99-15, LuFG Theoretical
Computer Science, RWTH Aachen, Germany, 1999.

11. I. Horrocks, U. Sattler, and S.Tobies. Practical reasoning for very expressive de-
scription logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

12. I. Horrocks and S.Tessaris. A conjunctive query language for description logic
ABoxes. In Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI’2000),
pp. 399–404, 2000.

13. M.Kracht. How completeness and correspondence theory got married. In de Rijke,
editor, Diamonds and Defaults, pp. 175–214. Kluwer, 1993.

14. C. Lutz. The Complexity of Description Logic with Concrete Domains. PhD Thesis,
LuFG Theoretical Computer Science, RWTH Aachen, Germany, 2002.

15. H. Sahlqvist. Correspondence and completeness in the first- and second-order se-
mantics for modal logic. In S.Kanger, editor, Proc. of the 3rd Scand. Logic Symp.,
Uppsala, 1973. North-Holland Publishing Company, Amsterdam, 1975.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pp. 466–
471, 1991.

17. S. Tessaris. Questions and answers: reasoning and querying in Description Logic.
PhD thesis, University of Manchester, 2001.

18. University of Maryland. Pellet OWL reasoner, 2003. Institute for Advanced Com-
puter Studies, MIND LAB, The Semantic Web Research Group.
http://www.mindswap.org/2003/pellet/

Appendix A: Proofs

Theorem 7 (Reduction). If a unary relational query q(x) locally corresponds
to a modal formula ϕ, then the query q(x) is answered by the ALC-concept Cϕ.
In symbols: q(x) ! ϕ =⇒ q(x) ≈ Cϕ.
Proof. Suppose that q(x) ! ϕ. Then, given a knowledge base KB (in any DL
containing ALC, see the discussion after Definition 4) and a constant a ∈ IN, we
will prove the following equivalence: KB |= q(a) ⇔ KB |= a:Cϕ.

(⇒) Take any model I of KB. By assumption, I |= q(a). We need to show that
I |= a:Cϕ (independently of how the fresh concept names Xi occurring in Cϕ

are interpreted in I). Let F be the frame underlying I and denote e := aI . By
definition, from q(x) ! ϕ it follows that, for these F and e, we have: F |= q(e)
⇔ F, e
 ϕ. But we also know that F |= q(e), because I |= q(a) and q(x) is
relational. Hence we conclude that F, e
 ϕ, i.e., e ∈ ϕν for any valuation ν.

Now take the valuation ν that is “read-off” from our interpretation I by
putting pν

i := XI
i , for all propositional letters pi occurring in the formula ϕ. It

is easily seen that ϕν = CI
ϕ , since Cϕ is just a notational variant of ϕ, whereas

ν and I are essentially the same. As shown above, e ∈ ϕν for this valuation ν
and so aI = e ∈ ϕν = CI

ϕ . Thus we have proven that I |= a:Cϕ.

(⇐) Take any model I of KB. By assumption, I |= a:Cϕ. Let F be a frame
underlying I and e := aI . We need to show that I |= q(a); since q(x) is relational,
it suffices to show that F |= q(e). Due to the assumption that q(x) ! ϕ, it
remains to show that F, e
 ϕ.

To this end, take any valuation ν and show that e ∈ ϕν . Let J be an interpre-
tation differing from I only in how it interprets the fresh concept names occurring
in Cϕ, namely it is “read-off” from the valuation ν by puttingXJ

i := pν
i . Observe

that CJ
ϕ = ϕν . Since J and I agree on concept, role and individual names occur-

ring in KB, we conclude that J |= KB. Now we use our assumption KB |= a:Cϕ

to infer that J |= a:Cϕ, from which it follows that e = aI = aJ ∈ CJ
ϕ = ϕν .

This completes the proof of Theorem 7. a

Lemma 8. Suppose that a unary relational query q(x) is answered by a concept
Cϕ, i.e., q(x) ≈ Cϕ, for some modal formula ϕ. Then for any frame F and its
point e, the condition F |= q(e) implies F, e
 ϕ.

Proof. Assume that F |= q(e). The query q(x) has the form ∃~y
∧m

i=1 ti(x, ~y),
where ti are role atoms. Then there exist ~o ∈ ∆ such that F |= ti(e, ~o) for all
i6m. Now, take the canonical ABox Aq for q(x), i.e., introduce new constants
ax and ~ay and put Aq := {ti(ax, ~ay) | 1 6 i6m}, and consider a knowledge base
KBq := 〈∅,Aq〉. Since KBq |=

∧m
i=1 ti(ax, ~ay), we have KBq |= ∃~y

∧m
i=1 ti(ax, ~y),

and hence KBq |= q(ax). Applying the condition of our Lemma q(x) ≈ Cϕ, we
obtain that KBq |= ax:Cϕ.

To prove that F, e
 ϕ, take an arbitrary valuation ν on the frame F and
show that e ∈ ϕν . Let I be an interpretation based on F such that it is “read-off”
from ν by putting XI

i := pν
i , for all fresh concept names Xi occurring in Cϕ, and

extended to the new constants by putting aIx := e and ~ay
I := ~o. Since I is based

on F and F |= ti(o,~e), we have I |= ti(ax, ~ay), for all i6m, and hence I |= KBq.
As shown above, KBq |= ax:Cϕ. Therefore, we conclude that I |= ax:Cϕ and
finally e = aIx ∈ CI

ϕ = ϕν . a
Theorem 13. Any query from the family Z is answered by a concept that can be
built in linear time. Relational queries from Z are answered by ALC-concepts.
Proof. First assume that q(x) is a relational query from Z. Then:

1) Build the role expression R(q) (see Sect. 5). As already pointed out, the
query q(x) is equivalent to the ALC(u, ◦)-concept ∃R(q).>.

2) Starting from the concept ∃R(q).>, repeatedly apply the following rewriting
rules (each application of the second rule introduces a new concept name X),
until all role operations are eliminated and we arrive to an ALC-concept that
answers the query q(x):

D t ∃(R ◦ S).C ≡ D t ∃R.∃S.C
D t ∃(R u S).C ≈ D t ∃R.¬X t ∃S.(X u C)

The second rule follows from the Elimination Lemma and the following ob-
servation: if C ≈ D then (CtE) ≈ (DtE). Since, in the definition of the family
Z, a serial connection q1 ◦ q2 is allowed only if q2 is atomic, each time the first
rule is applied, S will be a role name. Hence we will never obtain an expression of
the form ∃(R u S).C inside another quantifier, and so will be able to eliminate all
occurrences of role intersection using the second rule. Therefore, the algorithm
always terminates and produces an ALC-concept C such that C ≈ ∃R(q).>.
It is easily seen that the procedure works in linear time in size of q(x).

Now suppose that q(x) belongs to Z and contains concept atoms. Let y:C
be one of them, where y is a non-distinguished variable (as already mentioned
above, we can always consider queries q(x) without atoms of the form x:A).
Then we introduce a new non-distinguished variable y′ and replace the atom
y:C by y(id(C))y′ and each atom of the form yRz by y′Rz (recall that id(C)
is a notation that goes back to the propositional dynamic logic, and it denotes
the role with the semantics: id(C)I := {〈e, e〉 | e ∈ CI}). This can be done for
all concept atoms in q(x) and results in an equivalent relational query q′(x) (in
an extended language) that belongs to Z. Now we apply the above algorithm
and finally replace in the resulting concept each occurrence of ∃id(C).D by the
equivalent expression (C uD). a

Theorem 14. Any query from the family Y is answered by a concept that can be
built in linear time. Relational queries from Y are answered by ALCI-concepts.
The family Y includes both families K and Z, i.e., K ∪ Z ⊂ Y.
Proof. Every query q(x) in K ∪ Z is connected. Furthermore, if we remove from
its graph the node x together with the edges incident to x, we will obtain an
acyclic graph. This shows that q(x) ∈ Y, hence the inclusion K ∪ Z ⊂ Y.

Now suppose we are given a query q(x) ∈ Y. We will give a sketch of the
proof that q(x) can be represented as a query from “non-oriented” version of
the family K (i.e., with edges oriented arbitrarily). First remove from its graph
the node x together with the edges incident to x. This yields an acyclic non-
oriented graph, i.e., a forest (a finite set of trees). Since the original graph (before
removing x) was connected, it had edges linking x with the trees in this forest;
take one edge per tree. Then the node x together with this forest and edges
linking x with trees in this forest form a non-oriented tree Tree(x, ~y). Other edges
can be considered as chains linking x with some non-distinguished variables.
Thus, we have obtained a representation of the query q(x) in the “non-oriented”
version of (K). Applying the algorithm described in Sect. 4 yields an ALCI-
concept that answers our query. a

