Firstly, I have noticed that, in the paper, I started the proof of Theorem 5.8 by saying:

We prove a bit more: if L C M (V) for some modality V then AnT C M (V).

But, in fact, I have proved exactly what is claimed in Theorem 5.8. Because, in step (g), I use
the fact that M (V) is closed under the rule (Nec), which follows from the equality L = M (V), but
not from the inclusion L C M(V) only.

In the proof of Theorem 5.8 (and already implicitly in Definition 5.4 of a modalised logic), I use
the following fact, widely used in Discrete mathematics (when they build circuits out of elements
computing A, V,— to compute boolean functions).

Fact. Suppose that we have a boolean function f(Z,%):2™%t" — 2, where 2 = {1, T},
Z=(x1,...,Zm), ¥= (Y1,-..,yn). Then we have the decomposition of the function f(Z,¥)
w.r.t. the variables &

where & = (01,...,0m), 7 = a7" A... Ax9m 27 =z, o+ = —z. In particular, if 7 is an
empty tuple, we have a Full DNF for f(Z).
Indeed, if we compute the value of the left and right hand sides on any tuples £ = &, ¥ = 7,
then on the L.H.S. we have f(&,7), where as on the R.H.S. all the disjuncts are false except
for the only one: &% A f(&,7), which is equivalent to f(&,7).
Moreover, we have the following rule: in order to compute the formula that stands in
conjunction with %, we simply substitute & for & in f, thus obtaining f(&,#).

For example, in Definition 5.4, we take any modal formula A, consider it as a boolean function
of its variables p’and boxed formulas:

A « f(p,0F,...,0F,),

and then apply the above decomposition w.r.t. the variables p’ (neglecting the fact that the variables
P may also occur in the formulas F;):

A \/ (F°AB3). (%)

age2m

In order to compute Bz, we can apply the above rule and substitute & for non-modalised occur-
rences of the variables p in A. This will be used in the proof below.

To keep the whole thing on one page, I continue overleaf.
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Theorem 5.8.Suppose a logic L O KB is normal, a logic M 2 E is modalised, and L — M.
Then L O (Triv N Ver).

ProoF (EXTENDED). Firstly, we decompose the formula Vp w.r.t. the variable p:
Vp < [(pAAp) V (~p A Xp)],

where the formulas Ap and A'p are modalised.
Next, we recall that M proves the distributivity principle for V, since L — M:

MEV(p—q) — (Vp— Vq)

Denote this formula by D, then substitute the decompositions of Vp, Vg, and V(p — ¢) into D,
thus obtaining an equivalent formula. It is a boolean combination of the variables p, ¢ and some
boxed formulas. Now take a decomposition of D w.r.t. the variables p, ¢, which looks like:

D «—— (-pA-gA(a))V
(=p A qn(b))V
(p A=g A (c))V
(pA gA(d))

To compute the formulas (a)-(d), simply apply the rule from the above mentioned Fact. For
example, to compute the formula (b), which stands in conjunction with —p A ¢, we substitute
p:=_1 and ¢:=T into D (of course, we substitute only for non-modalised occurrences of p and
g, i.e., that are not in scope of ’s). Now we recall that the formula Vr turns into Ar, if we
substitute r := T for non-modalised occurrences of r, and it turns into A’r if we substitute r := L.

Therefore, under the substitution considered, Vp will turn into A’p, Vq into Agq, and V(p — ¢)
into A(p — ¢), just because the implication (p — ¢) is true for these values of p and ¢. Thus, under
this substitution, the formula D turns into the following formula (b):

(b) Alp—q)— (Ap— Ag).
By the way, that is why in the four formulas that we obtain in this process:
) Alp—q) — (Ap— Ng)
) Alp—q) — (&p— Aqg)
) AN(p—q) — (Ap— Ng)
) Alp—q) — (Ap— Ag)

the column of Delta’s marked in blue resembles the truth table for implication, and the remaining
two columns of Delta’s look like the truth tables for p and ¢, resp.

Now it remains to note that since M is a modalised logic and M F D, it proves all the four
formulas (a)—(d) (they play the role of Bz from Definition 5.4 of a modalised logic).

Next we deal with the symmetry p — OOp ... Again, let’s go overleaf.



Next we deal with the symmetry p — OOp in a similar way: since L — M, we have
M&Ep— VaV-p.
Let us first decompose the outermost Nabla, i.e., the formula VF', where F' := =V—p. We have:
VF «—— [(FAAF)V (=F AAXF)).
So, we substitute this equivalence to the formula p — V-V-p and obtain:
p = [(=V=p A A=V=p) V (Vp A A=Vp)]. (#)

Note that two new outermost Nablas appeared now, so we have to decompose them too (but see
the Remark below). That is, we replace both outermost formulas V-p (marked in blue) with
longer ones, using the equivalence:

V-p «— {(=pAA-p)V (pAXN-p)}.
This results in the following formula (way too long to fit one line):

p— [(~{(=p A A=p) V (p A X=p)} A A=V=p) V )
({(=p A A=p) V (p A X=p)} A A=V -p)].

Now denote this formula by S and apply decomposition: S < ((p A S1) V (=p V S2)). Recall our
rule: in order to compute S; (which stands in conjunction with p), we substitute p := T for all
non-modalized occurrences of p in .S, thus obtaining:

(=A=p AN A=V=p) V (A=p A AN=V-p). (S1)

Next, in order to compute Sa, we substitute p := L for all non-modalized occurrences of p in S, thus
obtaining a tautology: Sy = T, since p stands as the antecedent (so, this fact is not an obstacle,
but, on the contrary, it makes our job easier).

Since M F S and M is a modalised logic, we infer M S; (and M F Sy, but this is trivial).
Observe that S7 has the form of disjunction; and logicians usually do not like theorems in the form
of disjunction (do they?). Therefore, we go a step further: notice that S; has the form (A A B) V
(AN Q). Tt is truth-functionally equivalent to the following conjunction: (A — C) A (AV B) (just
build two truth tables and compare them). Hence, M proves the conjunction:

ME (N-p— X=V-p) A (X=pV A-V-p).
Hence M proves both conjuncts. It remains to simplify them by replacing —p with p to obtain:

(e) Ap— N=-Vp;
(f) ApvA-Vp.

That’s it!

Remark. In fact, the proof I carried out in my drafts is much shorter (but I decided to present
the long one, since it exactly corresponds to the steps on p. 880 of the paper). Namely, before
transforming (#) into a long-long formula (b), recall that later we will need to compute Sy and Sy
anyway; and already at the stage (#) we can observe that S, will be a tautology. So it remains to
compute 5.

To this end, we subsitute p := T for all non-modalized occurrences of p already in (#). The
antecedent p disappears, whereas the two blue subformulas V—p are equivalent (under this substi-
tution p := T) to A'=p. Thus, we avoid (b) and directly come to the formula marked as (S7).

As always, I would be glad to provide any further details.



