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Abstract. This paper consists of two parts. In the first part we present an
axiomatization of the “epistemic” modal logic KD45 in the language with non-
contingency operator as the sole modal primitive symbol. The second part, having
a certain philosophical flavour, is devoted to the old question about the possibility
of defining the necessity operator in terms of the contingency operator. Here we
give a new, positive answer to this question by constructing an infinitary operator
defined in terms of contingency which behaves like some necessity.

1 Introduction

The non-contingency operator B is defined in terms of the necessity operator
� by putting BA := �A ∨�¬A. A natural question arises here: is necessity
expressible in terms of non-contingency? The answer depends upon the
understanding of the notion of expressibility.

In general, a notion α is said to be definable (or expressible) in terms of a
notion β if there exists an expression A = A(β) containing β such that A is
equal (or equivalent) to α. In our case this means that � would be definable
in terms of B if there exists a formula ϕ(p) such that all occurrences of �
in ϕ are in contexts of the form Bψ and the equivalence �p↔ ϕ(p) is valid.
From this point of view, � is not definable in terms of B (cf. [3, 4]).

However, this understanding is rather confined, by the author’s opin-
ion, and more appropriate is to say that A behaves like α, or A subjects
the same laws as α. This approach proves to be successful to give a new,
positive answer to the above question. In this paper we construct an op-
erator � (by giving its infinitary definition in terms of B) which behaves
like some necessity. To be more exact, we show that, for any normal modal
logic L (describing the behaviour of �) the corresponding logic describing
the behaviour of � is normal and, for some L, it even contains L (up to
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replacement of � by �). The operator � plays an important rôle in the
proof of completeness theorem for non-contingency logic of KD45.

2 Preliminaries

The propositional modal language consists of a denumerable set of variables
Var = {p0, p1, . . .}, symbols for falsehood ⊥, implication →, and a unary
modal operator �. Other connectives are taken as standard abbreviations.
The set of formulas of this language, Fm�, is defined as usual, in particular,
if A is a formula then so is �A. This language will be referred to as a �-
language and its formulas as �-formulas. A B-language and the set FmB of
B-formulas are defined similarly, just by replacing the symbol � by B. Fix
a translation tr: FmB → Fm� which respects boolean connectives and sets
tr(BA) := �tr(A) ∨�¬tr(A).

A (Kripke) frame is a structure 〈W, ↑〉, where W is a nonempty set of
“worlds” and ↑ is a binary “accessibility” relation on W . By ↓ we denote
the converse relation of ↑. Quantification over worlds accessible from a given
world w ∈W will be written as ∀x↓w and ∃x↓w. A model M = 〈F, |=〉
consists of a frame F and a valuation |= ⊆ (W×Var). The notion “A is true
in M at w” (written M,w |= A and M usually omitted) is defined for both
�- and B-formulas in the standard way; the modal clauses are as follows:

w |= �A � ∀x↓w x |= A;
w |= BA � (∀x↓w x |= A) or (∀x↓w x 6|= A).

Obviously, w |= A ⇔ w |= tr(A), for any B-formula A. A formula A is valid
in a frame F (F |= A, in symbols) if A is true at every world in every model
based on F . If Γ is a set of formulas then a Γ-frame is a frame validating Γ.
A logic L is called complete w.r.t. a class of frames F if, for any formula A,
L ` A ⇔ F |= A.

The minimal normal modal logic K has the following axioms and the
inference rules of modus ponens, substitution, and necessitation:

(A�>) All classical tautologies in the �-language
(A�K) �(p→ q)→ (�p→ �q) (distributivity)

(MP)
A A→ B

B
(Sub)

A

A[B/p]
(Nec)

A

�A

The systems KΣ, Σ ⊆ {D,4,5}, are obtained by adding to K the
axioms (A�S), S ∈ Σ, listed below (the class of frames characterized by an
axiom (A�S) is first-order definable by a formula also shown below).

(A�D) �p→ ♦p ∀w ∃x w↑x (seriality)
(A�4 ) �p→ ��p ∀w ∀x↓w ∀y↓x w↑y (transitivity)
(A�5 ) ♦p→ �♦p ∀w ∀x↓w ∀y↓w x↑y (euclideanness)
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The logic KD45 is known to capture the principles of reasoning involving
epistemic judgments: the postulates of this logic are valid under the (infor-
mal) interpretation of a sentence of the form �A as “A is known (to some
idealized person)”. In this context, the non-contingency assertion BA means
“the truth value of A is known”.

We shall consider only normal modal �-logics, i.e., sets of �-formulas
containing the axioms of K and closed under the rules of K. Given a logic L,
a non-contingency logic of L (a B-logic of L, for short), denoted by LB, is
the set of all B-formulas whose translations are theorems of L:

LB = {A ∈ FmB | tr(A) ∈ L} = tr−1(L).

Montgomery and Routley [5, 6, 7] axiomatized the non-contingency log-
ics of T, S4, and S5. It is worth noting that if L contains T, or more
specifically, the reflexivity scheme �A→ A, necessity is definable in terms
of non-contingency (B-definable, for short) by �A = A&BA. In the logic
Ver, the same effect is observed: it proves, for any A, a formula �A↔ >,
which can be viewed as a B-definition of �. Cresswell [2] provides an exam-
ple of logic H such that H 6⊇ T, H 6= Ver, but � is B-definable in H.

A systematic study of non-contingency logic (in particular, the cases
when � is counted to be B-undefinable), was initiated by Humberstone. In
his paper [3], a (rather complicated) system axiomatizing the non-conting-
ency logic of K was presented. Kuhn [4] succeeded in simplifying this system
and proposed a finite axiomatization of the non-contingency logic of K4.

3 Axiomatizations of non-contingency logics

Now we formulate our systems for B-logics of the logics L described above.
For notation simplicity, we denote the systems by LB; Theorem 3.1 below
justifies the notation. The logic KB has the rules (MP) and (Sub) as well as
the following axioms and the “noncontingentization” rule (cf. [3]):

(AB>) All classical tautologies in the B-language
(ABK) B(p↔ q)→ (Bp↔ Bq) (equivalence)
(AB¬) Bp↔ B¬p (mirror axiom)
(AB∨) Bp→ [B(q → p) ∨B(p→ r)] (dichotomy)

(NCR)
A

BA

To obtain the system KΣB, Σ ⊆ {D,4,5}, we add to KB the corre-
sponding axioms (note that no axiom corresponds to seriality):

(AB4 ) Bp→ B(q → Bp) (weak transitivity)
(AB5 ) ¬Bp→ B(q → ¬Bp) (weak euclideanness)

The classes of frames characterized by these two axioms strictly contain the
classes of transitive (resp. euclidean) frames as well as the class of functional
frames (where each world “sees” at most one world); hence their names.
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The systems for KB and K4B proposed by Kuhn [4] differ from ours:
instead of the axiom (ABK), his systems contain the rule of equivalent re-
placement A↔B

BA↔BB as well as an additional axiom Bp&Bq → B(p& q). Our
systems are similar to the standard axiomatizations of normal logics.

The main result of this section is formulated in Theorem 3.1, stating
that the systems KΣB axiomatize the B-logics of KΣ, Σ ⊆ {4,5} (logics
containing the seriality axiom will be considered at the end of the section).

Theorem 3.1 (Completeness) For any Σ ⊆ {4,5} and a B-formula A,
the following statements are equivalent:

(1) KΣB ` A;
(2) KΣ ` tr(A);
(3) A is valid in all KΣ-frames.

Proof. We follow the scheme (1) ⇒ (2) ⇔ (3) ⇒ (1). The equivalence
(2)⇔ (3) is well-known (cf. [1]) completeness of KΣ w.r.t. KΣ-frames.
In the rest of the proof we refer to B-formulas as just formulas.

(1)⇒ (2) The axioms of KB are valid in any frame, so the translations
thereof are provable in K. For the axiom (AB4 ), the proof is in [4]. We give
a sketch of a derivation of (the translation of) the axiom (AB5 ) in K5:

K5 ` ¬Bp ��:XXz
♦p → �♦p
♦¬p→ �♦¬p

XXz
��: �¬Bp→ �(q → ¬Bp)→ B(q → ¬Bp).

(3)⇒ (1) We construct the canonical model ML = 〈WL, ↑, |=〉 for the logic

L = KΣB. Its worlds are maximal L-consistent sets of formulas. A valuation
is defined in the usual way: w |= p⇔ p ∈ w, for any world w and a variable p.
Before defining the relation ↑, we introduce some notation.

For a formula A, denote �A := {B(B → A) | B ∈ FmB}. In the
subsequent proof, the symbol � plays the rôle similar to that of � in the
standard canonical model argument for �-logics. The difference is in their
“types”: the operator � maps a formula to a formula, whereas � maps a
formula to a set of formulas. Note that semantically � is not equivalent
to �, i.e., the truth at a world w of the formula �A is not equivalent to
the truth at w of all formulas in the set �A. The next section is devoted to
investigation of interconnection between the operators � and �.

Now denote ]w := {A ∈ FmB | �A ⊆ w}. Finally, put w↑x iff ]w ⊆ x.

Lemma 3.2 For any world w ∈WL, the following properties are satisfied:
1◦ (Dichotomy) If BA ∈ w then either A ∈ ]w or ¬A ∈ ]w.
2◦ The set ]w is closed under (even empty) conjunction (hence ]w 6= ∅).
3◦ The set ]w is closed under derivability in L: if A ∈ ]w and L `

A→ B, then B ∈ ]w.
4◦ The dichotomy property is reversible: if A ∈ ]w then BA ∈ w.
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I 1◦. Suppose A,¬A /∈ ]w, then by definition of ]w, for some formulas
B,C we have: ¬B(B → A) ∈ w, ¬B(C → ¬A) ∈ w. However, using the
dichotomy axiom, we derive: KB ` BA → [B(B → A) ∨ B(C → ¬A)],
hence w is even KB-inconsistent, which contradicts our assumptions.

2◦. By definition, the empty conjunction is >. Since KB ` B(B → >),
for any formula B, we have �> ⊆ KB ⊆ L ⊆ w and so > ∈ ]w.

Now let A,B ∈ ]w and prove that (A&B) ∈ ]w, i.e., B[C→(A&B)] ∈ w,
for any formula C. From �A ⊆ w and �B ⊆ w it follows that B(C→A) ∈ w
and B(C→B) ∈ w. Then we derive:

KB ` B(C → A) &B(C → B) −→ B[(C → A) & (C → B)]←→
−→ B[C → (A&B)].

Since w is closed under conjunction and derivability in KB (and even in L),
we conclude: B[C → (A&B)] ∈ w.

3◦. To prove that B ∈ ]w, we take an arbitrary formula C and show
that B(C → B) ∈ w. Since �A ⊆ w, we have B[¬(C → B)→ A] ∈ w. The
assumption L ` A→ B truth-functionally implies L ` [¬(C → B)→ A] ↔
[C → B], and this finally yields B(C → B) ∈ w.

4◦. �A ⊆ w implies B(>→A) ∈ w, which is equivalent to BA ∈ w. J

Lemma 3.3 (|= = 3) For any formula A and a world w, w |= A ⇔ A ∈ w.

I By induction on A. Consider the only interesting case A = BB.

(⇐) BB ∈ w ⇒ (by dichotomy 1◦)
B ∈ ]w or ¬B ∈ ]w ⇒ (by definition of ↑)
(∀x↓w B ∈ x) or (∀x↓w ¬B ∈ x)⇒ (by consistency of x)
(∀x↓w B ∈ x) or (∀x↓w B /∈ x) ⇒ (by induction hypothesis)
(∀x↓w x |= B) or (∀x↓w x 6|= B) ⇒ w |= BB.

(⇒) Suppose BB /∈ w. Then the sets X = ]w ∪ {B} and Y = ]w ∪ {¬B}
are L-consistent. For, if Y is not then L ` (A1 & . . . & An)→ B for some
formulas A1, . . . , An ∈ ]w and n > 0. By 2◦, (A1 & . . . & An) ∈ ]w, then
B ∈ ]w by 3◦ and BB ∈ w by 4◦, which is not the case. The argument for
X is similar except for additional use of the mirror axiom.

Therefore, X and Y are contained in some worlds x and y. Since ]w ⊆ x
and ]w ⊆ y, we have w↑x and w↑y; by induction hypothesis, B ∈ x and
B /∈ y imply x |= B and y 6|= B, thus w 6|= BB. J

By this lemma, the canonical model falsifies all the nontheorems of L.
To conclude the proof, it remains to check that the canonical frame is a
KΣ-frame. The case Σ = ∅ is trivial.

Suppose 4 ∈ Σ and prove that ↑ is transitive. Let w↑x↑y and show
that w↑y, i.e., ]w ⊆ y. Take any A ∈ ]w, then B(B → A) ∈ w, for ev-
ery B. By the axiom (AB4 ), K4B ` B(B → A) → B[C → B(B → A)], for
any C. Since w is closed under K4B-derivability, B[C → B(B → A)] ∈ w.

5



Hence �B(B → A) ⊆ w and B(B → A) ∈ ]w ⊆ x, whence �A ⊆ x and
A ∈ ]x ⊆ y, as desired.

Suppose 5 ∈ Σ and prove that ↑ is euclidean. Let w↑x, w↑y and show
that x↑y, i.e., ]x ⊆ y. Take any A /∈ y, then A /∈ ]w by ]w ⊆ y, hence
¬B(B→A) ∈ w, for some B. Since w is closed under K5B-derivability,
we apply (AB5 ) to obtain B[C → ¬B(B → A)] ∈ w, for all C, therefore
�¬B(B → A) ⊆ w. By w↑x, we conclude: ¬B(B → A) ∈ x, thus �A 6⊆ x
and A /∈ ]x, hence the claim. a

Now we show, following [3], that adding the axiom (A�D) to some �-logics
does not change B-logic thereof. Let F = 〈W, ↑〉 be a frame. We denote
the set of worlds accessible from w ∈W by w↑ := {x ∈W | w↑x}. Turning
“blind” worlds into worlds “seeing” only itself yields a frame F̂ := 〈W,⇑〉,
where ⇑ := ↑ ∪ {〈w,w〉 | w↑ = ∅}. For a class of frames F, put F̂ := {F̂ |
F ∈ F}. In [3] it is noted that F and F̂ validate the same B-formulas.

Theorem 3.4 Suppose a �-logic L is complete w.r.t. a class F and LD is
the smallest logic containing L and (A�D). If F̂ ⊆ F then LDB = LB.

Proof. The inclusion ‘⊇’ is trivial. Now take any A ∈ LDB; clearly,
A ∈ LB ⇔ tr(A) ∈ L ⇔ F |= tr(A) ⇔ F |= A, so it remains to show that
F |= A, for any frame F ∈ F . Since F̂ ⊆ F , we have F̂ ∈ F and so F̂ |= L;
besides, F̂ is serial, hence F̂ |= (A�D). Thus F̂ |= LD, whence F̂ |= LDB, in

particular, F̂ |= A. By the above, this is equivalent to F |= A. a
As a consequence, KDΣB = KΣB, for any Σ ⊆ {4,5}, since the tran-

sitivity and euclideanness properties are preserved as we pass from F to F̂ .
For the case Σ = ∅ the result was obtained in [3].

4 Infinitary operator

Roughly speaking, the following “infinitary operator” occurs in the proof of
Theorem 3.1 (we replace a set of formulas by a conjunction thereof):

�A =
∧

B∈FmB
B(B → A).

From this equality one can read off a natural Kripke semantics of the oper-
ator �. The question arises immediately: What modal principles are valid
for this operator? Surprisingly enough, the operator � subjects the laws
of some normal modal logic (which, of course, depends on the normal logic
describing the behaviour of the initial necessity operator �).

To put it in a more precise form, consider the infinitary B-language con-
taining the set of variables Var as above, negation ¬, infinitary conjunction∧

and a unary modal operator B. The set of formulas, FmB∞, is defined by
induction: every variable pi is a formula; if A is a formula then so are ¬A and
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BA; if Φ is a finite or countable set of formulas then
∧

Φ is a formula. Other
connectives can be introduced as usual, e.g., (A→ B)� ¬

∧
{A,¬B}; there-

fore we can assume that FmB ⊂ FmB∞. Kripke semantics for this language
is defined in an obvious way.

Further, we introduce a �-language obtained from the �-language by re-
placing the symbol� by�. Finally, we define a translation Tr:Fm� → FmB∞
which respects boolean connectives and has the following inductive item:

Tr(�A) =
∧

B∈FmB
B(B → Tr(A)).

This translation induces semantics for the�-language: F |= A� F |= Tr(A),
for any �-formula A. One can even define semantics for “mixed” formulas
containing �, B, and �. Note that the implication �A→ �A is valid in
any frame, whereas the converse one is not.

Now, given a �-logic L, we define a �-logic of L as the set of all �-
formulas valid in any L-frame:

L� � {A ∈ Fm� | for any frame F (F |= L⇒ F |= A)}.

It is easily seen, for example, that Ver� = Ver (from now on, we understand
such equalities as well as inclusions up to replacement of � by �).

Theorem 4.1 If L is a normal �-logic then L� is a normal �-logic.

Proof. Since L� is clearly closed under the rules of K, we only need to
verify that �(p→ q)→ (�p→ �q) is valid. Assume the contrary, i.e., there
exists a model M and its world w such that

w |= �(p→ q), w |= �p, w 6|= �q.

The latter implies that w 6|= B(A→ q) for some B-formula A, and so

∃x↓w x |= A→ q,
∃y↓w y |= A,¬q.

By our assumptions, w |= B(p→ q),Bp. Hence w |= B[(p→ q) & p], or
equivalently, w |= B(p& q). But the case w |= �(p& q) is impossible, for
y 6|= p& q, therefore we have w |= �(¬p ∨ ¬q). Now consider two cases:

1) x |= q. Then x 6|= p, since x |= (¬p ∨ ¬q) by the above. Using
w |= Bp, we conclude y 6|= p. This yields a contradiction: on the one hand,
w |= B(q → p), since w |= �p; on the other, x 6|= q → p and y |= q → p.

2) x 6|= q. Then x 6|= A, for x |= A→ q. Since w |= Bp, there are two
subcases:

2a) x |= p and y |= p. Then from w |= B[A→ (p→ q)] it follows that:
• either w |= �[A→ (p→ q)], which is not the case, for y |= A, p,¬q;
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• or w |= �¬[A→ (p→ q)], so w |= �A, in contradiction with x 6|= A.
2b) x 6|= p and y 6|= p. Then from w |= B[A→ p] it follows that:
• either w |= �[A→ p], which is not the case, for y |= A,¬p;
• or w |= �¬[A→ p], hence w |= �A, in contradiction with x 6|= A. a

This result implies that the infinitary operator � defined in terms of non-
contingency behaves like some, possibly different from the initial, necessity.

Theorem 4.2 For any Σ ⊆ {4,5}, we have KΣ� ⊇ KΣ.

Proof. For Σ = ∅ the statement follows from Theorem 4.1.
4 ∈ Σ. We shall prove that �p → ��p is valid on any transitive frame.
Assume that for a world w of some transitive model we have w |= �p and
w 6|= ��p. This means that w 6|= B(A→ �p) for some B-formula A, i.e.,

∃x↓w x |= A→ �p,
∃y↓w y |= A,¬�p.

The latter, in turn, implies the existence of a B-formula B such that

∃s↓y s |= B → p,
∃t↓y t 6|= B → p.

By transitivity, w↑s, w↑t, so w 6|= B(B → p), in contradiction with w |= �p.
5 ∈ Σ. We show that ¬�p→ �¬�p is true at any world w of any euclidean
model. Let w |= ¬�p, i.e., w |= ¬B(A→ p) for some B-formula A. By the
axiom (AB5 ), we conclude w |= B[B → ¬B(A→ p)] for any B-formula B,
i.e., w |= �¬B(A→ p). Since the implication ¬B(A→ p) → ¬�p is valid
in any frame, the formula �¬B(A→ p) → �¬�p is valid too (we can use
the monotonicity principle “from ϕ→ ψ it follows that �ϕ→ �ψ”, for �
is a normal modal operator). Thus we have w |= �¬�p. a

This theorem cannot be generalized to all logics. A counterexample is
KB� 6⊇ KB, where KB = K + (A�B) and (A�B) is the symmetricity axiom
p→ �♦p. One can easily construct a finite symmetric frame falsifying the
formula p→ �¬�¬p.

It is worth noting that all the previous reasoning is valid if, in the def-
inition of �, the infinitary conjunction is taken only over the set of literals
 L := {p,¬p | p ∈ Var}. So, in what follows, we assume that � is defined as

�A :=
∧
`∈ L
B(`→ A).

(In fact, this new operator � is not semantically equivalent to the previous
one, as can be easily shown; however, the results obtained above remain
true under new definition of � as well). Recall that, starting from �, we
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have defined the operator B and then the operator �. What if we iterate
the procedure? Schematically, the next iteration looks like:

IA := �A ∨�¬A; �A :=
∧
`∈ L
I(`→ A).

Fortunately, this iteration of the construction is redundant.

Theorem 4.3 The operators � and � are semantically equivalent, i.e., the
formula �p↔ �p is valid in any frame. Moreover, we have |= Bp↔ Ip.

Proof. Validity of the implication Bp → Ip follows from |= �p→ �p.
Now, using |= �p→ Bp, we obtain the converse implication:
|= Ip←→ (�p ∨�¬p) −→ (Bp ∨B¬p)←→ Bp. a

Let us observe the following distinctive feature of the operator �. We
have established that � possesses the following two properties: (a) � is a
normal modal operator; (b) the operator B is �-definable by the equality
BA = �A ∨ �¬A (since B and I are equivalent). It turns out that � is
the weakest modality possessing (a) and (b) simultaneously (under modality
here we mean any unary operator supplied by Kripke semantics; of course,
this is not a formal definition; for example, any modal formula of one variable
suits for ours purposes). Indeed, assume that � is a modality satisfying (a)
and (b). To prove that |= �p→ �p, take any literal ` and put A := (`→ p).
From (b) it follows that |= (�A ∨ �¬A)→ BA, hence |= �A→ BA. By
normality of �, we have |= �p → �(`→ p). Therefore |= �p → B(`→ p),
for any `, hence the claim: |= �p→ �p.

Theorem 4.3 immediately implies that the infinitary �- and �-logics of
K are distinct. Formally, denote by L∞ the set of all infinitary �-formulas
(defined similarly to infinitary B-formulas) that are valid in any L-frame:

L∞ = {A ∈ Fm�∞ | for any frame F (F |= L⇒ F |= A)}.

One can define L�∞ in the same manner. Now observe that K∞ 6= K�∞, for
the logic K�∞ contains the formula �p↔ �p, or explicitly,

�p↔
∧
`∈ L

(
�(`→ p) ∨�¬(`→ p)

)
,

whereas the logic K∞ does not contain the corresponding infinitary �-
formula (since � and � are not equivalent).

5 Conclusion

The aim of this paper was to introduce a new modal operator � defined in
terms of the non-contingency operator. As we have observed, � is a necessity
operator (Theorem 4.1), which is similar to the original necessity � is some
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aspects (Theorem 4.2) and different from it is some others (KB� 6⊇ KB,
K�∞ 6= K∞). The new necessity has several distinctive features (idempo-
tency of the construction � 7→ �, the fact that � is the weakest necessity
such that B is �-definable in a natural manner).

Our main conjecture is that K� = K. If this is the case then the
construction of � may be regarded as a solution of the problem concerning
definability of necessity in terms of contingency. If not then the logic K� is
a new modal logic of particular interest, like K, K4 etc. Another interesting
issue is axiomatization of infinitary �-logics L�∞ over various modal logics L.
This is a rather natural question, for the very definition of � is infinitary.
Our candidate for K�∞ is K∞[�/�] + {�p↔ �p}. These questions seem to
be of both technical and philosophical interest, and the answers may shed a
new light on the interconnection between necessity and contingency.
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