
1

Firstly, I have noticed that, in the paper, I started the proof of Theorem 5.8 by saying:
We prove a bit more: if L ⊆M(∇) for some modality ∇ then Λ©> ⊆M(∇).
But, in fact, I have proved exactly what is claimed in Theorem 5.8. Because, in step (g), I use

the fact that M(∇) is closed under the rule (Nec), which follows from the equality L = M(∇), but
not from the inclusion L ⊆M(∇) only.

In the proof of Theorem 5.8 (and already implicitly in Definition 5.4 of a modalised logic), I use
the following fact, widely used in Discrete mathematics (when they build circuits out of elements
computing ∧,∨,¬ to compute boolean functions).

Fact. Suppose that we have a boolean function f(~x, ~y):2m+n → 2, where 2 = {⊥,>},
~x = (x1, . . . , xm), ~y = (y1, . . . , yn). Then we have the decomposition of the function f(~x, ~y)
w.r.t. the variables ~x:

f(~x, ~y)←→
∨

~σ∈2m

(
~x ~σ ∧ f(~σ, ~y)

)
where ~σ = (σ1, . . . , σm), ~x ~σ = xσ1

1 ∧ . . . ∧ xσm
m , x> = x, x⊥ = ¬x. In particular, if ~y is an

empty tuple, we have a Full DNF for f(~x).
Indeed, if we compute the value of the left and right hand sides on any tuples ~x = ~σ, ~y = ~τ ,
then on the L.H.S. we have f(~σ, ~τ), where as on the R.H.S. all the disjuncts are false except
for the only one: ~σ ~σ ∧ f(~σ, ~τ), which is equivalent to f(~σ, ~τ).
Moreover, we have the following rule: in order to compute the formula that stands in
conjunction with ~x~σ, we simply substitute ~σ for ~x in f , thus obtaining f(~σ, ~y).

For example, in Definition 5.4, we take any modal formula A, consider it as a boolean function
of its variables ~p and boxed formulas:

A ↔ f(~p, �F1, . . . ,�Fn),

and then apply the above decomposition w.r.t. the variables ~p (neglecting the fact that the variables
~p may also occur in the formulas Fi):

A←→
∨

~σ∈2m

(
~p ~σ ∧B~σ

)
. (?)

In order to compute B~σ, we can apply the above rule and substitute ~σ for non-modalised occur-
rences of the variables ~p in A. This will be used in the proof below.

To keep the whole thing on one page, I continue overleaf.



2

Theorem 5.8.Suppose a logic L ⊇ KB is normal, a logic M ⊇ E is modalised, and L ↪→M .
Then L ⊇ (Triv ∩Ver).

Proof (Extended). Firstly, we decompose the formula ∇p w.r.t. the variable p:

∇p←→ [(p ∧∆p) ∨ (¬p ∧∆′p)],

where the formulas ∆p and ∆′p are modalised.
Next, we recall that M proves the distributivity principle for ∇, since L ↪→M :

M ` ∇(p→ q)→ (∇p→ ∇q)

Denote this formula by D, then substitute the decompositions of ∇p, ∇q, and ∇(p→ q) into D,
thus obtaining an equivalent formula. It is a boolean combination of the variables p, q and some
boxed formulas. Now take a decomposition of D w.r.t. the variables p, q, which looks like:

D ←→ (¬p ∧ ¬q ∧ (a))∨
(¬p ∧ q ∧ (b))∨

(p ∧ ¬q ∧ (c))∨
(p ∧ q ∧ (d))

To compute the formulas (a)–(d), simply apply the rule from the above mentioned Fact. For
example, to compute the formula (b), which stands in conjunction with ¬p ∧ q, we substitute
p := ⊥ and q := > into D (of course, we substitute only for non-modalised occurrences of p and
q, i.e., that are not in scope of �’s). Now we recall that the formula ∇r turns into ∆r, if we
substitute r := > for non-modalised occurrences of r, and it turns into ∆′r if we substitute r := ⊥.

Therefore, under the substitution considered, ∇p will turn into ∆′p, ∇q into ∆q, and ∇(p→ q)
into ∆(p→ q), just because the implication (p→ q) is true for these values of p and q. Thus, under
this substitution, the formula D turns into the following formula (b):

(b) ∆(p→ q)→ (∆′p→ ∆q).

By the way, that is why in the four formulas that we obtain in this process:

(a) ∆(p→ q)→ (∆′p→ ∆′q)
(b) ∆(p→ q)→ (∆′p→ ∆q)
(c) ∆′(p→ q)→ (∆p→ ∆′q)
(d) ∆(p→ q)→ (∆p→ ∆q)

the column of Delta’s marked in blue resembles the truth table for implication, and the remaining
two columns of Delta’s look like the truth tables for p and q, resp.

Now it remains to note that since M is a modalised logic and M ` D, it proves all the four
formulas (a)–(d) (they play the role of B~σ from Definition 5.4 of a modalised logic).

Next we deal with the symmetry p→ �♦p ... Again, let’s go overleaf.



3

Next we deal with the symmetry p→ �♦p in a similar way: since L ↪→M , we have

M ` p→ ∇¬∇¬p.

Let us first decompose the outermost Nabla, i.e., the formula ∇F , where F := ¬∇¬p. We have:

∇F ←→ [(F ∧∆F ) ∨ (¬F ∧∆′F )].

So, we substitute this equivalence to the formula p→ ∇¬∇¬p and obtain:

p→ [(¬∇¬p ∧∆¬∇¬p) ∨ (∇¬p ∧∆′¬∇¬p)]. (#)

Note that two new outermost Nablas appeared now, so we have to decompose them too (but see
the Remark below). That is, we replace both outermost formulas ∇¬p (marked in blue) with
longer ones, using the equivalence:

∇¬p ←→ {(¬p ∧∆¬p) ∨ (p ∧∆′¬p)}.

This results in the following formula (way too long to fit one line):

p→
[
(¬{(¬p ∧∆¬p) ∨ (p ∧∆′¬p)} ∧∆¬∇¬p) ∨

({(¬p ∧∆¬p) ∨ (p ∧∆′¬p)} ∧∆′¬∇¬p)
]
.

([)

Now denote this formula by S and apply decomposition: S ↔ ((p ∧ S1) ∨ (¬p ∨ S2)). Recall our
rule: in order to compute S1 (which stands in conjunction with p), we substitute p := > for all
non-modalized occurrences of p in S, thus obtaining:

(¬∆′¬p ∧∆¬∇¬p) ∨ (∆′¬p ∧∆′¬∇¬p). (S1)

Next, in order to compute S2, we substitute p := ⊥ for all non-modalized occurrences of p in S, thus
obtaining a tautology: S2 = >, since p stands as the antecedent (so, this fact is not an obstacle,
but, on the contrary, it makes our job easier).

Since M ` S and M is a modalised logic, we infer M ` S1 (and M ` S2, but this is trivial).
Observe that S1 has the form of disjunction; and logicians usually do not like theorems in the form
of disjunction (do they?). Therefore, we go a step further: notice that S1 has the form (¬A ∧B) ∨
(A ∧ C). It is truth-functionally equivalent to the following conjunction: (A→ C)∧ (A ∨B) (just
build two truth tables and compare them). Hence, M proves the conjunction:

M ` (∆′¬p→ ∆′¬∇¬p) ∧ (∆′¬p ∨∆¬∇¬p).

Hence M proves both conjuncts. It remains to simplify them by replacing ¬p with p to obtain:

(e) ∆′p→ ∆′¬∇p;
(f) ∆′p ∨∆¬∇p.

That’s it!

Remark. In fact, the proof I carried out in my drafts is much shorter (but I decided to present
the long one, since it exactly corresponds to the steps on p. 880 of the paper). Namely, before
transforming (#) into a long-long formula ([), recall that later we will need to compute S1 and S2

anyway; and already at the stage (#) we can observe that S2 will be a tautology. So it remains to
compute S1.

To this end, we subsitute p := > for all non-modalized occurrences of p already in (#). The
antecedent p disappears, whereas the two blue subformulas ∇¬p are equivalent (under this substi-
tution p := >) to ∆′¬p. Thus, we avoid ([) and directly come to the formula marked as (S1).

As always, I would be glad to provide any further details.


