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Abstract—Hilbert systems L� and sequential calculi [L�] for the versions of logics L =
T, S4,B, S5 , and Grz stated in a language with the single modal noncontingency operator
� A = �A∨�¬A are constructed. It is proved that cut is not eliminable in the calculi [L�] ,
but we can restrict ourselves to analytic cut preserving the subformula property. Thus the
calculi [T�] , [S4�] , [S5�] ( [Grz�] , respectively) satisfy the (weak, respectively) subformula
property; for [B�2 ] , this question remains open. For the noncontingency logics in question, the
Craig interpolation property is established.

Key words: Hilbert calculi, sequential calculi, cut elimination, noncontingency, Craig interpo-
lation.

INTRODUCTION

In the construction of logical calculi in modal logic, it is traditional to choose a language with
the necessity � (and possibility ♦) operators. However, systems in which the noncontingency
operator defined by the equation � A = �A ∨ �¬A is chosen as the basis operator are of a
certain technical and philosophical interest (see [1, 2]).1 This equation defines translation of �-
formulas (i.e., formulas of the modal language with the single modal operator � or, in other
words, �-language) into �-formulas. If a �-logic L is given (i.e., a logic in the �-language), then
the noncontingency logic over L (notation: L�) is the set of �-formulas whose translations are
theorems of L .

In [2, 3], various axiomatics of noncontingency logics over the familiar normal logics T , S4 , and
S5 were proposed (see also [4, 5]). Note that in the case in which a logic L contains T , or more
exactly, the reflexivity axiom �A → A , the analysis of the logic L� is simplified, because the
operator � is expressible in terms of � by means of the equation�A = A& � A . This makes the
construction of Hilbert axiomatics of these logics L� automatic (see Lemma 4.5 of this paper), and
so this case is not of considerable interest. On the contrary, for L� , the construction of sequential
calculi with “good” structural properties (cut eliminability, the subformula property, etc.) is quite
meaningful. In [6], a nontrivial example of a logic not containing T in which, however, � is
expressible in terms of � is constructed.

Systematic examination of noncontingency logics was started in the paper [7], which contains
the first, rather cumbersome axiomatics of the minimal noncontingency logic (i.e., the logic K�).
In the subsequent paper [8], it was simplified, and the logic K4� was axiomatized. In [9], the
axiomatics of the noncontingency logic over the “epistemic” logic KD45 was proposed; in addition,

1Editor’s note. In the Russian literature and in the Russian original of the article, the term “razreshimost′”
(literally, “decidability”) is used; recall that the term “noncontingency” stems from the consideration of the prov-

ability interpretation of the � operator: a sentence is noncontingent in a theory if either the sentence or its negation

is provable in this theory.
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elementary equivalents for certain axioms of noncontingency logics were found. Finally, in [10], the
logic GL� was axiomatized and sequential calculi for K� , K4� , and GL� were constructed.

The paper continues this line of research. After the statement of the required definitions (Sec. 1),
in Sec. 2 we present Hilbert axiomatics for L� and the sequential calculi [L�1 ] and [L�2 ] for the
noncontingency logics over L ∈ {T, S4,B, S5,Grz} . In Sec. 3, we describe a method to prove
the completeness of sequential calculi in the �-language with analytic cut. Sec. 4 is devoted to the
proof of completeness of the axiomatics we construct. In Sec. 5, we establish cut ineliminability
in the constructed sequential calculi; nonetheless, it follows from the completeness theorem proved
in Sec. 4 that the calculi [T�2 ] , [S4�2 ] , [S5�2 ] ( [Grz] , respectively) have (weak, respectively)
subformula property (for [B�2 ] the question remains open); also, in Sec. 5, the Craig interpolation
property for the constructed noncontingency logics is proved.

1. DEFINITIONS AND FACTS

A propositional modal language (�-language) contains a denumerable set of variables P =
{p0 , p1 , . . . } , the Boolean connectives ⊥ (falsehood) and → (implication), and a unary op-
erator � . Other connectives are introduced as abbreviations; in particular, ¬A � A → ⊥ ,

♦A � ¬�¬A . The set of �-formulas Fm� is defined in the usual way. The minimal normal
logic K has the following axioms and inference rules (here A[B/p] is the result of substituting a
formula B for all occurrences of a variable p in A):

(A��) the classical tautologies in the �-language ,
(A�K) distributivity: �(p→ q)→ (�p→ �q),

(MP)
A A→ B

B
, (Sub)

A

A[B/p]
, (Nec)

A

�A.

We shall consider the following normal modal logics:

T = K+ (A�T), S4 = T+ (A�4 ),

B = T+ (A�B), S5 = T+ (A�5 ),

S4.1 = S4+ (A�1 ), Grz = K+ (A�G),

where the additional axioms are given by the formulas

(A�T) reflexivity: �p→ p,
(A�B) symmetry: p→ �♦p,
(A�4 ) transitivity: �p→ ��p,
(A�5 ) euclideanness: ♦p→ �♦p,
(A�1 ) the McKinsey axiom: �♦p→ ♦�p,
(A�G) the Grzegorczyk axiom: �(�(p→ �p)→ p)→ p.

In addition, the modal logics mentioned above satisfy the following embedding diagram:

T ⊂ S4 ⊂ S4.1
∩ ∩ ∩
B ⊂ S5 Grz

.
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786 E. E. ZOLIN

A sequent is an expression of the form Π⇒ Σ, where Π and Σ are finite multisets2 of formulas.
Inclusion of multisets of formulas is defined disregarding multiplicities, i.e., the notation Π ⊆ Σ
means that any formula from Π occurs in Σ. We set ΠΣ := Π ∪ Σ and ΠA := Π ∪ {A} . The
set of subformulas of a formula A is denoted by SbA , and if Γ is a (multi)set of formulas, then
SbΓ := ∪{SbA | A ∈ Γ} . If the sequent Π⇒ Σ is denoted by w , then its antecedent is denoted
by 〈w| := Π, succedent by |w〉 := Σ, and the set of subformulas by Sbw := SbΠΣ. We write
A ∈ w if A ∈ ΠΣ, Γ ⊆ w if Γ ⊆ ΠΣ, and w ⊆ Γ if ΠΣ ⊆ Γ. If L is a sequential calculus, then
the notation L � A⇔ B means that L � A⇒ B and L � B ⇒ A .

The sequential calculus [L] for a logic

L ∈ {T, S4,B, S5,Grz}

is obtained from the sequential propositional calculus (with cut) by adding to it the rules (� ⇒)
and (⇒�L ) given by the formulas

(�⇒)
A, Π⇒ Σ

�A, Π⇒ Σ
, (⇒�B)

Π⇒ �Σ, A
�Π⇒ Σ,�A , (⇒�S5)

�Π⇒ �Σ, A
�Π⇒ �Σ,�A ,

(⇒�T)
Π⇒ A
�Π⇒ �A , (⇒�S4)

�Π⇒ A
�Π⇒ �A , (⇒�Grz)

�(A→ �A), �Π⇒ A
�Π⇒ �A .

It is known that cut is eliminable in the calculi for T , S4 , and Grz [11] and not eliminable in the
calculi for B and S5 [12–14]. We can confine ourselves to the analytic cut [15] in the last two:

Π⇒ Σ, A A, Π′ ⇒ Σ′

ΠΠ′ ⇒ ΣΣ′
, A ∈ Sb(ΠΠ′ΣΣ′).

The calculus [S5] thus obtained has the subformula property [14]: any deducible sequent Π⇒ Σ
admits a deduction all of whose sequents consist of subformulas of formulas from ΠΣ. The rule
(⇒�B) can violate the subformula property, but it is known [14] that we can confine ourselves only
to its applications in which Σ ⊆ Sb(ΠA) , and even to those in which �Σ ⊆ Sb(ΠA) . Thus the
subformula property holds for [B] as well. Finally, the calculus [Grz] satisfies the weak subformula
property: any deducible sequent Π ⇒ Σ admits a deduction consisting of sequents of the form
Γ⇒ ∆, where ∆ ⊆ SbΠΣ and

Γ ⊆ Sb(ΠΣ ∪ {�(A→ �A) | �A ∈ SbΠΣ}).

To describe noncontingency logics, we introduce the �-language, which differs from the �-
language only by the replacement of the � symbol by � , and the set Fm� of �-formulas.

Let us specify a �-translation tr : Fm� → Fm� preserving variables and Boolean connectives
such that

tr(� A) = � tr(A) ∨�¬ tr(A).
Instead of tr(A) we shall often write A� . By abuse of notation, sometimes we write � A ,
where A is a �-formula, meaning �A ∨ �¬A ; this usage of the symbol � is easily recognizable
by the context. We define the noncontingency logic over a logic L as the set of �-formulas whose
�-translations are theorems of the logic L:

L� := {A ∈ Fm� | A� ∈ L}.
2A multiset is a set with occurrence multiplicities (≥ 0) indicated for each of its elements. Formally, a multiset

of �-formulas is a mapping Fm� → N .
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The Kripke semantics for �- and �-languages is introduced in the usual way. The accessibility
relation in a frame and its inverse will be denoted by ↑ and ↓ , respectively; the quantifiers over
points accessible from w are written as ∀x ↓ w and ∃x ↓ w . In this notation, the modal clause of
the truth definition of a �-formula at a point of the model is of the form

w |=� A � (∀x ↓ w x |= A) or (∀x ↓ w x �|= A).

Obviously, w |= A⇔ w |= A� for any �-formula A . If Γ is a set of formulas, then a Γ-frame is
a frame on which Γ is valid. The validity of a sequent Π⇒ Σ is understood as the validity of the
formula

∧
Π→ ∨Σ.

2. AXIOMATIC SYSTEMS

The axioms of the minimal reflexive noncontingency logic T� are all the classical tautologies
in the �-language and the following axioms:

(A�¬ ) reflectivity: � p↔� ¬p,
(A�T) weak distributivity: p→ [� (p→ q)→ (� p→� q)] ;

and its inference rules are

(MP), (Sub), and (Dec)
A

� A.

Axioms of other reflexive noncontingency logics are given below (conjecture: the axiom (A�4 ) in
the statement of the calculus Grz� is superfluous):

B� = T� + (A�B), (A�B) is the axiom p→� (� p→ p),
S4� = T� + (A�4 ), (A�4 ) is the axiom � p→�� p,
S5� = T� + (A�5 ), (A�5 ) is the axiom �� p,
Grz� = S4� + (A�G), (A�G) is the axiom � (� (p→� p)→ p)→� p.

In what follows, L denotes one of the logics T , B , S4 , S5 , Grz . Representing the deductions
schematically, we can write

L � A0 1 A1 2 · · · n An , where
k ∈ {→,↔} ,

meaning by that

L � Ak−1 k Ak , k = 1, . . . , n.

Lemma 2.1. (a) The calculi L� are closed with respect to the rule of equivalent replacement

(RE)
A↔ B
� A↔� B .

(b) We have the deducibility

T� �� p& � q →� (p&q).
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788 E. E. ZOLIN

Proof. (a) By the (Dec) rule and the (A�T) axiom, from A→ B , we obtain A→ (� A→� B) ,
and from ¬A→ ¬B , we first obtain the formula ¬A→ (� ¬A→� ¬B) , and then, by the axiom
(A�¬ ) , the formula ¬A → (� A →� B) . In view of � A ∨ ¬A , from the two formulas obtained
above, we derive � A→� B . The inverse implication is proved in a similar way.

(b) By the axiom (A�T) , the tautology p→ (q → p&q) implies p&q → [� p→ (� q →� (p&q))] .
By the axioms (A�T) and (A�¬ ) , the tautology ¬p→ ¬(p&q) implies ¬p→ [� p→� (p&q)] and,
all the more, ¬p→ [� p→ (� q →� (p&q))] . Similarly, we derive

¬q → [� p→ (� q →� (p&q))].

Finally, by virtue of the tautology (p&q)∨¬p∨¬q , we conclude that � p→ (� q →� (p&q)) . �
For each of the logics L in question, let us define two sequential calculi, [L�1 ] and [L�2 ] . The

calculus [L�1 ] is obtained from the sequential propositional calculus (with cut) by adding to it the
rules (�¬ ⇒) , (⇒�¬ ) , and (⇒�L ) defined as follows:

(�¬ ⇒)
� A, Π⇒ Σ

� ¬A, Π⇒ Σ
, (⇒�T)

Π⇒ A
Π, � Π⇒� A , (⇒�B)

Π⇒ (� Σ&Σ), A

Π, � Π⇒ Σ,� A ,

(⇒�¬ )
Π⇒ Σ,� A
Π⇒ Σ,� ¬A , (⇒�S4)

Π, � Π⇒ A
Π, � Π⇒� A , (⇒�S5)

Π, � Π⇒� Σ, A

Π, � Π⇒� Σ,� A ,

(⇒�Grz)
� (A→� A), Π, � Π⇒ A

Π, � Π⇒� A .

In the statement of the rule (⇒�B) , we used the notation

(� Σ&Σ) := {(� σ&σ) | σ ∈ Σ}.
The rules (�¬ ⇒) and (⇒�¬ ) violate the subformula property. Let us introduce the calculus [L�2 ]
in which these rules are absorbed by others. To obtain this calculus, we add to the sequential
propositional calculus (with cut) the rules (⇒�rL ) , r ∈ {0, 1} , defined as follows:

(⇒�rT )
Ar̄ , Π⇒ Λ, Ar

Π, � (ΠΛ)⇒ Λ,� A , (⇒�rB )
{Ar̄ , Π, Φ′ ⇒ Φ,� (Ψ′Ψ), Λ, Ar}Σ=ΦΨΣ′=Φ′Ψ′

Π, � (ΠΛ), Σ′ ⇒ Σ, Λ, � A ,

(⇒�rS4)
Ar̄ , Π, � (ΠΛ)⇒ Λ, Ar

Π, � (ΠΛ)⇒ Λ, � A , (⇒�0Grz)
A, � (A∨ � A), Π, � (ΠΛ)⇒ Λ

Π,� (ΠΛ)⇒ Λ,� A ,

(⇒�rS5)
Ar̄ , Π, � (ΠΛ)⇒ Λ, � Σ, Ar

Π, � (ΠΛ)⇒ Λ, � Σ,� A , (⇒�1Grz)
� (A→� A), Π,� (ΠΛ)⇒ Λ, A

Π,� (ΠΛ)⇒ Λ, � A ;

in these statements, we used the following notation: r̄ := 1 − r , A0 := ∅ , A1 := A . The
rules (⇒�rB ) , r ∈ {0, 1} , have 2|Σ|+|Σ

′| antecedents corresponding to all possible partitions of the
multisets Σ = ΦΨ and Σ′ = Φ′Ψ′ .

In Sec. 4 we shall prove cut ineleminability in the calculi [L�k ] constructed above. Now denote
by [L�2 ]

− the calculi obtained from [L�2 ] by replacing the cut rule by analytic cut. It will follow
from the Completeness Theorem (Theorem 4.1) that the calculi [L�2 ]

− and [L�2 ] are equivalent.
Therefore, the following statement holds.

Lemma 2.2. (a) The calculi [L�2 ] , where L ∈ {T, S4, S5} , satisfy the subformula property.
(b) The calculus [Grz�2 ] satisfies the weak subformula property: any deducible sequent Π⇒ Σ

admits a deduction consisting of sequents of the form Γ⇒ ∆ , where ∆ ⊆ SbΠΣ and

Γ ⊆ Sb(ΠΣ ∪ {� (A→� A), � (A∨ � A) |� A ∈ SbΠΣ}).
In what follows, we shall need the following fact.
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Lemma 2.3. (a) For L ∈ {T, S4,B, S5,Grz} , the calculus [L�1 ] is closed with respect to the
rule (RE) , i.e., [L�1 ] � A⇔ B implies [L�1 ] �� A⇔� B .

(b) We have the deducibility [T�2 ]
− �� (p→� p), p⇒� p .

(c) We have the deducibility [T�2 ]
− �� (p∨ � p)⇒ p,� p .

Proof. (a) In [T�1 ] , we have the deduction

A⇒ B B ⇒ A
A, � A⇒� B ¬A⇒ ¬B
� A⇒� B, ¬A, ¬A,� ¬A⇒� ¬B

� A, � ¬A⇒� B,� ¬B.

Applying cuts with the sequent � A ⇒� ¬A (by the formula � ¬A) and with the sequent
� ¬B ⇒� B (by the formula � ¬B), and then abbreviations, we obtain � A ⇒� B . The
converse sequent is proved similarly.

(b) Using analytic cut, we deduce [T�2 ]
−:

p⇒� p, p
⇒ (p→� p), p p⇒ p � p⇒� p

� (p→� p)⇒ (p→� p), � p (p→� p), p⇒� p
� (p→� p), p⇒� p, � p

� (p→� p), p⇒� p.

(c) This item is similar to (b). �

3. THE CLOSURE METHOD

In this section, we describe the method used to prove the completeness of an arbitrary consistent
sequential calculus L (in the �-language) with analytic cut.

Definition 3.1. A set of formulas Γ is closed if SbΓ ⊆ Γ. A sequent w is called closed if
Sbw ⊆ w , i.e., any subformula of a formula from w is contained in the antecedent or succedent
of the sequent w ; the sequent w is called thin if its antecedent and succedent are sets, i.e., the
formulas in them do not repeat.

Obviously, for any finite (multi)set of formulas there exists the smallest finite closed set con-
taining it. Let us construct the finite frame FΓL := (WΓL , ↑) and the model MΓL := (FΓL , |=), where
Γ �= ∅ is a finite closed set of formulas. Obviously, the set

WΓL := {w ⊆ Γ | w is a closed thin sequent, L �� w}

is finite.

Lemma 3.2 (The Closure Lemma). Any sequent Π ⇒ Σ not deducible in L and consisting of
formulas from the set Γ can be extended to a thin closed sequent not deducible in L . Formally, if
ΠΣ ⊆ Γ and L �� Π⇒ Σ , then

∃w ∈WΓL : Π ⊆ 〈w|, Σ ⊆ |w〉.
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Proof. The lemma is proved by the standard closure method: if L �� Π ⇒ Σ, A /∈ ΠΣ, and
A ∈ SbΠΣ, then, by analytic cut in L (and abbreviation), we have L �� Π⇒ ΣA or L �� AΠ⇒ Σ;
therefore, A can be added to the antecedent or succedent of the sequent Π ⇒ Σ. The process
continues until the sequent Π⇒ Σ becomes closed. �

Note that since Γ �= ∅ , we have ⊥ ∈ Γ or p ∈ Γ for a certain variable p . This means that
Γ contains the sequent ⇒ ⊥ or ⇒ p , which, obviously, is not deducible in L . By the Closure
Lemma, it can be embedded in a certain “world” w ∈WΓL . Thus, WΓL �= ∅ .

We specify a valuation of variables by setting

w |= p� p ∈ 〈w| for any w ∈WΓL and p ∈ P.

It remains to specify the relation ↑ . Let us state a condition on ↑ that will suffice for our purposes:

∀w ∈WΓL ∀A ∈ w w |= A⇔ A ∈ 〈w|. 〈1�〉

Lemma 3.3. If condition 〈1�〉 is satisfied, then for any ΠΣ ⊆ Γ the formula L �� Π⇒ Σ implies
MΓL �|= Π⇒ Σ .

Proof. By the Closure Lemma,

Π ⊆ 〈w| and Σ ⊆ |w〉

for a certain w ∈WΓL . By 〈1�〉 , we have w |= ∧Π and w |= ∧¬Σ, i.e., w �|= Π⇒ Σ. �
Further, let us show that to satisfy 〈1�〉 , it suffices to impose the following condition on ↑ (the

bracket denotes the disjunction of conditions):

∀w ∈WΓL ∀ � B ∈ w � B ∈ 〈w| ⇔
[∀x ↓ w B ∈ 〈x|,
∀x ↓ w B ∈ |x〉. 〈2�〉

Lemma 3.4. We have the implication 〈2�〉 =⇒ 〈1�〉 .
Proof. The proof will be given simultaneously for all w ∈ WΓL by induction on the construction
of the formula A ∈ w . For A ≡ ⊥ , the left-hand and right-hand sides of 〈1�〉 are false. For
A ≡ p , the statement follows from the definition of |=.

Let A ≡ (B → C) . Since the sequent w is closed, B, C ∈ w , and by the induction hypothesis,

(b) w |= B ⇔ B ∈ 〈w|, w �|= B ⇔ B ∈ |w〉 ;
(c) w |= C ⇔ C ∈ 〈w|, w �|= C ⇔ C ∈ |w〉.

Hence

w |= (B → C) def|=⇐⇒
[
w �|= B
w |= C

(b,c)⇐⇒
[
B ∈ |w〉
C ∈ 〈w|

(?)⇐⇒ (B → C) ∈ 〈w|.

Let us prove the equivalence marked by the question mark (?).
(⇒) If (B → C) ∈ |w〉 , then B /∈ |w〉 and C /∈ 〈w| , since the sequents ⇒ B , (B → C) , and

C ⇒ (B → C) are provable in L .
(⇐) If (B → C) ∈ 〈w| , then the conditions B ∈ 〈w| and C ∈ |w〉 cannot hold simultaneously,

because the sequent (B → C), B ⇒ C is provable in L .
Finally, suppose that A ≡� B . By the induction hypothesis, for any x ∈WΓL , if B ∈ x , then

(x) x |= B ⇔ B ∈ 〈x|, x �|= B ⇔ B ∈ |x〉.
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Hence

� B ∈ 〈w| 〈2
�〉

=⇒
[∀x ↓ w B ∈ 〈x|
∀x ↓ w B ∈ |x〉

(x)
=⇒
[∀x ↓ w x |= B
∀x ↓ w x �|= B

def|=
=⇒ w |=� B,

� B ∈ |w〉 〈2
�〉

=⇒
{ ∃x ↓ w B ∈ 〈x|
∃y ↓ w B ∈ |y〉

(x)
=⇒
{ ∃x ↓ w x |= B
∃y ↓ w y �|= B

def|=
=⇒ w �|=� B.

Now the completeness of the logic L with respect to the class of finite frames F can be proved
as follows. Suppose that L �� Π⇒ Σ. We construct a finite closed set Γ ⊇ ΠΣ and the relation ↑
so that FΓL ∈ F and condition 〈2�〉 holds. By Lemma 3.4, this condition implies 〈1�〉 ; and by
Lemma 3.3, we obtain FΓL �|= Π⇒ Σ, which was to be proved. �

4. COMPLETENESS OF AXIOMATICS

The theorem proved in this section states that the Hilbert and sequential calculi constructed
above yield a complete axiomatization of noncontingency logics over T , S4 , B , S5 , and Grz .
At the end of the section, we axiomatize the logic S4.1� .

Theorem 4.1 (The Joint Completeness Theorem). For each logic L ∈ {T, S4,B, S5,Grz} and
any sequent Π⇒ Σ in the �-language, the following statements are equivalent :

(1) [L�2 ]
− � Π⇒ Σ ,

(2) [L�1 ] � Π⇒ Σ ,

(3) L� � ∧Π→ ∨Σ ,

(4) L � (
∧

Π→ ∨Σ)� ,
(5) F |= Π⇒ Σ for any finite L-frame F .

Proof. The proof will follow the scheme (1) =⇒ (2) =⇒ (3) =⇒ (4)⇐⇒(5) =⇒ (1). The
implication (2) =⇒ (3) is proved by induction on the construction of a deduction in [L�1 ] ; in so
doing, the steps corresponding to the rules (�¬ ⇒) and (⇒�¬ ) are obvious, since logics L� contain
the axiom (A�¬ ) ; therefore, we only have to verify the steps corresponding to the rule (⇒�L ) .
Then, it will suffice to prove the implication (3) =⇒ (4) only for Π = ∅ and Σ = {A} , i.e.,
to verify the deducibility of �-translations of the axioms L� in L . For the axiom (A�¬ ) , this
verification is trivial, and for (A�T) , (A�4 ) , and (A�5 ) , it was carried out in [2, 3]. Further, the
equivalence (4)⇐⇒(5) is the familiar completeness theorem for logics L (see [16, 17]). Finally, in
the proof of the implication (5) =⇒ (1), we use the notation L := [L�2 ]

− .

(1) =⇒ (2) It will suffice to show that (⇒�rL ) are derived rules in [L�1 ] . For instance, let us
deduce the conclusion of the rule (⇒�0T ) from its premise in the calculus [T�1 ]:

A, Π⇒ Λ

Π, ¬Λ⇒ ¬A
Π, ¬Λ,� Π, � ¬Λ⇒� ¬A.

Applying cut with the sequent � ¬A⇒� A (by the formula � ¬A), and with the sequents ⇒ C ,
¬C (by ¬C) and � C ⇒� ¬C (by � ¬C) for all C ∈ Λ, we obtain Π, � (ΠΛ)⇒ Λ, � A .

The consideration of the rule (⇒�0Grz) requires the noncontingency of the sequent

� (¬A→� ¬A)⇒� (A∨ � A),

in [Grz�1 ] , which follows from Lemma 2.3 (a).
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Logic T . (2) =⇒ (3) By Lemma 2.1 (b), T� � ∧ � Π→� ∧Π; therefore, we deduce in T�:

∧
Π→ B
� (
∧
Π→ B)∧

Π→ [�
∧
Π→� B]∧{Π, � Π} →� B.

(5) =⇒ (1) Suppose that L �� Π ⇒ Σ. Let us take the finite closed set Γ := SbΠΣ. On WΓL ,
define the reflexive relation

w ↑ x� ∀C ∈ Fm� � C ∈ 〈w| ⇒
{
C ∈ 〈w| ⇒ C ∈ 〈x|,
C ∈ |w〉 ⇒ C ∈ |x〉. 〈3�T〉

Then FΓL is a finite T-frame, and it remains to verify condition 〈2�〉 .
Lemma 4.2. We have the implication 〈3�T〉 =⇒ 〈2�〉 .
Proof. Let us prove the equivalence in 〈2�〉 . We take w ∈WΓL and � B ∈ w .

(⇒) Suppose that � B ∈ 〈w| . By the closure of w , two cases are possible:

(1) B ∈ 〈w| ; then for all x ↓ w , by 〈3�T〉 , we obtain B ∈ 〈x| ;
(2) B ∈ |w〉 ; similarly, for all x ↓ w , we obtain B ∈ |x〉 .
(⇐) Suppose that � B ∈ |w〉 . Let us construct x, y ↓ w such that B ∈ 〈x, B ∈ |y〉 .
Case B ∈ |w〉 . The choice of y is obvious: y := w . We set

Π := {C ∈ 〈w|∣∣� C ∈ 〈w|}, Λ := {C ∈ |w〉∣∣� C ∈ 〈w|}.
Then L �� B , Π⇒ Λ, because otherwise, by the rule (⇒�0T ) , we would obtain L � Π, � (ΠΛ)⇒
Λ,� B , whence L � w by weakening. By the Closure Lemma, there exists an x ∈WΓL such that
Π ⊆ 〈x| , B ∈ 〈x| , Λ ⊆ |x〉 . Let us prove that w ↑ x . Suppose that � C ∈ 〈w| . If C ∈ 〈w| , then
C ∈ Π ⊆ 〈x| ; and if C ∈ |w〉 , then C ∈ Λ ⊆ |x〉 .
Case B ∈ 〈w| . Setting x := w and using (⇒�1T ) , we construct the desired y in a similar way

(for the remaining logics, we shall usually consider only the first case). This proves the lemma. �

Logic S4 . (2) =⇒ (3) A deduction in S4�:

∧{Π, � Π} → B∧{Π, � Π} → [�
∧{Π, � Π} →� B]∧{Π, � Π, �� Π} →� B∧{Π, � Π} →� B.

(5) =⇒ (1) On WΓL , we introduce the reflexive and transitive relation

w ↑ x� ∀C ∈ Fm� � C ∈ 〈w| ⇒� C ∈ 〈x|&
{
C ∈ 〈w| ⇒ C ∈ 〈x|,
C ∈ |w〉 ⇒ C ∈ |x〉. 〈3�S4〉

In the proof of 〈2�〉 , we have L �� B, Π, � (ΠΛ)⇒ Λ; otherwise, by the rule (⇒�0S4 ) , we obtain
L � w . For x ∈WΓL such that Π,� (ΠΛ) ⊆ 〈x| and Λ ⊆ |x〉 , it is obvious that w ↑ x .
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Logic B . (2) =⇒ (3) Setting Ω := ¬Σ and using the formulas p → (� p → p) and p →� (�
p→ p) deducible in B� , we construct the inference in B�:

∧
Π→ ∨{(� Σ&Σ), B}∧{Π, (� Ω→ Ω)} → B∧{Π, � Π, (� Ω→ Ω), � (� Ω→ Ω)} →� B∧{Π, � Π, Ω} →� B∧{Π, � Π} → ∨{Σ,� B}.

(3) =⇒ (4) Let us deduce the �-translation of the axiom (A�B) in the logic B . We have

B � p −→ �♦p←→ �[♦p&(¬p→ ♦¬p)]
←→ �[p ∨ (♦p&♦¬p)]←→ �(p ∨ ¬ � p) −→� (� p→ p).

(5) =⇒ (1) First, by condition 〈3�T〉 , we introduce the reflexive relation ↑ on WΓL , and then we
take its symmetrization:

w ⇑ x� (w ↑ x)&(x ↑ w). 〈3�B〉
To prove 〈2�〉 , we take the same Π and Λ as before and set

Σ := {C ∈ |w〉∣∣� C ∈ |w〉}, Σ′ := {C ∈ 〈w|∣∣� C ∈ |w〉}.
There exists a partition Σ = ΦΨ, Σ′ = Φ′Ψ′ such that L �� B, Π, Φ′ ⇒ Φ,� (Ψ′Ψ), Λ;

otherwise, starting from all possible sequents of this form by the rule (⇒�0B ) , we would derive3

the sequent Π, � (ΠΛ), Σ′ ⇒ Σ, Λ,� B and further, by weakening, L � w .
It remains to check w ⇑ x for all x ∈ WΓL such that ΠΦ′ ⊆ 〈x| and Φ,� (Ψ′Ψ), Λ ⊆ |x〉 .

Notice that x ⊆ w . The condition w ↑ x is verified as in the case of the logic T . Let us prove
that x ↑ w . Suppose that � C ∈ 〈x| . Then � C ∈ w in view of x ⊆ w , and C ∈ w by the closure
of w .

Further, suppose that C ∈ 〈x| . If C ∈ |w〉 , then we would have the following cases:

(1) � C ∈ 〈w| ; then C ∈ Λ ⊆ |x〉 , which is not true;
(2) � C ∈ |w〉 ; then C ∈ Σ = ΦΨ. Now we have: if C ∈ Φ, then C ∈ |x〉 , which is not true;

and if C ∈ Ψ, then � C ∈� Ψ ⊆ |x〉 , which is not true either.

Now suppose that C ∈ |x〉 . If we had C ∈ 〈w| , then the following cases would be possible:

(1) � C ∈ 〈w| ; then C ∈ Π ⊆ 〈x| , which is not true;
(2) � C ∈ |w〉 ; then C ∈ Σ′ = Φ′Ψ′ . Now we have: if C ∈ Φ′ , then C ∈ 〈x| , which is not

true; and if C ∈ Ψ′ , then � C ∈� Ψ′ ⊆ |x〉 , which is not true either.

Logic S5 . (2) =⇒ (3) We construct a deduction in S5�:

∧{Π, � Π, ¬ � Σ} → B∧{Π, � Π, ¬ � Σ} → [�
∧{Π, � Π, ¬ � Σ} →� B]∧{Π, � Π, ¬ � Σ,�� Π,� ¬ � Σ} →� B∧{Π, � Π, ¬ � Σ} →� B.

3If, in this application of the rule (⇒�0B ) , we could confine ourselves to the assumption ΣΣ′ ⊆ Sb(ΠΛB) , then

we would incidentally establish the subformula property for the calculus [B�2 ] .

MATHEMATICAL NOTES Vol. 72 No. 6 2002



794 E. E. ZOLIN

(5) =⇒ (1) First we introduce a reflexive transitive relation ↑ on WΓL by the condition 〈3�S4〉 ,
and then we take its symmetrization:

w ⇑ x� (w ↑ x)&(x ↑ w). 〈3�S5〉
To prove 〈2�〉 , we take Σ := {C |� C ∈ |w〉} and chose Π and Λ as before. If we had

L � B, Π, � (ΠΛ) ⇒ Λ, � Σ, then, by the rule (⇒�0S5 ) , we would deduce L � w . It remains to
verify w ⇑ x for x ∈WΓL such that Π, � (ΠΛ) ⊆ 〈x| and Λ,� Σ ⊆ |x〉 . Note that x ⊆ w .

Let us prove that w ↑ x . If � C ∈ 〈w| , then C ∈ ΠΛ and � C ∈ 〈x| . Further, if C ∈ 〈w| ,
then C ∈ Π ⊆ 〈x| . And if C ∈ |w〉 , then C ∈ Λ ⊆ |x〉 .

Let us prove that x ↑ w . Suppose that � C ∈ 〈x| . Then � C ∈ w , because x ⊆ w , and if we
had � C ∈ |w〉 , then C ∈ Σ and � C ∈ |x〉 , which is not true; therefore, � C ∈ 〈w| . Further,
if C ∈ 〈x| , then C ∈ w , and if we had C ∈ |w〉 , then, by the inclusion � C ∈ 〈w| proved above,
we would have C ∈ Λ ⊆ |x〉 , which is not true; therefore, C ∈ 〈w| . And if C ∈ |x〉 , then C ∈ w ,
and in the case C ∈ 〈w| , in view of � C ∈ 〈w| , we would have C ∈ Π ⊆ 〈x| , which is not true;
therefore, C ∈ |w〉 .
Logic Grz .
(2) =⇒ (3) In Grz� , using the axiom (A�4 ) at the last step, we deduce:∧{Π, � Π} → (� (B →� B)→ B)∧{Π, � Π} → [�

∧{Π, � Π} →� (� (B →� B)→ B)]∧{Π, � Π, �� Π} →� B∧{Π, � Π} →� B.
(3) =⇒ (4) Let us prove the �-translation of the axiom (A�G) in Grz . On the one hand,

Grz � �p→ p , and so
Grz � (p→� p)←→ (p→ �p).

Hence

Grz � �¬(p→� p)←→ �¬(p→ �p)
←→ [�p&�¬�p]←→ ¬[�p→ ♦�p]←→ ⊥.

Then we deduce in Grz:

�[�(p→ �p)→ p]→ p
�[�(p→� p) ∨ ⊥ → p]→ p

�[�(p→� p) ∨�¬(p→� p)→ p]→ p
�[� (p→� p)→ p]→ p
�[� (p→� p)→ p]→ �p.

On the other hand,

Grz � �¬[� (p→� p)→ p]←→ [� � (p→� p)&�¬p] −→ �¬p −→� p.
(5) =⇒ (1) We shall slightly modify the method of proof described in Sec. 3. Suppose that

L �� Π⇒ Σ. Let us take Γ := SbΠΣ,

Γ̂ := Γ ∪ Sb{� (A→� A), � (A∨ � A) |� A ∈ Γ}.
The set

WΓL := {w | w is a closed thin sequent, 〈w| ⊆ Γ̂ , |w〉 ⊆ Γ, L �� w}
is finite.
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Lemma 4.3 (The Closure Lemma). Any sequent Π ⇒ Σ not deducible in L such that Π ⊆ Γ̂

and Σ ⊆ Γ , can be extended to a sequent from WΓL . Formally, if L �� Π ⇒ Σ , with Π ⊆ Γ̂ and
Σ ⊆ Γ , then there exists a w ∈WΓL such that Π ⊆ 〈w| , Σ ⊆ |w〉 .
Proof. In addition to the proof of Lemma 3.2, we must check that if in the process of closure,
the sequent Π′ ⇒ Σ′ , nondeducible in L , is obtained from Π⇒ Σ by the addition of the formula

A ∈ SbΠΣ, A /∈ ΠΣ, to the antecedent or succedent, then Π′ ⊆ Γ̂ and Σ′ ⊆ Γ. The first inclusion

is obvious. For A ∈ Γ, the second one is as well. And if A ∈ (Γ̂ \Γ), then in view of A /∈ ΠΣ, the
formula A is either (B∨ � B) or (B →� B) for a certain � B ∈ ΠΣ, with � A ∈ Π. In both
cases L �� A ⇒ A , which follows from Lemma 2.3 (b, c), and so L � Π ⇒ ΣA . Therefore, the
formula A could not be added to the succedent of the sequent Π⇒ Σ, and hence Σ′ = Σ ⊆ Γ. �

As before, for any w ∈ WΓL and p ∈ P , we set w |= p � p ∈ 〈w| . The statements and proofs
of Lemmas 3.3 and 3.4 are carried over to our case without substantial modifications. First, we
introduce a transitive relation ↑ on WΓL by the condition 〈3�S4〉 ; then, the irreflexive transitive
relation

w ≺ x� (w ↑ x)&(∃C ∈ Fm� � C /∈ 〈w|& � C ∈ 〈x|) 〈3�Grz〉
and, finally, the reflexive transitive antisymmetric relation, i.e., a partial order

w � x� (w ≺ x) ∨ (w = x).

Thus a finite Grz-frame FΓL := (WΓL , �) is constructed. It remains to check condition 〈2�〉 , which
now takes the form

∀w ∈WΓL∀ � B ∈ w � B ∈ 〈w |⇔
[∀x � w B ∈ 〈x|,
∀x � w B ∈ |x〉. 〈2�〉

Lemma 4.4. We have the implication 〈3�Grz〉 =⇒ 〈2�〉 .
Proof. Let us prove equivalence in 〈2�〉 . Let us take any w ∈WΓL and � B ∈ w .

(⇒) Suppose that � B ∈ 〈w| . The following two cases are possible:

(1) B ∈ 〈w| ; then for all x � w , we have either w ≺ x , w ↑ x , and B ∈ 〈x| by 〈3�S4〉 or
x = w and B ∈ 〈w| = 〈x| ;

(2) B ∈ |w〉 ; similarly, for all x � w , we obtain B ∈ |x〉 .
(⇔) Suppose that � B ∈ |w〉 . Let us take Π, Λ as in the proof of Lemma 4.2.
Case B ∈ |w〉 . Set y := w . Then we have

L �� B,� (B∨ � B), Π, � (ΠΛ)⇒ Λ ;

otherwise, by the rule (⇒�0Grz) and the weakening rules, we obtain L � w . Since � B ∈ |w〉 ⊆ Γ,

the antecedent of the sequent written above is contained in Γ̂ , and the succedent in Γ. By the
Closure Lemma, this sequent can be emdedded into a certain sequent x ∈ WΓL . It remains to
check that w ≺ x . The condition w ↑ x is checked as in the case of the logic S4 . Further,
� (B∨ � B) ∈ 〈x| . But � (B∨ � B) /∈ 〈w| ; otherwise, taking into account that B,� B ∈ |w〉 ,
by Lemma 2.3 (c) we would even obtain [T�2 ]

− � w .
Case B ∈ 〈w| . Now x := w , and we similarly have

L ��� (B →� B), Π,� (ΠΛ)⇒ Λ, B.

As before, we embed this sequent into a certain y ∈WΓL . Obviously, w ↑ y . Finally, w ≺ y , since
� (B →� B) ∈ 〈y| ; but � (B →� B) /∈ 〈w| by Lemma 2.3 (b). �

This completes the proof of the theorem. �
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Recall that if reflexivity holds, then the operator � can be expressed in terms of � by the

equation �p = p& � p . We shall use this fact to introduce the translation Tr: Fm� → Fm�
which preserves variables and Boolean connectives and acts on formulas of the form �A as follows:

Tr(�A) = Tr(A)& � Tr(A).

Further, for an arbitrary �-logic M , we set

M� := {A ∈ Fm� | Tr(A) ∈M} = Tr−1(M).

It is readily seen that the translations tr and Tr are mutually inverse in the following sense:
T � tr(Tr(�p))↔ �p and T� � Tr(tr(� p))↔� p . It follows that (L�)� = L for any �-logic L
containing axiom (A�T) , and that (M�)� =M for any �-logic M containing axiom (A�¬ ) . Hence
the condition L� = M is equivalent to the conjunction of conditions [M ⊆ L� and L ⊆ M�] .
The last statement makes it possible to construct the axiomatics of noncontingency logic over any
normal logic containing T .

Lemma 4.5. Suppose that a normal logic L is axiomatized over T by the set of axioms Γ ⊆ Fm� .
Then the noncontingency logic over L has the following axiomatics:

L� = T� +Tr(Γ), where Tr(Γ) := {Tr(A) | A ∈ Γ}.

Using this lemma, it is easy to check that S4.1� = S4� + (A�1 ) , where (A�1 ) is the axiom
�� p →� p . Finally, let us show that the transition L $→ L� is an injective homomorphism of
the lattice of extensions of the logic T .

Lemma 4.6. If �-logics L and M contain T , then

L ⊂M ⇔ L� ⊂M�.

Proof. It will suffice to verify the preservation of nonstrict inclusion. From L ⊆ M , it follows
that L� ⊆M� . Conversely, if L� ⊆M� , then L = (L�)� ⊆ (M�)� =M . �

5. CUT INELIMINABILITY AND INTERPOLATION

Here we shall establish that in all the sequential calculi [L�k ] , k = 1, 2, constructed in Sec. 2
cut is ineliminable, but at the same time, the logics L� satisfy the Craig interpolation property.

Theorem 5.1. In the calculi [L�k ] , where L ∈ {T, S4, S5,B,Grz} , k = 1, 2 , cut is inelim-
inable.

Proof. (1) The sequent � (p →� p) , p ⇒� p is deducible in [T�2 ]
− (see Lemma 2.3 (b)), and

so, in all the calculi [L�k ] in question. Let us show that this sequent is not cut free deducible in
[B�1 ] and in [L�k ] for L �= B .

Suppose that it can be cut free deduced in one of these calculi. Then the last application of a
nonstructural rule in this deduction could only be the application of one of the rules (�¬ ⇒) , (⇒�¬ ) ,
(⇒�L ) , or (⇒�rL ) ; the first two are excluded immediately, because the formulas of the form � ¬A
are inherited in cut free deductions, and in our sequent there are no such formulas or subformulas.
The conclusion of this application must be of the form

[� (p→� p)]l , [p]m ⇒ [� p]n , l , m, n ≥ 0,

since only the weakening and abbreviation rules were applied after it in this deduction. It is readily
seen that for L �= B , the conclusions of the rules (⇒�L ) and (⇒�rL ) can be of this form only for
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l = m = 0 and n > 0. However, it is clear from semantic considerations (usind the Completeness
Theorem proved above) that the sequent ⇒ [� p]n is not deducible in the calculi in question.

(2) Let us show that the sequent � p ⇒� ¬p is deducible even in [T�2 ]
− , but is not cut free

deducible in [B�2 ] . We have the following deduction in [T�2 ]
−:

p⇒ p p⇒ p
⇒ p, ¬p p, ¬p⇒

� p⇒ p, � ¬p p,� p⇒� ¬p
� p⇒� ¬p.

Suppose that this sequent can be cut free deduced in [B�2 ] . The last application of a nonstruc-
tural rule in this deduction could only be the application of the rule (⇒�rB ) . Its conclusion is of
the form: [� p]m ⇒ [� ¬p]n , where m, n ≥ 0. Comparing this sequent with the notations from
the statement of the rule (⇒�rB ) , we have: Π = Λ = ∅ , Σ′ = [� p]m , Σ = [� ¬p]n−1 . The
premise of this application that corresponds to the partition Φ = Φ′ = ∅ , Ψ = Σ, and Ψ′ = Σ′ ,
will be of the form

pr̄ ⇒ pr , [�� p]m , [�� ¬p]n , where r ∈ {0, 1} .

Let us show that the last sequent is not deducible in [B�2 ] . Otherwise, by the Completeness
Theorem, B� � pr̄ → (pr∨ �� p∨ �� ¬p) . Suppose that r = 0 (the case r = 1 is considered
similarly). Then by the axiom (A�¬ ) and the rule (RE), we obtain B� � p→�� p . Substituting
¬p for p , we deduce B� � ¬p →�� p . Hence B� ��� p , i.e., B� = S5� , but by Lemma 4.5,
the inclusion B� ⊂ S5� is strict. �
Definition 5.2. A logic L has the Craig (interpolation) property if L � A → C implies the
existence of the formula B (interpolant) such that

L � A→ B, L � B → C and VarB ⊆ (VarA ∩VarC).

Lemma 5.3. A logic L ⊆ Fm� that contains T possesses the Craig property if and only if so
does the logic L� .

Proof. (⇒) Let us use the obvious deducibility T � A ↔ tr(Tr(A)) for any �-formula A .
Suppose that L� � A→ C , i.e., L � tr(A)→ tr(C) . By the Craig property for L , we have

∃B ∈ Fm� : VarB ⊆ (VarA ∩VarC), L � tr(A)→ B, B → tr(C).

Then L � tr(A) → tr(Tr(B)) , tr(Tr(B)) → tr(C) . Hence L� � A → Tr(B) , Tr(B) → C . Thus
Tr(B) is the interpolant of A→ C in L� .

(⇐) We can repeat the same argument exchanging the roles of the translations Tr and tr . �
Corollary 5.4. The logics L� , where L ∈ {T, S4,B, S5,Grz, S4.1} , possess the Craig inter-
polation property.

Proof. The proof follows from the familiar (see [17, 14]) Craig property for L and Lemma 5.3. �
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