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This paper consists of two parts. In the first part, which is rather techni-
cal, we present axiomatizations of versions of some well-known modal logics
in the language with non-contingency operator as the sole modal primitive
symbol. The second part, having a certain philosophical flavour, is devoted
to the old question of possibility to define the necessity operator in terms of
the contingency operator.

In general, a notion « is said to be definable in terms of a notion [ if
there exists an expression A = A(f) containing  such that A is equal (or
equivalent) to «. From this point of view, necessity is not definable in terms
of contingency (cf. [2, 3]). However, this understanding is rather confined,
by the author’s opinion, and the more appropriate one is to say that A
behaves like a, or A subjects the same laws as a. This approach proves to
be successful to give a new, affirmative, answer to the above question.

I. The non-contingency operator > is defined in terms of the necessity
operator [ by putting >>A := AV [-A. This induces a translation of
>>-formulas (i.e., formulas in the propositional modal language with > as
the sole modal primitive, >-language for short) into O-formulas. So, to any
[O-logic L (i.e., logic in the -language) one can associate a non-contingency
logic of L, denoted by L¥, consisting of all t>-formulas whose translations
are theorems of L.

Montgomery and Routley [4] axiomatized the non-contingency logics of T,
S4, and S5 (see also [5, 6]). It is worth noting that in case when L contains T,
or more specifically, the reflexivity scheme [JA — A, necessity is definable in
terms of non-contingency (t>-definable, for short) by 0JA = A& >A. In
the logic Ver, the same effect is observed: it proves, for any A, a formula
A < T, which can be regarded as a >>-definition of OJ. Cresswell [1] provides
an example of logic H such that H 2 T, H # Ver, but [ is >-definable in H.

A systematic study of non-contingency logic was initiated by Humber-
stone. In his paper [2], a (rather complicated) system axiomatizing the non-
contingency logic of K was presented. Kuhn [3] succeeded in simplifying this
system and proposed a finite axiomatization of the logic K4".

Let us give some formal definitions. The propositional modal language
consists of a denumerable set of variables Var = {po, p1,...}, symbols for
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falsehood L, implication —, and a unary modal operator [J. Other con-
nectives are taken as standard abbreviations. The set of formulas of this
language, Fm", is defined as usual. This language will be referred to as a
[(-language and its formulas as O-formulas. A >-language and the set Fm"™
of >-formulas are defined similarly, just by replacing the symbol O by >. Fix
a natural translation tr: Fm”~ — Fm" which respects boolean connectives
and tr(>A) := Otr(A) vV O-tr(A).

The minimal normal modal logic K has the following axioms and the
rules of modus ponens, substitution, and the “necessitation” rule:

(AZ)  All classical tautologies in the (-language
(AR) O(p — q) — (Op — Og) (distributivity)
A A—B A
_ Sub

5 O amg)

The systems K3, 3 C {D, 4,5}, are obtained by adding to K the axioms
(AD), & € X, listed below

(Nec) A

(MP) =

(Ap) Up— Op (seriality)
7)) Op—00p (transitivity)
5) Op—DO0p (euclideanness)

The logic KD45 is known to capture the principles of reasoning involving
epistemic judgments: the postulates of this logic are valid under the (infor-
mal) interpretation of a sentence of the form A as “A is known (to some
idealized person)” In this context, the non-contingency assertion >A means
“the truth value of A is known”

Another well-known system is the Godel-Lob logic GL = K+ (AY), where
(AP) is the Lob axiom O(p — p) — Op. This system is complete under
the formal arithmetical interpretation of a sentence of the form [JA as “A is
provable in PA”, where PA stands for Peano arithmetic (cf. [7]). From this
point of view, the assertion >A means “A is decidable in PA” (a sentence A
is called decidable in a formal theory T if either A or —A is provable in T').

We shall consider only normal modal [-logics L, i.e., sets L of [-formulas
containing the axioms of K and closed under the inference rules of K. Given
a logic L, a non-contingency logic of L (a >-logic of L, for short), denoted
by L%, is the set of all >>-formulas whose translations are theorems of L:

L" ={A e Fm" |tr(A) € L} =tr '(L).

Now we formulate our axiomatic systems for >-logics of the logics L
described above. For notation simplicity, we denote the systems by L";
Theorem 1 below justifies the notation. The logic K* has the rules (MP)
and (Sub) as well as the following axioms and the “noncontingentization”
rule (cf. [2]):

(AT) All classical tautologies in the >-language

(AgR) >(p <> q) — (>p &> >q) (equivalence) (NCR) A
(AZ) >p <> >—p (mirror axiom) >A
(AY) p = [>(g — p) VI (p — 1) (dichotomy)
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To obtain the system KX" 3 C {D, 4,5}, we add to K* the correspond-
ing axioms (note that no axiom corresponds to seriality):
(A}) >p — >(q — >p) (weak transitivity)
(AY) —>p — >(¢ — —>p) (weak euclideanness)
Finally, GL” = K + (A}), where (A}) is the axiom >(>p — p) — >p.

Theorem 1 (Completeness) For any logic L € {KX | ¥ C {D,4,5}} U
{GL} and any t>-formula A, the following statements are equivalent:

(1) LPF A;

(2) LFtr(A);

(3) A is valid in all frames validating L.

Note that for K* and K4" the theorem is proved in [3], however, the
axiomatization of these logics proposed in that paper slightly differs from
ours, so we restated the result for our systems. The proof of this theorem
follows the standard way, using canonical model argument adapted for >-log-
ics by Humberstone [2] and Kuhn [3]. However, analysis of a certain technical
trick in the proof has led us to quite unexpected observations discussed in
the second part of our paper.

IT. Informally speaking, the following “infinitary operator” occurs in the
proof of the aforementioned Theorem:

XA= A ©>(B—A).
BeFm"”
From this equality one can read off a natural Kripke semantics of the opera-
tor X. So the question immediately arises: What modal principles are valid
for this operator? Surprisingly enough, the operator X subjects the laws of
some normal modal logic, which depends on the normal logic describing the
behaviour of the initial necessity operator [.

To put it in a more precise form, consider the infinitary >-language con-
taining the set of variables Var as above, negation —, infinitary conjunction
/\ and a unary modal operator >>. The set of formulas, Fm__, is defined by
induction: every variable p; is a formula; if A is a formula then so are = A and
>A; if @ is a finite or coutable set of formulas then A® is a formula. Other
connectives can be introduced as usual, e.g., (A — B) = = A\{A, -B}; there-
fore we can assume that Fm” C Fm?, . Kripke semantics for this language
is defined in an obvious way.

Further, we introduce a X-language obtained from the [J-language by re-
placing the symbol 0 by X. Finally, we define a translation Tr:Fm* — Fm?%,
which respects boolean connectives and has the following inductive item:

Tr(XA) = A (B —Tr(A)).
BeFm>
This translation induces semantics for the X-language. One can even define
semantics for “mixed” formulas containing [J, >, and X. Note that the
implication (JA — KA is valid in any frame, whereas the converse one is not.

Now, given a [I-logic L, we define a X-logic of L as the set of all X-

formulas valid in any frame validating L:

¥ = {A e Fm®” | for any frame F (F = L= F = A)}.



Theorem 2 If L is a normal O-logic then L¥ is a normal X-logic.

This result implies that the infinitary operator X defined in terms of non-
contingency behaves like some, possibly different from the initial, necessity.

Theorem 3 For logics L € {K,K4,K5 K45 GL}, the inclusion L¥ D L
holds (up to replacement of O by X).

So far, we have not established any equality of the form L¥ = L (of
course, again up to replacement of [J by X)), and the main conjecture here is
that K¥ = K. On the other side, we have an example of inequality, namely
KB” 2 KB, where KB = K + (AR) and (A3) is the symmetricity axiom
p — HOp. One can easily construct a finite symmetrical frame falsifying the
formula p — K- X —p.

It is worth noting that all the previous reasoning is valid if, in the def-
inition of X, the infinitary conjunction is taken only over the set of literals
L:={p,—p | p € Var}. So, in what follows, we assume that X is defined as

KA := A > — A).
¢eL

Recall that, starting from [, we first defined the operator > and then the
operator . What if we iterate the procedure? Schematically, the next
iteration looks like:

pA=KAVK-A; HA:= A »({l — A).
¢eL

Fortunately, this iteration of the construction is redundant.

Theorem 4 The operators X and B are semantically equivalent, i.e., the
formula Xp < Hp is valid in any frame.

Consequently, X is to be considered as a distinctive operator, not as “a
one in the series”, and therefore the problem of what exactly the logic L¥ is,
for various modal logics L, is of both technical and philosophical interest.
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