
Sequent logic of arithmetic decidability∗

Evgeny Zolin

August 25, 2016

Abstract

Our paper continues, on the one hand, the study of modal logics that have arithmetical
semantics, and on the other, the investigation of decidability (or “non-contingency”) logics. We
present Hilbert-style axiomatic system for the non-contingency logic of the Gödel-Löb provabil-
ity logic GL, in other words, for the logic that is complete under the interpretation of a formula
BA as ‘a sentence A is decidable in the Peano Arithmetic PA’. We also present sequent calculi
for the non-contingency logics of K, K4, and GL.

Keywords: modal logic, provability logic, non-contingency logic.

1 Introduction

The study of a central notion in mathematical logic, the provability, by means of modal logic dates
back to the works of Orlov [1] and Gödel [2]. Independently of each other, they formulated a system,
now known as S4, and left open the problem of its provability interpretation (now we know that the
logic S4 is incomplete and even incompatible with the “right” provability logic discussed below). So
they raised the problem of describing of all modal principles that are valid under interpretation of
modal formulas of the form ‘�A’ as ‘the proposition A is provable in the Peano Arithmetic PA’.
Later Löb [3] suggested a new correct principle of provability, now known as Löb’s axiom, and thus
a modal system appeared, now known as the Gödel–Löb logic GL. It was conjectured that GL
describes exactly the laws of provability in PA. Finaly, Solovay [4] confirmed the conjecture, thus
proving the arithmetical completeness of GL.

An important notion related to the provability is the notion of (formal, or deductive) decidability:1

a proposition A is called decidable in a theory T if either T proves A or T proves ¬A. For example,
Gödel’s Second Incompleteness Theorem states that there exists sentences that are undecidable
in PA. The decidability operator, which we will denote by B, is expressed in terms of the provability
operator � by the equality BA = �A ∨ �¬A. A natural question raises of describing the ‘laws’
that the operator B obeys in a some modal logic L; in other words, this is the problem of finding an
axiomatization of the decidability logic over L (for precise definitions, see below). (In modal logics
not related to provability, the operator B is usually called non-contingency.)

Such a problem, not related to the provability interpretation, has already been investigated for
some modal logics. In [5, 6], the non-contingency logics were axiomatized over the modal logics T,
S4, S5; in [7, 8] the non-contingency logics over K and K4 were axiomatized.

In this paper we present an axiomatization of the decidability logic over GL, that is, the logic that
is complete under interpretation of formulas of the form BA as ‘the proposition A is decidable in PA’.

∗Originally published in Russian in 2001; translated to English (by a translation bureau, rather incorrectly and the
paper is not available online) in 2001; translated to English by the author in 2016.

1Not to be confused with the same word, but denoting different notion, in the theory of algorithms, where there
are decidable sets of numbers or sets of words in the sense that there is no algorithm for recognizing this set.
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We also build sequent calculi for the non-contingency logics over K, K4, GL. Our axiomatizations
of the non-contingency logics over K and K4 differ from the systems proposed in [7, 8] and are more
resemble the axiomatizations of K and K4.

2 Definitions

The propositional modal language (or �-language) has a countable set of variables P = {p0, p1, . . .},
Boolean connectives ⊥ and → and a unary operator �. Other connectives are introduced as abbre-
viations. The set of �-formulas , Fm�, is defined in the usual way:

A,B ::= ⊥ | p | A→ B | �A.

The minimal normal modal logic K has the following axioms and rules of inference (here A[B/p] is
obtained from A by substituting the formula B for all occurrences of a variable p):

(A�>) classical tautologies in the �-language
(A�K) �(p→ q)→ (�p→ �q) (distributivity)

(MP)
A A→ B

B
(Sub)

A

A[B/p]
(Nec)

A

�A

We will be interested in the following systems: K4 = K + (A�4 ), GL = K + (A�L), where

(A�4 ) �p→ ��p (transitivity)
(A�L) �(�p→ p)→ �p (Löb’s axiom)

The following strict inclusions hold: K ⊂ K4 ⊂ GL.

Definition 2.1. A sequent is an expression of the form Π⇒ Σ, where Π and Σ are finite multi-
sets2 of formulas. Inclusion between multisets will be understood without taking into account the
multiplicities; that is, the notation Π ⊆ Σ will mean that every formula that occurs (at least onces)
in Π occurs (at least onces) in Σ. The union of multisets Π and Σ is denoted by ΠΣ (of course,
it regards multiplicities); we also denote ΠA := Π ∪ {A} for short. The set of subformulas of a
formula A is denoted by SbA. For a multiset of formulas Γ, the set of its subformulas is denoted by
Sb Γ :=

⋃
{SbA | A ∈ Γ}.

We will often denote a sequent Π⇒ Σ by w; in this case, we will denote its antecedent by 〈w| := Π,
and its succedent by |w〉 := Σ; the set of subformulas of w is denoted by Sbw := Sb ΠΣ. We write
A ∈ w if A ∈ ΠΣ; also we write Γ ⊆ w if Γ ⊆ ΠΣ, and w ⊆ Γ if ΠΣ ⊆ Γ. If L is a sequent calculus,
then L ` A⇔ B means that L ` A⇒ B and L ` B ⇒ A.

The sequent calculus [L] for the logic L ∈ {K,K4,GL} is obtained by adding to the sequent
calculus for the classical propositional logic (with the Cut rule) the following rule (⇒�L):

(⇒�K)
Π⇒ A

�Π⇒ �A
(⇒�K4)

Π,�Π⇒ A

�Π⇒ �A
(⇒�GL)

�A,Π,�Π⇒ A

�Π⇒ �A

2.1 Decidability (or non-contingency) logics

Let us consider the B-language, which differs from the �-language just by replacing the symbol
� with B. The set of B-formulas is denoted by FmB. Sometimes we abuse the notation and,
for a �-formula A, write BA as a denotation for �A ∨�¬A; such occurrences of B can be easily
recognized by context. Next, we define the B-translation (·)B : FmB → Fm� that respects variables

2By a multiset we mean a set with an indication of the ‘multiplicity’ (>0) of each of its element. Formally, a

multiset of �-formulas is a function Fm� → N.
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and Boolean connectives and satisfies the equality (BA)B = �(AB) ∨ �¬(AB). Finally, the non-
contingency logic over a �-logic L is, by definition, the set of all B-formulas whose B-translations
are theorems of L:

LB := {A ∈ FmB | AB ∈ L}.

The Kripke semantics for �- and B-languages is introduced as usual. The accessibility relation
and its converse will be denoted by ↑ and ↓, respectively; in this case, the quantifiers over the points
accessible from a given point w (in other words, over the successors of w) will be written as ∀x↓w
and ∃x↓w. In this notation, the modal clause in the definition of the truth of a B-formula A at a
point w looks as follows:

w |= BA �
(
∀x↓w x |= A

)
or
(
∀x↓w x 6|= A

)
.

Clearly, w |= A ⇔ w |= AB, for every B-formula A. If Γ is a set of formulas, then by a Γ-frame we
mean a frame on which all formulas from Γ are valid. A sequent Π⇒ Σ is said to be true (valid)
somewhere if the formula

∧
Π→

∨
Σ is true (valid).

3 Axiomatization

The calculus for KB has the following axioms and the rules (MP), (Sub), and (Dec):

(AB>) Classical tautologies in the B-language
(AB¬) Bp↔ B¬p (mirror axiom)
(AB↔) B(p↔ q)→ (Bp↔ Bq) (equivalent replacement)
(AB∨) Bp→ [B(q → p) ∨B(p→ r)] (dichotomy)

(Dec)
A

BA

The axioms of the logics K4B and GLB are:3 K4B = KB + (AB4 ), GLB = K4B + (ABL), where

(AB4 ) Bp→ B(q → Bp) (weak transitivity)
(ABL) B(Bp→ p)→ Bp (weak Löb’s axiom)

The sequent calculi4 [LB] for the non-contingency logics over L ∈ {K,K4,GL} are obtained by
adding to the seqent calculus for the classical propositional logic (with the Cut rule) the rules (B¬⇒),
(⇒B¬), (⇒B∨), (⇒B↔) and (⇒BL) shown on Fig. 1, where we denote: (Π ∨ A) := {(π ∨ A) | π ∈ Π}.

(⇒B∨)
Π⇒ Σ,BA
Π⇒ Σ,B(B → A),B(A→ C)

(⇒B↔)
Π, A⇒ B,Σ Π, B ⇒ A,Σ

Π,BA⇒ BB,Σ

(B¬⇒)
BA,Π⇒ Σ

B¬A,Π⇒ Σ
(⇒B¬)

Π⇒ Σ,BA
Π⇒ Σ,B¬A

(⇒BK)
Π⇒ A

B(Π ∨ A)⇒ BA

(⇒BK4)
Π,BΣ⇒ A

B(Π ∨ A),BΣ⇒ BA
(⇒BGL)

BA,Π,BΣ⇒ A

B(Π ∨ A),BΣ⇒ BA

Figure 1: Rules of the sequent calculi [KB], [K4B], and [GLB].

3Conjecture: the axiom (AB4 ) in the calculus GLB is redundant (recall that �p→ ��p is redundant in GL).
4Perhaps, it is more natural to formulate the sequent calculi if ¬, ∨ are primitive rather than defined connectives.
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4 Completeness

The completeness proof is based, on the one hand, on the canonical model construction that was
adapted in [7, 8] to deal with the B-logics; on the other hand, it is based on the ‘sequent saturation’
method that is customarily used in the completeness proofs for (ordinary) sequent calculi. First we
prove two auxiliary lemmas.

Lemma 4.1. KB ` Bp&Bq → B(p& q).

Proof. . The following implications and equivalences derivable in KB:

KB ` B[p→ q]
1←→ B[p↔ (p& q)]

2−→ [Bp→ B(p& q)].

Here ‘
1←→’ is obtained from the tautology [p→ q] ↔ [p ↔ (p& q)] by the axiom (AB↔), while ‘

2−→’
is a substitution instance of the axiom (AB↔). Similarly:

KB ` B[q → p]→ [Bq → B(p& q)]. Finally, using the Dichotomy axiom (AB∨), we obtain:
KB ` Bp −→ {B(q → p) ∨B(p→ q)}

−→ {[Bp→ B(p& q)] ∨ [Bq → B(p& q)]}
←→ {(Bp&Bq)→ B(p& q)}.

Now note that the first premiseBp in the formulaBp→ {(Bp&Bq)→ B(p&q)} is redundant.

Lemma 4.2. K4B ` B(p ∨ q)→ B[p ∨ (Bq → q)].

Proof. . Since the completeness of K4B will already be proved by the time we will use this Lemma5

we can build a derivation in K4, not in K4B. On the one hand, by the monotonicity:
K ` �(p ∨ q) −→ �[p ∨ (Bq → q)] −→ B[p ∨ (Bq → q)]. On the other hand:
K4 ` �¬(p ∨ q)←→ �(¬p& ¬q)←→ [�¬p&�¬q] −→ [�¬p&�¬q &��¬q] −→
→ [�¬p&�¬q &�Bq]←→ �(¬p& ¬q &Bq)←→ �¬[p ∨ (Bq → q)] −→ B[p ∨ (Bq → q)].

Theorem 4.3 (Completeness). For every logic L ∈ {K,K4,GL} and for any sequent Π⇒ Σ in the
B-language, the following statements are equivalent:

(1) [LB] ` Π⇒ Σ,
(2) LB `

∧
Π→

∨
Σ,

(3) L ` (
∧

Π→
∨

Σ)B,
(4) F |= Π⇒ Σ, for every finite L-frame F .

Proof. We follow the schema (1)⇒(2)⇒(3)⇔(4)⇒(1). Here the equivalence (3)⇔(4) is the well-
known (see [9, 10]) completeness theorem for our three logics L with respect to the class of finite
L-frames.6 In the sequel, we refer to B-formulas as just formulas.

(1)⇒ (2) In the derivations presented below, we use the following simple fact from the classical
propositional logic: if the implication P → A is derivable, then the equivalence [P ∨ A]↔ A is
derivable as well. Let us assume that Π = {π1, . . . , πm} and Σ = {σ1, . . . , σn}, where m,n> 0.

L = K. Assume that KB `
∧

Π→ A. Using Lemma 4.1, the axiom (AB↔), and the above mentioned
fact, we derive:

KB `
∧
B(πi ∨ A) −→ B[

∧
(πi ∨ A)]←→ B(

∧
Π ∨ A)←→ BA.

L = K4. Assume that K4B `
∧

(Π,BΣ)→ A. Using the axiom (AB4 ) rewritten as Bσ → B(A ∨Bσ),
we derive:

K4B ` [
∧
B(πi ∨ A) &

∧
Bσj] −→ [B(

∧
πi ∨ A) &

∧
B(A ∨Bσj)] −→

→ [B(
∧

Π ∨ A) &B(
∧
BΣ ∨ A)] −→ B [

∧
(Π,BΣ) ∨ A]←→ BA.

5This lemma will be used only in the completeness proof for GLB. Note that only for this Lemma we included the
axiom (AB4 ) in the axiomatization of GLB.

6Recall that the logic K is valid on all frames; the class of (finite) K4-frames is the class of (finite) transitive
frames; the class of finite GL-frames is exactly the class of finite irreflexive transitive frames.
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L = GL. Assume that GLB `
∧

(Π,BΣ)→ (BA→ A). We have already proved above that
K4B ` [

∧
B(πi ∨ A) &

∧
Bσj] −→ B [

∧
(Π,BΣ) ∨ A]. Now, using Lemma 4.2, we derive:

K4B ` B [
∧

(Π,BΣ) ∨ A] −→ B [
∧

(Π,BΣ) ∨ (BA→ A)]. Finally, using the axiom (ABL), we
obtain:

GLB ` B [
∧

(Π,BΣ) ∨ (BA→ A)]←→ B(BA→ A) −→ BA.

(2)⇒ (3) The axioms of KB are valid on every frame, hence their B-translations are derivable in K.
Let us derive the B-translation of the axiom (AB4 ) in the logic K4. On the one hand:
K4 ` �p −→ ��p −→ �Bp −→ �(q → Bp) −→ B(q → Bp).
On the other hand: K4 ` �¬p→ B(q → Bp).
Let us derive the B-translation of the axiom (ABL) in GL.
Using the tautology (Bp→ p)→ (�p→ p), we obtain:
GL ` �(Bp→ p) −→ �(�p→ p) −→ �p −→ Bp. At the same time:
GL ` �¬(Bp→ p)←→ �(Bp& ¬p) −→ �¬p −→ Bp.

(4)⇒ (1) Let us denote the sequent calculus for L by L := [LB]. Denote A := B if A = ¬B, for

some formula B; otherwise denote A := ¬A. For a set of formulas Γ, denote Γ := {A | A ∈ Γ}.
Let us call a set of formulas Γ closed if Sb Γ ⊆ Γ and Γ ⊆ Γ (in other words, if it is closed under
subformulas and ‘economical’ negation). In it easily seen that any finite set of formulas is contained
in some, again finite, closed set of formulas. Let us also say that a sequent w is Γ-saturated if Γ ⊆ w;
a sequent w is called thin if both 〈w| and |w〉 are sets, in the sense that every formula in them has
the multiplicity 1.

For the sake of contradiction, assume that L 6` Π⇒ Σ. We will build a finite counter-model MΓ
L

for Π⇒ Σ based on an L-frame. To this end, we put:

Γ := Sb ΠΣ, \Γ := {A,A | BA ∈ Γ}, β := Γ ∪ Sb{B(A ∨B) | A,B ∈ \Γ}, Γ̂ := β ∪ β.

Clearly, the set Γ̂ is closed.
Here we introduce an important notation. For an arbitrary formula A ∈ \Γ, let us denote:

�A := {B(B ∨ A) | B ∈ \Γ} ⊆ β.

In the subsequent proof, the symbol � will play the rôle that is similar to the role of the operator
� in the standard construction of the canonical model of a normal logic. The difference, however, is
in their “types”: the � was an operator that, when applied to a formula, yields again a formula; at
the same time, when � is applied to a formula, it yields a finite set of formulas.7 One should keep
in mind, however, that semantically � is not equivalent to � (we will not prove this here).

We are ready to construct a finite counter-model MΓ
L = (W Γ

L , ↑, |=) for the sequent Π⇒ Σ. Put

W Γ
L := {w | w is a thin8 Γ̂-saturated sequent, w ⊆ Γ̂, and L 6` w}.

It is clearly a finite set. Due to the presence in L of the Cut rule (and the Contraction rule), every

sequent that is underivable in L and consists of formulas from Γ can be extended to a thin Γ̂-saturated
sequent that is again underivable in L. In particular, since the sequent Π⇒ Σ is not derivable in L,
by our assumption, ∃z ∈ W Γ

L : Π ⊆ 〈z|, Σ ⊆ |z〉, and hence W Γ
L 6= ∅.

Next, we define the valuation of variables “canonically”:

w |= p � p ∈ 〈w|, for every w ∈ W Γ
L and p ∈ P.

7Remark in translation: note that the symbol � is used in other papers of ours to denote the infinite set of formulas
{B(B ∨A) | B ∈ FmB} or even the (infinitary) conjunction of this infinite set. Here we will only need “normality” of
� with respect to the formulas in \Γ, and for this reason, it suffices to take into account only formulas B(B ∨A) with
B ∈ \Γ.

8We need to confine to thin sequents, otherwise we can repeat the same formula as many times as we want and
thus obtain an infinite set WΓ

L .
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It remains to construct an accessibility relation ↑ on W Γ
L . We will approach this task gradually.

To begin with, it is easily seen that the following condition (on the relation ↑) will be sufficient to
complete the proof of our Theorem:

〈1B〉 ∀w ∈ W Γ
L ∀A ∈ Γ. w |= A⇔ A ∈ 〈w|.

Indeed, for the point z we found above, we will obtain, by 〈1B〉, that z |=
∧

Π and z |=
∧
¬Σ, therefore,

z 6|= Π⇒ Σ and so MΓ
L 6|= Π⇒ Σ.

The condition 〈1B〉 on the relation ↑ is formulated as the relationship between the truth relation
|= and the membership of formulas to the antecedents of sequents from W Γ

L . Now recall that, in the
definition of the truth relation, only the modal clause (for B) depends on the relation ↑. Therefore
it suffices to require the following condition for ↑; here the square bracket means the disjunction:

〈2B〉 ∀w ∈ W Γ
L ∀BA ∈ Γ. BA ∈ 〈w| ⇔

[
∀x↓w A ∈ 〈x|,
∀x↓w A ∈ |x〉.

Indeed, the implication 〈2B〉 ⇒ 〈1B〉 can be easily proved, as usually, simultaneously for all w ∈ W Γ
L ,

by induction on the complexity of the formula A (taken from Γ); the proof in our case (forB-formulas)
literally repeats the same proof for �-logics.

Given a subset Φ ⊆ \Γ, let us denote ]Φ := {A ∈ \Γ | �A ⊆ Φ}. It is easily seen that the
following inclusions hold: �]Φ ⊆ Φ ⊆ ]�Φ. Furthermore, for any sequent w ∈ W Γ

L , let us denote
]w := ]〈w|.

We came to the crux of the proof. We define the relation ↑ on W Γ
L as follows, where the curly

bracket means the conjunction:9

〈3BK〉 w↑x � ]w ⊆ 〈x|;
〈3B4 〉 w↑x � ]w ⊆

(
]x ∩ 〈x|

)
;

〈3BL〉 w↑x �
{
]w ⊆

(
]x ∩ 〈x|

)
,

∃A ∈ \Γ. BA ∈ |w〉 & BA ∈ 〈x|.

Lemma 4.3.1 (Dichotomy). If BA ∈ Γ and BA ∈ 〈w|, then
(
A ∈ ]w or A ∈ ]w

)
.

I Assume the contrary. Then, since A ∈ \Γ, we obtain:
1) �A 6⊆ 〈w|, i.e., ∃B ∈ \Γ: B(B ∨A) /∈ 〈w|; but since B(B ∨A) ∈ β, we have B(B ∨A) ∈ |w〉.
2) �A 6⊆ 〈w|, i.e., ∃C ∈ \Γ: B(C ∨A) /∈ 〈w|, but since B(C ∨A) ∈ β, we have B(C ∨A) ∈ |w〉.
However L ` BA ⇒ B(B ∨ A),B(C ∨ A); indeed, this sequent is obtained by the rule (⇒B∨), if

we take into account that from L ` (B ∨ A) ⇔ (¬B → A) by the rule (⇒B↔) one can derive that
L ` B(B ∨ A)⇔ B(¬B → A), and similarly L ` B(C ∨ A)⇔ B(A→ C). Therefore, L ` w, which
contradicts to that w ∈ W Γ

L . J

Lemma 4.3.2 (Main). 〈3BS〉 ⇒ 〈2B〉, for every S ∈ {K,4,L}.

I We need to prove the equivalence in 〈2B〉, for every w ∈ W Γ
L and BA ∈ Γ. One implication is

easy:

(⇒) Assume that BA ∈ 〈w|. By the Dichotomy lemma, two cases are possible:

9To understand this definition, it is instructive to recall how the relation is defined in the usual �-language. Let
us give these definitions for the case when we deal with maximal consistent subsets of Γ̂, in order not to overwhelm
the reader with antecedents and succedents of sequents.

For K, one puts w↑x if, for every formula of the form �A, if �A ∈ w then A ∈ x.
For K4, one puts w↑x if, for every formula of the form �A, if �A ∈ w then A,�A ∈ x.
For GL, one puts w↑x if a) for every formula of the form �A, if �A ∈ w then A,�A ∈ x; and b) there is a formula
�A /∈ w such that �A ∈ x. Item (a) guarantees transitivity, item (b) irreflexivity.

When we return to sequents, then membership B ∈ w really means B ∈ 〈w|, and non-membership B /∈ w (for

formulas B ∈ Γ̂ and for Γ̂-saturated sequents) means B ∈ |w〉. Finally, �A ∈ w is the same as saying that A ∈ ]w.
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1) A ∈ ]w, then by the condition 〈3BL〉 we conclude: ∀x↓w A ∈ 〈x|.
2) A ∈ ]w, then similarly ∀x↓w A ∈ 〈x|. But A ∈ \Γ ⊆ Γ̂, hence A ∈ x, because x is Γ̂-saturated;

however, the case A ∈ 〈x| is impossible, since otherwise L ` x. Therefore, A ∈ |x〉.

(⇐) This implication is proved for each of our three logics individually. Assume that BA /∈ 〈w|.
Since A ∈ Γ̂ and the sequent w is Γ̂-saturated, this means that BA ∈ |w〉. We need to build two
points x, y ∈ W Γ

L such that w↑x, w↑y and A ∈ 〈x| and A ∈ |y〉.

Case S = K. Consider Π := ]w. Let us prove that L 6` Π⇒ A. Assume the contrary, then by the
rule (⇒BK) we derive: L ` B(Π ∨ A) ⇒ BA. Then ∀π ∈ Π, we have π ∈ ]w, which means that
�π ⊆ 〈w|. Hence ∀α ∈ \Γ: B(α ∨ π) ∈ 〈w|. Since it is clear that L ` B(α ∨ π) ⇔ B(π ∨ α), we
obtain: ∀α ∈ \Γ: B(π ∨ α) ∈ 〈w|. In particular, taking α := A, we conclude that B(π ∨ A) ∈ 〈w|.
Therefore, B(Π ∨ A) ⊆ 〈w|, BA ∈ |w〉 and L ` B(Π ∨ A) ⇒ BA; thus L ` w, which contradicts to
that w ∈ W Γ

L (i.e., w was an L-underivable sequent).
Similarly, L 6` ΠA⇒ , for otherwise L ` Π⇒ A and we can apply the same argument, addition-

ally taking into account that A ∈ \Γ and BA ∈ |w〉.
It follows that the sequents ΠA⇒ and Π⇒ A can be embedded inth some thin Γ̂-saturated

sequents x, y ∈ W Γ
L . Then w↑x, y, since ]w = Π ⊆ 〈x|, 〈y|. By construction, A ∈ 〈x| and A ∈ |y〉.

Case S = 4. Consider Π := ]w, Φ := �Π. Then L 6` ΠΦ⇒ A, for otherwise by the rule (⇒BK4) we
could derive: L ` B(Π ∨ A),Φ⇒ BA, since Φ = BΣ, for some Σ. As in the case for S = K, we have
that B(Π ∨ A) ⊆ 〈w|. Furthermore, Φ = �]w ⊆ 〈w|. Hence L ` w, which is impossible.

Now, the sequent ΠΦ⇒ A is embedded in some y ∈ W Γ
L . It remains to check that w↑y. We have:

]w = Π ⊆ 〈y|, ]w = Π ⊆ ]�Π = ]Φ ⊆ ]y, since Φ ⊆ 〈y|.

Similarly, one can show that L 6` ΠΦA⇒ and build the required x.

Case S = L. As in the case for S = 4, we build Π, Φ; then we prove, using the rule (⇒BGL), that the
sequent BA,Π,Φ⇒ A is not derivable in L = [GLB], and finally, we embed this sequent to some
sequent y ∈ W Γ

L . As in the case for S = 4, we can show that ]w ⊆
(
]y ∩ 〈y|

)
; in addition, we have

BA ∈ |w〉 and BA ∈ 〈y|. Hence w↑y (where the relation ↑ is defined according to 〈3BL〉). Similarly
we build the required x. J

It remains to prove that the frame F Γ
L we built above is an L-frame. The case for S = K is trivial.

Case S = 4: if w↑x↑y, then ]w ⊆
(
]x ∩ 〈x|

)
⊆ ]x ⊆

(
]y ∩ 〈y|

)
and w↑y; hence ↑ is transitive.

Case S = L: the irreflexivity of ↑ follows from the second line of its definition 〈3BL〉 and from the
underivability of the sequents in L. Now let us prove that ↑ is transitive.

Suppose that w↑x↑y. Then, similarly to the above, ]w ⊆
(
]y ∩ 〈y|

)
. Furthermore, ∃A∈\Γ:

BA ∈ |w〉 and BA ∈ 〈x|. Let us show that BA ∈ 〈y|. By the Dichotomy lemma, two cases are
possible:

a) A ∈ ]x, but ]x ⊆ ]y, hence A ∈ ]y; in particular, B(A ∨ A) ∈ y. Since L ` B(A ∨ A) ⇔ BA,
we obtain BA ∈ 〈y|.

b) A ∈ ]x. The same argument is applicable, since A ∈ \Γ and KB ` BA↔ BA.
This completes the proof of our Theorem.
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