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Abstract

The aim of this paper is to investigate the expressibility of classical propo-
sitional monomodal logics. To this end, a notion of embedding of one logic into
another is introduced, which is, roughly, a translation preserving theoremhood.
This enables to measure the expressibility of a logic by a (finite or infinite)
number of logics embeddable into it. This measure is calculated here for a large
family of modal logics including K, K4, KB, K5, GL, T, S4, B, S5, Grz, and
provability logics. It is also shown that some of these logics (e.g., all normal
logics containing the symmetry axiom except for the logics Triv, Ver, and the
intersection of these two) are not embeddable into some others (e.g., K, K4,
K5, GL, T, S4, Grz).

Keywords: modal logic, provability logic, embedding, expressibility.

Introduction

In this paper we consider logics in the propositional language augmented by a unary
modal operator �. Let Fm denote the set of formulas of this language. Each formula
ϕ(p) ∈ Fm of at most one variable p induces a modality, i.e., an operator ∇ϕ: Fm →
Fm defined by ∇ϕ(A) := ϕ(A), for all A ∈ Fm. The familiar examples of modalities
are the operators of necessity �, possibility ♦ (i.e., ¬�¬), and non-contingency ∆
(induced by the formula �p ∨�¬p).

Given a modal logic L, it is natural to measure its expressive power by a number
of “distinct” modalities in L. However, there are (at least) two different approaches
to formalise the quoted word.

According to the first, or internal, approach, modalities are identified if they
are equivalent in L, i.e., if the equivalence of formulas they are induced by is a
theorem of L. Typical results in the scope of this approach can be found in [3, p. 10],
[5, 11, 15, 17], though in these papers only linear modalities, i.e. sequences of �s and
¬s, are mainly under consideration.

The second, or external, approach prescribes not to distinguish between modalities
having an identical “behaviour” over L. Before giving a more precise description of
this approach, let us consider an illustration.
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For n > 0, denote by �n a sequence of n �s. Modalities �n are known to be
pairwise non-equivalent in the logic B (see Subsection 3.2 for the definition of B)
and hence they are distinct from the viewpoint of the internal approach. However,
no formula distinguishes them. That is, if we denote by An the result of replacing of
all �s in a formula A by �n then A is a theorem of B iff An is, as will be proved
in Theorem 3.22. In this situation we can say that modalities �n have the same
behaviour over B.

In general, to each modality∇ we assign a∇-translation tr∇ of formulas by putting
tr∇(A) to be the result of replacing of all occurrences of the symbol � in a formula
A by the operator ∇. Further, we define a logic L(∇) of a modality ∇ over a logic
L as the set of all formulas whose ∇-translations are theorems of L. Finally, a logic
M is called embeddable into L if M = L(∇) for some modality ∇; here tr∇ serves as
an embedding of M into L in the sense that, for all A ∈ Fm, A is a theorem of M
iff tr∇(A) is a theorem of L. Thus, the external approach prescribes, given a logic L,
to identify modalities having equal logics over L; we call these modalities analogous
over L.

A rather close but different is the notion of simulation of modal logics explored
in [8]; therein, a simulation is a translation of a more general kind and it is to preserve
not only theoremhood but also a consequence relation.

Let us mention some well-known results and concepts related to the external
approach. In [3, Chapter 12] the logic of a modality � (induced by p ∧�p) over
the Gödel–Löb logic GL is proved to coincide with the Grzegorczyk logic Grz, i.e.,
GL(�) = Grz. It is also shown there that GL is not embeddable into Grz. In the
same way, one can easily see that K(�) = T and K4(�) = S4, whereas K is not em-
beddable into T, as well as K4 into S4. A logic L is called iterative if L(�n) = L, for
all n > 0. In [1] this property was considered for the well-known family of provability
logics (cf. [2, 7]). In [6, 9] the logics of non-contingency modality ∆ over K and K4
are axiomatised, whereas in [12, 13, 14] the same is done for T, S4, S5, and some
other logics.

In this paper we address some issues within the framework of the external ap-
proach. The paper is organised as follows. Section 1 introduces basic notions and
notation. In Section 2 a family of 15 logics of so called prime modalities is found and
is proved to be exhaustive in the sense that a logic of any prime modality over any
(consistent) logic belongs to the family. In Section 3 we measure the expressibility
of the logics of prime modalities, some normal logics, and the provability logics. The
iterativity of the logic B is also established in Subsection 3.3. The final Section 4
presents new positive and negative results concerning a possibility of embedding of
some particular logics into some others. In particular, we show that any normal ex-
tension of the logic KB except for Triv, Ver, and Triv∩Ver is not embeddable into
K, K4, K5, GL, T, S4, Grz, and some provability logics.

1 Definitions and notation

The propositional monomodal language consists of a denumerable set of variables
Var = {p0, p1, . . .}, symbols for falsehood ⊥, implication →, and a unary modal
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operator �. Other connectives (>, ¬, ∧, ∨,↔, ♦) are taken as standard abbreviations.
The set of formulas Fm is defined as usual.

Definition 1.1 A modality induced by a formula ϕ(p) of at most one variable p is
an operator ∇: Fm→ Fm defined by ∇(A) := ϕ(A), for all A ∈ Fm.

Modalities induced by formulas ⊥, >, p, ¬p, p ∧�p, and �np, where n > 0, will
be denoted by ⊥, >, ©, ¬, �, and �n, respectively. Clearly, all modalities are built
up from ⊥ and © using → and �.

Definition 1.2 Given a modality ∇, a ∇-translation is a map tr∇: Fm→ Fm defined
as follows: tr∇(⊥) = ⊥; tr∇(p) = p, for any p ∈ Var; tr∇(A→ B) = tr∇(A)→ tr∇(B);
tr∇(�A) = ∇(tr∇(A)). That is, tr∇ replaces all �s by ∇s.

Definition 1.3 A (classical propositional monomodal) logic is a set L ⊆ Fm contain-
ing all classical tautologies in the modal language and closed under the rules of modus
ponens and substitution:

(MP)
A A→ B

B
(Sub)

A

A[B/p]

Here A[B/p] denotes the result of simultaneous substituting a formula B for all oc-
currences of a variable p in A. In the sequel, we consider only consistent logics,
i.e., proper subsets of Fm. We often use a notation L ` A instead of A ∈ L. For
L ⊆ N ⊆ Fm, denote [L,N ] := {M | L ⊆M ⊆ N}.

E denotes the smallest logic closed under the rule of equivalent replacement:

(RE)
A↔ B

�A↔ �B

If L is a calculus given by a set of axioms and rules and X ⊆ Fm then denote
by L+X the calculus obtained from L by adding formulas of X as axiom schemata
and by LX the calculus whose axioms are theorems of L and formulas of X taken as
axiom schemata and whose only rule is (MP).

Definition 1.4 A logic of a modality ∇ over a logic L is the set of all formulas whose
∇-translations are theorems of L:

L(∇) := {A ∈ Fm | L ` tr∇(A)} = tr−1
∇ (L).

It is readily seen that L(∇) is indeed a logic. Moreover, if L is closed under the rule
(RE) then so is L(∇).

A logic M is called embeddable into L (M ↪→ L, in symbols) if M = L(∇) for some
modality ∇.

Definition 1.5 Modalities ∇ and ∆ are called equivalent in L if L ` ∇p↔ ∆p;
analogous over L if L(∇) = L(∆).
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If L is closed under (RE) then any two modalities equivalent in L are analogous
over L, since L ` ∇p↔ ∆p implies L ` tr∇(A) ↔ tr∆(A), for all A ∈ Fm. The
converse does not hold in general, as was already noted in Introduction: modalities
�n are non-equivalent but analogous over the logic B.

Definition 1.6 A constant is a formula containing no variables; a modality induces
by it will also be called a constant. A constant ∇ is called trivial in a logic L if either
L ` ∇ or L ` ¬∇; otherwise it is called proper in L.

A modality induced by a formula ϕ(p) having no occurrences of p in the scope of �
is called prime. A prime logic is a logic of any prime modality over any (consistent)
logic. Any prime logic is closed under (RE) even if L is not.

2 Prime logics

In this section we show that there are exactly 15 prime logics and present natural
axiomatisations thereof. We also show that, given a logic L and a prime modality ∇,
to determine which of these 15 logics equals L(∇) it suffices to find the characteristic
function (c.f.) of ∇ over L. We shall see that the latter problem is decidable when-
ever the variable-free fragment of L is decidable. Therefore, a c.f. contains the full
information about the behaviour of ∇ over L.

Throughout, we identify a boolean function f :2n → 2, where 2 = {⊥,>}, with
any (fixed) boolean formula (i.e., formula containing no �s) representing f , e.g., with
its full disjunctive normal form (FDNF):

f(~x) =
∨

{~σ∈2n|f(~σ)=>}
~p ~σ,

where ~x = (x1, . . . , xn), ~σ = (σ1, . . . , σn), ~p ~σ = pσ1
1 ∧ . . . ∧ pσn

n , p> = p, p⊥ = ¬p.

Definition 2.1 A characteristic function (c.f.) of a modality ∇ over a logic L is the
least element of a set

FL
∇ = {f(x, y):2× 2→ 2 | L ` f(∇⊥,∇>)}

w.r.t. the following partial order:

f 6 g ⇐⇒ a formula f → g is a tautology.

Each ∇ has a unique c.f. since FL
∇ is non-empty, finite, and closed under the pointwise

conjunction of functions, hence its least element is merely the conjunction of all its
elements.

Let ∇ be a prime modality, then a formula ∇p is truth-functionally equivalent to
(p ∧∇>) ∨ (¬p ∧∇⊥). Hence any prime logic contains a formula

�p↔ [(p ∧�>) ∨ (¬p ∧�⊥)]. (\)

4



Theorem 2.2 If χi is a c.f. of a modality ∇i over a logic Li, i = 1, 2, then

L1(∇1) ⊆ L2(∇2) ⇐⇒ χ2 6 χ1.

Proof. Let Fi := FLi

∇i
and Mi := Li(∇i). Clearly, f ∈ Fi ⇔ f > χi. So F1 ⊆ F2 ⇔

χ2 6 χ1. Since M1 ⊆M2 implies F1 ⊆ F2, it remains to prove the converse.
Assume that F1 ⊆ F2 and take any formula A(~p) ∈ M1, where ~p = (p1, ..., pn) is

the list of all variables in A. By (\), A is equivalent in M1 to a boolean combination
b(~p,�⊥,�>) of variables ~p and the constants �⊥ and �>, whence b(~p,�⊥,�>) ∈
M1. Then b(~σ,�⊥,�>) ∈M1 and so b(~σ, x, y) ∈ F1, for all ~σ ∈ 2n. But F1 ⊆ F2, so
b(~σ, x, y) ∈ F2, for all ~σ ∈ 2n. The backward reasoning yields b(~p,�⊥,�>) ∈M2 and
finally A(~p) ∈M2, by (\). a

Corollary 2.3 Under the conditions of Theorem 2.2,

L1(∇1) = L2(∇2) ⇐⇒ χ1 = χ2.

Consequently, there are no more than 15 prime logics since each of them is deter-
mined by a binary boolean function χ 6≡ ⊥. On the one hand, given a logic L, there
exist at least 4 prime modalities having distinct logics over L, namely, ⊥, ©, ¬, and
>. Moreover, the c.f. of each of them is independent of L:

χ∇(x, y) = x∇⊥ ∧ y∇>, ∇ ∈ {⊥,©,¬,>},

and so are logics of these modalities. We denote these logics by Λ⊥, Λ©, Λ¬, and
Λ> (the traditional names of Λ© and Λ> are Triv and Ver, respectively).

However, on the other hand, nothing guarantees the existence of modalities with
other c.f.’s over a given L; for instance, in the above four logics any modality is
equivalent to either ⊥, ©, ¬, or >. Nevertheless, Lemma 2.4 below argues that each
χ 6≡ ⊥ is “realisable”.

Let ∅ 6= Υ ⊆ {⊥,©,¬,>} and put

ΛΥ :=
⋂
∇∈Υ

Λ∇ and χΥ(x, y) :=
∨
∇∈Υ

χ∇(x, y).

Obviously, any binary boolean function χ 6≡ ⊥ is representable as χΥ for appro-
priate Υ. For the following, observe that if we denote by ‖χ‖ the cardinality of
{~σ | χ(~σ) = >} then ‖χΥ‖ = |Υ|. Lemma 2.4 shows that prime logics are exhausted
by ΛΥ. In the sequel, we write Λ⊥> instead of Λ{⊥,>} and similarly for other ΛΥ

and χΥ.

Lemma 2.4 For any binary boolean function χ 6≡ ⊥, there exists a logic L such that
the c.f. of � over L equals χ. In fact, the c.f. of � over ΛΥ is χΥ.

Proof. For every ∇ ∈ Υ, Λ∇ ` χΥ(�⊥,�>), for Λ∇ ` �p↔ ∇p and so the ∇-th
disjunct of χΥ(�⊥,�>), i.e., (�⊥)∇⊥∧ (�>)∇> is equivalent to > in Λ∇.

Further, if not χΥ 6 f then, for some ∇ ∈ Υ, a FDNF of f does not contain the
∇-th disjunct. But other disjuncts of f(�⊥,�>) are obviously equivalent to ⊥ in Λ∇.
Thus f(�⊥,�>) does not belong to Λ∇ and so to ΛΥ. a
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Λ⊥ = E{�p↔ ⊥}; Λ© = E{�p↔ p};
Λ> = E{�p↔ >}; Λ¬ = E{�p↔ ¬p}.

Λ⊥© = E{�p↔ (p ∧�>)}; Λ⊥¬ = E{�p↔ (¬p ∧�⊥)};
Λ©> = E{�p↔ (p ∨�⊥)}; Λ¬> = E{�p↔ (¬p ∨�>)};
Λ©¬ = E{�p↔ (p↔ �>)}; Λ⊥> = E{�p↔ �⊥}.

Λ⊥©¬ = E{�p↔ [(p↔ �>) ∧ (¬p↔ �⊥)]};
Λ©¬> = E{�p↔ [(p↔ �>) ∨ (¬p↔ �⊥)]};
Λ⊥©> = E{�p↔ [�⊥ ∨ (�> ∧ p)]};
Λ⊥¬> = E{�p↔ [�> ∨ (�⊥ ∧ ¬p)]}.

Λ⊥©¬> = E{�p↔ [(p ∧�>) ∨ (¬p ∧�⊥)]}.

Figure 1: Axiomatisation of the prime logics.

Theorem 2.5 The prime logics have the axiomatisation shown in Figure 1.

Proof. The inclusions (⊇) are easily verified by the definition of ΛΥ.
(⊆) |Υ| = 1. Fix ∇ ∈ {⊥,©,¬,>} and denote E∇ := E{�p↔ ∇p}. By induction

on A, E∇ ` A↔ tr∇(A). So, if A ∈ Λ∇ then Λ∇ ` tr∇(A) but tr∇(A) has no �s,
hence it is a tautology and thus belongs to E∇, whence A ∈ E∇.
|Υ| > 1. We use the following: if formulas A and B have no variables in common

then E{A} ∩E{B} = E{A ∨B}. Now to prove the needed inclusion for, say

Λ⊥© = E⊥ ∩E© = E{(�p↔ ⊥) ∨ (�q ↔ q)},

note that replacing all subformulas of the form �A in (�p↔ ⊥)∨(�q ↔ q) by A ∧�>
(i.e., the r.h.s. of the presumed axiom of Λ⊥©) yields a tautology. a

3 Measuring expressibility of logics

By ε(L) (resp., α(L)) we denote the number of modalities which are pairwise non-
equivalent in (resp., non-analogous over) a logic L (in the sequel, we usually omit the
word ‘pairwise’ in these contexts). These are either natural numbers or the symbol∞
and may be regarded as measures of expressiveness for L.

In this section we calculate ε(L) and α(L) for the prime logics, some normal logics,
and the provability logics. We also establish the iterativity of the logic B.

We begin with some general observations. For any logic L, we have ε(L) > 4 and
α(L) > 4, since the logics of ⊥, ©, ¬, and > are distinct over L. If L is closed under
(RE) then also α(L) 6 ε(L). We shall see that α(L) < ε(L) for some L. However,
we have no example of a logic L with ε(L) =∞ and α(L) <∞. Moreover, ε(·) is
antimonotone, i.e., if M ⊆ L then ε(M) > ε(L). So far we do not know whether
the same holds for α(·), even on the class of logics that are closed under (RE). The
following lemma is a step towards the answer to this question.
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Lemma 3.1 If M is a logic closed under (RE) and M ⊆ L then ε(M) > α(L).

Proof. It suffices to prove that if two modalities are equivalent in M then they are
analogous over L. Assume that M ` ∇p↔ ∆p. Then by induction on a formula A,
one can show that M ` tr∇(A) ↔ tr∆(A). Hence L ` tr∇(A) iff L ` tr∆(A). Thus
L(∇) = L(∆). a

Furthermore, ε(L) is the cardinality of a boolean algebra, so by Stone’s theorem,
it is either ∞ or 2n for some n > 0. On the contrary, we shall see that α(L) may be
an odd number. An example is α(Λ⊥©¬>) = 15.

3.1 Expressibility of prime logics

Lemma 3.2 Suppose ∇ is a proper constant in a logic L and ∆ is a boolean combi-
nation of © and ∇. Then:

(1) L(∆) = ΛΥ for some Υ with |Υ|6 2;
(2) moreover, if ∆ is “read off” from the r.h.s. of the axiom of ΛΥ for some Υ

with |Υ| = 2 (e.g., for Λ⊥¬ take ∆ = ¬© ∧∇) then L(∆) = ΛΥ;
(3) in particular, L(∇) = Λ⊥> (the logic of a proper constant is the intersection

of the logics of two trivial constants ⊥ and >).

Proof. (1) Any such ∆ is equivalent (and hence analogous, since ∆ is prime) to a
modality mentioned in item (2).

(2) To prove that the logic of a modality, say, ∆ := © ∧∇ over L is Λ⊥© observe
that the c.f. of ∆ over L is χ(x, y) ≡ x ≡ χ⊥©(x, y). a

Definition 3.3 Constants ∇ and ∆ are independent in a logic L if, for any binary
boolean function f(x, y), L ` f(∇,∆) implies f(x, y) ≡ >; in other words, if the c.f.
of a modality induced by (¬p ∧∇) ∨ (p ∧∆) over L equals >.

Lemma 3.4 ΛΥ ↪→ ΛΥ′ iff |Υ|6 |Υ′|, for any ∅ 6= Υ,Υ′ ⊆ {⊥,©,¬,>}.

Proof. Put L := ΛΥ and L′ := ΛΥ′ . By transitivity of ‘↪→’, it suffices to prove the
following claims:

(a) L ↪→ L′ for every Υ,Υ′ with |Υ| = |Υ′|;
(b) L ↪→ L′ for some Υ,Υ′ with |Υ| = |Υ′| − 1;
(c) L 6↪→ L′ for some Υ,Υ′ with |Υ| = |Υ′|+ 1.
The cases |Υ| = 1 in (a), (b), |Υ| = 4 in (a), and |Υ′| = 1 in (c) are trivial.
(a) |Υ| = 2. A logic L′ has a proper constant ∇ (namely, the one occurring in the

r.h.s. of the axiom of L′). Hence the claim follows from Lemma 3.2(2).
|Υ| = 3. To prove that, say L := Λ⊥©> ↪→ Λ©¬> =: L′, note that by Lemma 2.4,

the c.f. of � over L′ is x ∨ y, i.e., L′ ` �⊥ ∨�>. Then the c.f. of a modality∇ induced
by (¬p ∧ ¬�⊥) ∨ (p ∧�>) is ¬x ∨ y, since L′ ` ∇⊥ ↔ ¬�⊥ and L′ ` ∇> ↔ �>.
Therefore, L′(∇) = L.

(b) |Υ| = 2. The constant �> is proper in L′ := Λ⊥©¬, so L′(�>) = Λ⊥>.
|Υ| = 3. By Theorem 2.5, L = E{�p↔ ∇p} for a prime modality ∇. Then the

c.f. of � over L equals the c.f. of ∇ over L′ := Λ⊥©¬>, so L′(∇) = L.
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(c) |Υ| = 3. By Theorem 2.5, any modality ∇ is equivalent in L′ := Λ⊥> to a
boolean combination of © and the proper constant �⊥, hence by Lemma 3.2(1),
L′(∇) = ΛΥ for some Υ with |Υ|6 2.
|Υ| = 4. It is easily seen that L′ := Λ⊥©> has no independent constants, hence

no modalities with a c.f. >. Therefore, Λ⊥©¬> 6↪→ L′. a

Theorem 3.5 For |Υ| = 1, 2, 3, 4, we have ε(ΛΥ) = 4, 16, 64, 256, whereas
α(ΛΥ) = 4, 10, 14, 15.

Proof. The claim for α follows from Lemma 3.4 and the fact that every modality is
equivalent in (and hence analogous over) ΛΥ to a prime modality.

Any modality is equivalent in L := ΛΥ to a boolean combination of ©, �⊥, and
�>; there are exactly 256 such combinations. Take any two of them, b1 and b2, and put
b := (b1 ↔ b2). Clearly, L ` b1 ↔ b2 iff L ` b(p,�⊥,�>), iff L ` b(σ,�⊥,�>), for
all σ ∈ 2, iff b(σ, x, y) > χΥ(x, y), for all σ ∈ 2, iff functions b1(t, x, y) and b2(t, x, y)
have equal restrictions to the set {(σ, δ0, δ1) ∈ 23 | χΥ(δ0, δ1) = >} of cardinality
2‖χΥ‖ = 2|Υ|. Thus ε(L) = 22|Υ|. a

3.2 Expressibility of normal logics

Definition 3.6 A normal logic (cf. [3, 4]) is a set of formulas containing the axioms
(A>) and (AK) shown in Figure 2 and closed under (MP), (Sub), and the rule of
necessitation:

(Nec)
A

�A
Clearly, every normal logic is closed under the rule (RE). Moreover, a logic containing
(AK) and �> is normal iff it is closed under (RE).

(A>) Tautologies in the modal language
(AK) �(p→ q)→ (�p→ �q) (distributivity)
(AT ) �p→ p (reflexivity)
(A4) �p→ ��p (transitivity)
(AB) p→ �♦p (symmetry)
(A5) ♦p→ �♦p (euclideanness)
(AL) �(�p→ p)→ �p (Löb axiom)
(AG) �(�(p→ �p)→ p)→ p (Grzegorczyk axiom)

Figure 2: Axioms of normal logics

We shall mainly concerned with the well-known normal logics which are axioma-
tised as follows (extra axioms are shown in Figure 2).

K = (A>) + (AK) + (MP) + (Sub) + (Nec),
T = K + (AT ), B = T + (AB),

K4 = K + (A4), S4 = T + (A4),
K5 = K + (A5), S5 = T + (A5),
KB = K + (AB), K45 = K4 + (A5),
GL = K + (AL), Grz = K + (AG).

8



We shall consider also the so called Diodorean logic D∗ (cf. [11]), which is the set
of all formulas that are valid on the frame (ω,>), or equivalently, the logic of the class
of finite reflexive transitive linear orders.

The following strict inclusions hold between these logics:

K ⊂ K5 K ⊂ K4 ⊂ GL
∩ ∩ ∩ ∩

KB K45 T ⊂ S4 ⊂ Grz
∩ ∩ ∩ ∩ ∩
B ⊂ S5 B ⊂ S5 D∗

In what follows, we use Kripke semantics of normal logics. All necessary definitions
and facts can be found in [3, 4], and we use them without explicit references. Usually
we denote a frame by (W, ↑), where ↑ stands for an accessibility relation on a set of
worlds W . A set of worlds accessible from w ∈W is denoted by w↑ := {x ∈W | w↑x};
the symbol ↓ stands for the inverse relation of ↑. Recall that a logic L is called (Kripke)
complete (w.r.t. a class of frames F) if A ∈ L iff ∀F ∈ F F |= A, for all A ∈ Fm.

Definition 3.7 A sequence of modalities ∇n, n> 1, is strong (hereditary strong) if,
for any complete logic L, if ∇n are non-equivalent in L then they are non-analogous
over L (over any logic M ∈ [K, L]).

Let [1,∞) := {1, 2, . . .}. For any X ⊆ [1,∞) put

Xi :=
{
>, if i ∈ X;
⊥, if i /∈ X

and denote by X↓ := {n − 1 | 1 < n ∈ X} the left shift of X (with X1 lost). Recall
that p⊥ = ¬p and p> = p. We define sequences of modalities ∇X

n simultaneously for
all X ⊆ [1,∞) by induction on n:

∇X
1 p := pX1 ; ∇X

n+1p := pX1 ∧ ♦∇X↓
n p.

Remark 3.8 Obviously, for any X ⊆ [1,∞), K ` ∇X
1 p← ∇X

2 p← ∇X
3 p← . . .

Take N >m> 1, N := {1, . . . , N}, distinct variables p1, . . . , pN and define

Am
N := �

( ∨
j∈N

pj

)
−→

∨
J⊆N
|J|=m

�
( ∨

j∈J
pj

)
.

Theorem 3.9 For X = [1,∞), the sequence ∇n := ∇X
n is hereditary strong.

Proof. Suppose ∇n are non-equivalent in a complete logic L.

Lemma 3.10 If m> n then K(∇n) ` Am
N , for all N >m.

I Recall that K is complete w.r.t. the class of all frames. Take any model (W, ↑, |=)
and x1 ∈W . To prove that x1 |= tr∇n

(Am
N ), assume that x1 |= ∇n

∨
j∈N pj . Then

there is a chain x1↑x2↑. . .↑xn such that ∀i, 16 i6 n, ∃j = j(i) ∈ N xi |= pj . Taking
any J ⊆ N such that J ⊇ {j(1), . . . , j(n)} and |J | = m, we obtain x1 |= ∇n

∨
j∈J pj .

J

9



Lemma 3.11 If m < n then L(∇n) 6` Am
N , for any N > n.

I Since L ` ∇n+1p→ ∇np by Remark 3.8, we have L 6` ∇np→ ∇n+1p. By complete-
ness of L, there exists an L-frame F = (W, ↑) and a valuation |= (of p only) such that
x1 6|= ∇np→ ∇n+1p for some x1 ∈W . To prove Lemma it suffices to find a valuation
|=′ of p1, . . . , pN such that x1 6|=′ tr∇n

(Am
N ), since by virtue of F |= L, this will imply

L(∇n) 6` Am
N .

As x1 |= ∇np, there is a chain x1↑x2↑. . .↑xn such that ∀i, 1 6 i6 n, xi |= p. Now
define |=′ by putting xi |=′ pi, for every i, 1 6 i6 n.

Clearly, x1 |=′ ∇n

∨
j∈N pj , since each xi validates at least one of the pj . However,

for any J ⊂ N with |J | = m, we have x1 6|=′ ∇n

∨
j∈J pj . For assume the converse,

then there is a chain x1 = x′1↑x′2↑. . .↑x′n such that ∀i, 1 6 i6 n, ∃j = j(i) ∈ J
x′i |=

′ pj(i). By definition of |=′ , this implies {x′1, . . . , x′n} ⊆ {x1, . . . , xn}. As x1 6|=
∇n+1p, there is no chain beginning at x1 and consisting of n+ 1 worlds satisfying p.
In particular, for any 1 6 i 6 j 6 n, we have ¬(xj↑xi). Hence, there exists a unique
chain consisting of n worlds belonging to the set {x1, . . . , xn}, namely, x1↑. . .↑xn.
Thus x′i = xi and j(i) = i, for all i, 1 6 i6 n, so {j(1), . . . , j(n)} = {1, . . . , n} ⊆ J ,
which contradicts to |J | = m < n. J

The lemmas imply, for any logic M ∈ [K, L], that if N > max(m,n) then M(∇n) `
Am

N iff m> n. Therefore, the logics M(∇n) are distinct. a

Corollary 3.12 ε(L) = α(L) =∞, for any logic L ∈ [K,GL].

Proof. GL is complete w.r.t. finite irreflexive transitive trees. So, to see that modali-
ties ∇n from Theorem 3.9 are non-equivalent in GL, take a frame F = ({1, . . . , n}, <)
and put i |= p, for all i, 1 6 i6 n. Then F |= GL but 1 6|= ∇np → ∇n+1p. Thus,
firstly, ε(GL) =∞ and hence ε(L) =∞; secondly, by Theorem 3.9, α(L) =∞, for
any L ∈ [K,GL]. a

In comparison with this result, consider linear modalities, i.e., sequences of �s
and ¬s (not containing the subsequence ¬¬, without loss of generality).

Theorem 3.13 There are exactly 7 linear modalities which are non-analogous over
GL, namely, ©, ¬, �, �¬, ¬�, ♦, and �¬�.

Proof. First observe that, for any linear modality ∇ containing a subsequence �¬�,
GL(∇) = Λ⊥>. Indeed, ∇ has a form �m♦∆ or ¬�m♦∆ for some ∆ and m> 1. But
GL ` �m♦A↔ �m⊥, so ∇ is equivalent in GL to a proper constant �m⊥ or ¬�m⊥,
hence GL(∇) = Λ⊥>, by Lemma 3.2(3).

Next recall that GL is iterative (cf. [1]), i.e., GL(�n) = GL, for all n > 0. Finally,
it is easily seen that if modalities ∇ and ∆ are analogous over any logic L then so are
¬∇ and ¬∆, as well as ∇¬ and ∆¬, as well as ¬∇¬ and ¬∆¬.

From these facts the theorem follows immediately. a
If a logic L contains the reflexivity axiom (AT ) then the modalities from The-

orem 3.9 are equivalent in L to each other, so the theorem cannot be applied to
establish α(L) =∞. The remedy is to generalise the theorem.

First, we generalise Lemma 3.10. Suppose |X| =∞ and choose numbers 0 = n0 <
n1 < n2 < . . . so that X ∩ (nk, nk+1] 6= ∅, for all k > 0, where we use a notation

10



(r, t] := {s ∈ ω | r < s6 t}. Consider the sequence ∇k := ∇X
nk

, k > 1. Observe that
|X ∩ (nk, nk+1]| is the number of positive occurrences of p in ∇kp, thus the condition
X ∩ (nk, nk+1] 6= ∅ merely means that the number of positive occurrences of p in ∇kp
increases as k increases.

Lemma 3.14 If m> |X ∩ (0, nk]| then K(∇k) ` Am
N , for all N >m.

Proof. Take any model (W, ↑, |=) and x1 ∈W . To prove that x1 |= tr∇k
(Am

N ),
assume that x1 |= ∇k

∨
j∈N pj . Then there is a chain x1↑x2↑. . .↑xnk

such that ∀i,
1 6 i6 nk, we have: if i ∈ X then xi |= pj for some ∃j = j(i) ∈ N , else xi 6|= pj , for
any j ∈ N . Now take any J ⊆ N with |J | = m (it is possible, since N >m) such
that J ⊇ {j(i) | i ∈ X ∩ (0, nk]} and obtain x1 |= ∇n

∨
j∈J pj . a

We have succeeded in generalising Lemma 3.11 only to the case when X is an
infinite arithmetical progression

X = {a+ di | i> 0}, where d> 1, a> 1.

Suppose ∇k are non-equivalent in a complete logic L.

Lemma 3.15 If m < n := |X ∩ (0, nk]| then L(∇k) 6` Am
N , for any N > n.

Proof. As above, for some L-frame F = (W, ↑), a valuation |= of p, and x1 ∈W , we
have x1 6|= ∇kp→ ∇k+1p. Again, it suffices to find a valuation |=′ of p1, . . . , pN such
that x1 6|=′ tr∇k

(Am
N ).

Since x1 |= ∇kp, there is a chain x1↑. . .↑xnk
such that xi |= p iff i ∈ X, for all i,

1 6 i6 nk, i.e., among xi there are exactly n worlds validating p; denote them by
y` := xi`

, 1 6 `6 n, where i1 <. . .< in, {i1, . . . , in} = X ∩ [1, nk], and y` |= p.
Now define |=′ by putting y` |=′ p`, for every `, 16`6n. Clearly, x1 |=′ ∇k

∨
j∈N pj ,

since each y` validates at least one of pj . But, for any J ⊆ N with |J | = m, we
claim that x1 6|=′ ∇n

∨
j∈J pj . Otherwise, there is a chain x1 = x′1↑x′2↑. . .↑x′nk

such
that ∀`, 1 6 `6 n, ∃j = j(`) ∈ J x′i`

|=′ pj(`). By definition of |=′ , {x′i1 , . . . , x
′
in
} ⊆

{y1, . . . , yn}. Furthermore, x′i1↑
d. . .↑dx′in

and y1↑d. . .↑dyn. Arguing as in Lemma 3.11,
we have ¬(yj↑dyi), for all 1 6 i6j 6 n. Hence x′i`

= y` and j(`) = `, for all `, 16`6 n,
thus {j(1), . . . , j(n)} = {1, . . . , n} ⊆ J in contradiction with |J | = m < n. a

Theorem 3.16 Suppose X ⊆ [1,∞) is an infinite arithmetical progression and num-
bers 0 = n0 < n1 < n2 <. . . satisfy X∩(nk, nk+1] 6= ∅, for all k > 0. Then a sequence
∇k := ∇X

nk
, k > 1, is hereditary strong.

Proof. Similar to the proof of Theorem 3.9, using Lemmas 3.14 and 3.15. a

Corollary 3.17 ε(L) = α(L) =∞, for any logic L ∈ [K,D∗].

Proof. Let X be the set of odd natural numbers and nk := 2k. Then |X ∩
(nk, nk+1]| = 1 and modalities ∇k := ∇X

nk
are non-equivalent in D∗. To see the latter,

put F = ({1, . . . , 2k},6) and i |= p iff i is odd, for all i, 1 6 i6 2k. Then F |= D∗

but 1 6|= ∇kp→ ∇k+1p. a

11



Now we pass to the logic KB, which it complete w.r.t. symmetric frames. For
each infinite arithmetical progression X ⊆ [1,∞), a sequence ∇X

n collapses in KB
into a finite number of cosets modulo equivalence in KB.

Now put X = {1, 2, 5, 6, 9, 10, . . .} = {4i+1, 4i+2 | i> 0}, nk := 4k, and consider
a sequence ∇k := ∇X

nk
, k > 1.

To see that ∇k are non-equivalent in KB, put F = ({1, . . . , 4k}, ↑), where i↑j iff
|i− j| = 1, and i |= p iff i ∈ X. Then F |= KB but 1 6|= ∇np→ ∇n+1p.

We do not know whether the sequence ∇k is (hereditary) strong. Moreover, all
examples of (hereditary) strong sequences we know are covered by the ones mentioned
in Theorem 3.16. But situation is not hopeless, for instead of quantifying over all
complete logics as is done in the definition of a (hereditary) strong sequence, we can
confine to a particular complete logic, say KB, and prove the hereditary strength
of ∇k “relative” to this logic. This way leads to success, as the following theorem
demonstrates.

Theorem 3.18 ε(L) = α(L) =∞, for any logic L ∈ [K,KB].

Proof. We only need to prove Lemma 3.15 with KB in place of L. Put n :=
|X ∩ [1, nk]| = 2k.

Lemma 3.19 If m < n then KB(∇k) 6` Am
N , for any N > n.

I Unlike the proof of Lemma 3.15, now it suffices to find any symmetric frame falsi-
fying tr∇k

(Am
N ). For this the above-mentioned KB-frame F suits, if we put variables

p1, . . . , pn to be true at successive worlds of a set X ∩ (0, nk]. To be more exact, if
i1 <. . .< in and {i1, . . . , in} = X ∩ (0, nk] then we put i` |=′ p`, for all `, 1 6 `6 n. It
is easily seen that 1 6|=′ tr∇k

(Am
N ). J

The theorem follows immediately from Lemma 3.14 and 3.19. a
We postpone the consideration of the logic B till the next subsection. Now we

come to logics of “finite expressibility”.

Theorem 3.20 ε(S5) = α(S5) = 16.

Proof. Any modality is equivalent in S5 to one of the following 16:
(1) ∇, ¬∇, ∇¬, ¬∇¬, where ∇ is either � or � := ©→ �;
(2) ∇, ¬∇, where ∇ is either © or � := � ∧ ♦;
(3) ∇, ¬∇, where ∇ is either ⊥ or ∆ := � ∨�¬.
Now we show that the logics of these modalities (over S5) are distinct. The logics

of ⊥, ©, ¬, and > are distinct and they differ from logics of other modalities. The
logics of modalities in item (2) and of no others contain the formula �¬p↔ ¬�p. The
same holds for item (3) and the formula �¬p↔ �p. Furthermore, (�p ↔ ��p) ∈
S5(¬�) \S5(�) and ��p ∈ S5(∆) \S5(¬∆), thus all modalities in items (2) and (3)
are non-analogous over S5. It is even easier to verify the same for item (1). a

Theorem 3.21 ε(L) 6 2217
and α(L) 6 2217

, for any logic L ⊇ K5.
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Proof. By Lemma 3.1, it suffices to prove that ε(K5) 6 2217
.

First we claim that if S5 ` A → B then K5 ` �A → �B. Recall that K5 is
complete w.r.t. Euclidean frames. For any Euclidean frame (W, ↑) and w ∈W , the
restriction of ↑ to w↑ is total, so the frame (w↑, ↑) validates S5 and hence the formula
A→ B, whence w |= �(A→ B) and finally w |= �A→ �B, by the distributivity
axiom (AK).

Now, since in S5 every modality is equivalent to one of ∇1, . . . ,∇16 mentioned in
the proof of Theorem 3.20, it follows from the above that every modality is equivalent
in K5 to a boolean combination of ©, �∇1, . . . ,�∇16. But there are no more than
2217

distinct combinations of this kind. a

3.3 On the logic B

We shall prove two facts. On the one hand, Theorem 3.22 states that the sequence �n

collapses over B according to the external approach. On the other hand, Theorem 3.25
shows that B is “rich enough” from the viewpoint of the same approach.

Theorem 3.22 The logic B is iterative: B(�n) = B, for any n> 2.

Proof. (⊇) The rules of B become admissible in B after the �n-translation. Here
we show schematically that the axioms of B become derivable in B after the �n-
translation.
(AK) B ` �n(p→ q)→ �n−1(�p→ �q)→ · · ·

· · · → �(�n−1p→ �n−1q)→ (�np→ �nq).
(AT ) B ` �np→ �n−1p→ · · · → �p→ p.
(AB) B ` p→ �♦p→ �(�♦)♦p ≡ �2♦2p→ · · ·

· · · → �n−1(�♦)♦n−1p ≡ �n♦np.
(⊆) Assume that B 6` ¬A. Then by the completeness of B, there exists a reflexive

symmetric model (W,⇑, |=) such that w |= A for some w ∈W . Recall that a ⇑-chain
of length k is a sequence of the form x0⇑ . . .⇑xk.

We endow W with a metric induced by ⇑ by putting

%(x, y) = min{r > 0 | x⇑ry}.

Metric axioms are easily verified. Recall that a ⇑-ball of radius r and center x ∈W
is the set x⇑r = {y ∈W | %(x, y) 6 r}.

Denote Fn := tr�n(F ), for any F ∈ Fm. Now, to prove that B 6` ¬An we construct
a model (W, ↑, |=′ ) such that An is true at some world of W . The idea is to “disperse”
each x ∈W to a ↑-ball of radius m := n− 1. Formally, we put

W = {x, xy
1, . . . , x

y
m | x, y ∈W, x⇑y, x 6= y}.

Clearly, W ⊆W . Let ↑ be the least reflexive symmetric relation on W satisfying the
following conditions (see Figure 3):

• for all distinct x, y ∈W there is a chain x↑xy
1↑. . .↑xy

m↑yx
m↑. . .↑yx

1↑y;
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Figure 3: The relation ↑ for n = 2k (upper) and n = 2k + 1 (lower).

• for all x ∈W and distinct y, z ∈ x⇑,
{
xy

k↑xz
k, if n = 2k;

xy
k↑xz

k+1, if n = 2k + 1.

Let % be a metric on W induced by ↑. In the frame (W, ↑), a ↑-ball of radius m
and center x ∈W will be denoted by

(x) := x↑m = {x} ∪ {xy
` | x⇑y, x 6= y, 1 6 ` < n}.

Obviously, W =
⊔

x∈W

(x). Now we establish some properties of (W, ↑) and %.

(1) ∀x ∈W ∀a, b ∈ (x) %(a, b) < n.

I By definition of ↑; its second item is essential here. J

(2) ∀x, y ∈W. x⇑y ⇒ ∀a ∈ (x) ∃b ∈ (y) a↑nb.
I For x = y this follows from (1). If %(x, y) = 1 then b := yx

m suits for any
a ∈ (x), since %(a, xy

m) < n by (1), %(xy
m, b) = 1, and so a↑nb. J

(3) ∀x, y ∈W. %(x, y) > 1 ⇒ ∀a ∈ (x) ∀b ∈ (y) %(a, b) > n.

I Assume that a minimal ↑-chain connecting a and b goes through a sequence
of balls (x) = (x0), (x1), . . . , (xs) = (y), where x0⇑x1⇑. . .⇑xs. Since %(x, y) > 1,
s> 2. Let z := x1, t := x2. Then this ↑-chain contains a subchain going through
xz

m, zx
m, zt

m, and tzm. Since %(xz
m, z

x
m) = 1 = %(zt

m, t
z
m) and %(zx

m, z
t
m) = n− 1

(for the latter, the second item of the definition of ↑ is essential), the length of
the whole ↑-chain %(a, b) > 1 + (n− 1) + 1 > n. J

Finally, for all x ∈W , a ∈ (x) and p ∈ Var, we put a |=′ p iff x |= p (i.e., any point
of the ball (x) validates the same variables as x does).

Lemma 3.23 Any two points of a ball validate the same formulas of the form Fn:

∀x ∈W ∀a, b ∈ (x) ∀F ∈ Fm a |=′ Fn ⇔ b |=′ Fn.
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I By induction on F . The atomic and boolean cases are trivial. Now it is convenient
to consider the case F = ♦G; moreover, due to the symmetry of the claim, it suffices
to prove only the ‘⇒’ implication.

a |=′ Fn, i.e., a |=′ ♦nGn iff ∃a′↓na a′ |=′ Gn. Take y ∈W such that a′ ∈ (y). Since
%(a, a′) 6 n, by (3) we have %(x, y) 6 1, i.e., x⇑y. By (2), for our b ∈ (x) there exists
b′ ∈ (y) such that b↑nb′. As a′ and b′ are in the same ball (y), by I.H., a′ |=′ Gn implies
b′ |=′ Gn, whence b |=′ ♦nGn, i.e., b |=′ Fn. J

Lemma 3.24 (Main) ∀x ∈W ∀F ∈ Fm x |= F ⇔ x |=′ Fn.

I By induction on F . Let F = �G. We use the following obvious equality:

x↑n = (x) ∪ {yx
m | x⇑y, x 6= y}. ([)

x |= F ⇔ x |= �G⇔ ∀y⇓x y |= G ⇔ (by I.H.)

∀y⇓x y |=′ Gn ⇔
( (⇒) Lemma 3.23

(⇐) in particular

)
∀y⇓x ∀b ∈ (y) b |=′ Gn ⇔

( (⇒) in particular
(⇐) Lemma 3.23

)
∀a ∈ (x) a |=′ Gn &

& ∀y ∈ x⇑\{x} yx
m |=′ Gn ⇔ (by equality ([))

∀b↓nx b |=′ Gn ⇔ x |=′ �nGn ⇔ x |=′ Fn. J
Now, by the Main Lemma, w |= A implies w |=′ An, Q.E.D. a

Theorem 3.25 ε(B) = α(B) = ∞. Moreover, there exist infinitely many linear
modalities which are non-analogous over B.

Proof. Consider modalities ∇n = �n+1♦n and formulas Am = �(p → �mp). To
prove the theorem we show that for all n> 1 and m> 0,

B(∇n) ` Am ⇔ m6 n.

(⇐) Assume that m6 n. We need B(∇n) ` Am, i.e.,

B ` �n+1♦n(p→ (�n+1♦n)mp).

As B has the rule (Nec), we put away the prefix �n+1. Furthermore, since K `
♦(ϕ→ ψ)↔ (�ϕ→ ♦ψ), it remains to prove in B a formula

�np→ ♦n(�n+1♦n)mp. (])

Now, schematically, B ` �n (ref)−→ �m (sym)−→ (��n♦n)m (ref)−→ ♦n(��n♦n)m, where
the steps labelled by (ref) and (sym) use (zero or more times) the reflexivity and
symmetry axioms, respectively.

(⇒) Assume that m > n. Since the rule (Nec) is reversible in B (due to the reflexivity
axiom), we consider again the formula (]). To prove that B 6` (]), we show that the
reflexive symmetric chain shown in Figure 4 falsifies (]) at the point x0 (in the Figure 4
the valuation of p is also shown).
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Figure 4: x0 6|= (]).

As x0↑n = {x0, . . . , xn}, x0 |= �np. Now we prove x0 |= �n(♦n+1�n)m¬p.

∀a0↓nx0 ∃b1↓n+1a0 (namely, b1 := y1) ∀a1↓nb1
∃b2↓n+1a1 (namely, b2 := y2) ∀a2↓nb2

...
∃bm↓n+1am−1 (namely, bm := ym) ∀am↓nbm am 6|= p,

since bm↑n = ym↑n = {ym, ym−1, . . . , ym−n} and m− n> 1. a

3.4 Expressibility of provability logics

All definitions and facts concerning provability logics can be found in [2] or in the
survey paper [7]. We recall some of them briefly.

Let T and U be two arithmetical theories, T recursively enumerable. Intuitively,
the provability logic of T relative to U expresses those principles of provability in T
that can be verified by means of U. More precisely, consider an arithmetical interpre-
tation of modal formulas which assign to each propositional variable an arithmetical
sentence, respects boolean connectives, and translates � into a formula of provability
in T . Then the provability logic of T relative to U is the set of all modal formulas
whose all interpretations of this kind are provable in U. Every provability logic con-
tains GL and is closed under (MP) and (Sub), but not necessarily under (RE) (hence
not all of them are normal).

The basic provability logics are GL and the following two:
D = GL{¬�⊥, �(�p ∨�q)→ (�p ∨�q)} — the Dzhaparidze logic;
S = GL{�p→ p} — the Solovay logic.
Denote by Fn the formula �n+1⊥ → �n⊥, for n ∈ ω = {0, 1, . . .}. The Classifica-

tion Theorem proved by L.D. Beklemishev (cf. [2]) states that the provability logics
are exhausted by the following four families (here α, β ⊆ ω, β cofinite):

GLα = GL{Fn | n ∈ α}, Dβ = D ∩GL−β ,
GL−β = GL{

∨
n/∈β

¬Fn}, Sβ = S ∩GL−β .

The inclusion of logics within each family reflects the inclusion of their indices (i.e.,
α and β), whereas for any cofinite β ⊆ ω the following additional strict inclusions hold:

GLβ ⊂ Dβ ⊂ Sβ ⊂ GL−β .

The only provability logics closed under (RE) (and hence normal) are GL and GL−n :=
GL−[n,∞) = GL{�n⊥}, n> 0. From the results stated in [1] it follows that only the
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following provability logics are iterative:

GL ⊂ GL[1,∞) ⊂ D[1,∞) ⊂ S[1,∞) ⊂ GL−[1,∞)

∩ ∩ ∩ ∩
GLω ⊂ Dω = D ⊂ Sω = S ⊂ GL−ω = Fm

If all formulas of a modal logic L are true under all arithmetical interpretations in
the standard model of arithmetic then L is called regular, otherwise singular. Logics
GLα, Dβ , and Sβ are regular and S is the greatest of them, whereas GL−β are singular.
As we shall see, values of ε(L) and α(L) are infinite for any regular provability logic
and finite for any singular one.

Theorem 3.26 ε(L) = α(L) =∞, for any logic L ∈ [K,S].

Proof. We use the following completeness theorem for S proved by A.Visser (cf. [2,
7]): S ` A iff A is true in all tail-models. We shall not bore the reader by giving
the definition of a tail-model; for our purposes it will be enough to know that any
irreflexive (ω+ 1)∗-type linearly ordered Kripke model (W,≺, |=) such that, for some
r ∈W , a valuation of any variable is the same at all points of {x | x ≺ r} is a tail-
model, and that a formula is said to be true in a tail-model if it is true at its least
point.

Take X to be the set of odd natural numbers and nk := 2k. First we prove that
modalities ∇k := ∇X

nk
, k > 1, are non-equivalent in S (this will imply ε(S) =∞ and

hence ε(L) =∞). Consider a tail-model (W,<, |=), where W = {b} ∪ V , V = {i ∈ Z |
i6 2k}, the restriction of < to V is the ordinary ‘less-than’ relation, b < i whenever
i ∈ V , and for all x ∈W , x |= p iff x6 0 or x is odd. Then b 6|= ∇kp→ ∇k+1p.

Now we prove an analog of Lemma 3.15. Put n := |X ∩ (0, nk]| = k.

Lemma 3.27 If m < n then S(∇k) 6` Am
N , for any N > n.

I Take a frame (W,<) as above and the following valuation |=′ of p1, . . . , pN : for all
x ∈W , if x6 0 then x |=′ p1 else x |=′ pj iff x = 2j − 1, for all j, 1 6 j 6 n. It is not
hard to see that b 6|=′ tr∇k

(Am
N ). J

The theorem follows from Lemmas 3.14 and 3.27. a

Theorem 3.28 ε(GL−β ) <∞ and α(GL−β ) <∞, for any cofinite β ⊆ ω.

Proof. First we consider the logics GL−n , n> 0. Since they are closed under (RE),
it suffices to show that ε(GL−n ) <∞.

A subformula F of a formula A is said to be on the depth n if it is in the scope of
exactly n �s. Let A(n) be the result of substituting of ⊥ for all subformulas of A that
are on the depth n. If a modality ∇ is induced by a formula ϕ then denote by ∇(n) a
modality induced by ϕ(n). The notion of degree of a formula is defined as usual; the
degree of a modality is the degree of the corresponding formula.

We claim that GL−n ` A↔ A(n), for all A ∈ Fm; this follows from

K ` �n⊥ → (A↔ A(n)),
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which is easily proved by induction on n. Hence every modality ∇ is equivalent in
GL−n to a modality∇(n) of degree non-larger than n. But (even in K) there exists only
a finite number of non-equivalent modalities of bounded degree. Thus ε(GL−n ) <∞.

Now consider L := GL−β for an arbitrary cofinite β ⊆ ω. Then [n,∞) ⊆ β for
some n> 0, hence GL−n ⊆ L. So ε(L) 6 ε(GL−n ) <∞, by antimonotonicity of ε(·),
and α(L) 6 ε(GL−n ) <∞, by Lemma 3.1. a

4 Embeddings of logics

In this section we are mainly focused on obtaining results stating that some particular
logics are not embeddable into some others. These results are of two sorts. The
first ones are based on the simple observation that if a logic L is richer, in a sense,
than a logic M then L is not embeddable into M . The second ones involve an
unexpected fact that the presence of the symmetry axiom, i.e. the formula p→ �♦p,
in a logic prevents this logic from being embeddable into some strong logics, namely,
into modalised logics (see Definition 4.4 below). A surprising corollary is, for example,
that the “quite simple” logic S5 having ε(S5) = α(S5) = 16 is not embeddable into
“rich enough” logics such as K.

In the sequel, L and M range over logics and Υ = {⊥,©,¬,>}.

Lemma 4.1 If L ↪→M then the following conditions hold:
(1) ε(L) 6 ε(M) and α(L) 6 α(M);
(2) if M is closed under (RE) then so is L;
(3) if L has a proper constant then so does M ;
(4) the number of non-equivalent constants in L is no more than in M ;
(5) if M ⊆ Λ∇ for some ∇ ∈ Υ then L ⊆ Λ∇′ for some ∇′ ∈ Υ.

Proof. Items (1–4) are trivial. In (5), if L = M(∆) then M ⊆ Λ∇ implies L =
M(∆) ⊆ Λ∇(∆) = Λ∇′ for ∇′ := tr∇(∆) ∈ Υ. a

Before giving a corollary, we recall the notion of the trace of a logic (cf. [2]).

Definition 4.2 If (W, ↑) is a finite irreflexive transitive (f.i.t.) tree then the depth
d(x) of an element x ∈W is defined as follows: if x is a leaf then d(x) := 0, else
d(x) := 1 + max{d(y) | x↑y}. The height of a tree is the depth of its root. The trace
of a formula is the set t(A) of heights of all f.i.t. trees falsifying A at their roots. The
trace of a logic L is t(L) :=

⋃
A∈L t(A).

It is worth noting that t(GLα) = α and t(Dβ) = t(Sβ) = t(GL−β ) = β.

Corollary 4.3 L 6↪→M in any of the following cases:
(1) L ∈ [K,Grz] ∪ [K,S] and M ⊇ K5;
(2) L ⊆ GL or L ⊆ K5 or L ⊆ KB, M is normal, and M ` ¬�⊥;
(3) L is a provability logic other than GL or GL−n and M is normal;
(4) L is a regular provability logic and M is a singular one;
(5) L ⊆ GL and M ⊇ GLα for some cofinite α ⊆ ω;
(6) L,M ⊇ GL and 0 ∈ t(L) \ t(M);
(7) GL ⊆ L 6⊆ Λ> and M is normal.
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Proof. (1), (4) Here ε(L) =∞ but ε(M) <∞ by the results of Subsection 3.2.
(2) The constant �⊥ is proper in L but any constant is trivial in M .
(3) M is closed under (RE) whereas L is not.
(5) It is known (see [3, Chapter 7]) that any constant is equivalent in GL to a

truth-functional compound of �n⊥, n> 0, but since M ` �n⊥ ↔ �n+1⊥, for all
n ∈ α, M has only finite number of non-equivalent constants. On the other hand, the
constants �n⊥ are non-equivalent in L.

(6) For any logic N ⊇ GL: firstly, N is not contained in Λ⊥, Λ©, and Λ¬;
secondly, N ⊆ Λ> iff all formulas of N are true in all f.i.t. trees of height 0, iff
0 /∈ t(N). Hence M ⊆ Λ> but L 6⊆ Λ∇, for any ∇ ∈ Υ.

(7) As in (6), L 6⊆ Λ∇, for any ∇ ∈ Υ. But in [10] it was shown that, for any
normal logic M , if M ` ¬�⊥ then M ⊆ Λ© else M ⊆ Λ>. a

Definition 4.4 A formula A is modalised in p if every occurrence of the variable p
is in the scope of �. In particular, if p does not occur in A then A is modalised in p.
A is called modalised if it is modalised in every variable; in other words, if A is a
truth-functional compound of formulas of the form �F .

If ~p = (p1, . . . , pn) is the list of all variables in that A is not modalised then A is
truth-functionally equivalent to a decomposition w.r.t. ~p of the form

A←→
∨

~σ∈2n

(
~p ~σ ∧B~σ

)
, (?)

where B~σ are modalised formulas.
A logic M is modalised if, for all A ∈ Fm, M ` A implies M ` B~σ, for all ~σ ∈ 2n,

where B~σ are taken from the decomposition (?) of A. To put it in another way, M is
modalised if it does not prove any nontrivial truth-functional combination of variables
and modalised formulas.

Lemma 4.5 The logics K, K4, K5, K45, and GL are modalised.

Proof. Consider GL first. Take the decomposition (?) of a formula A and assume
that GL 6` B~σ for some ~σ ∈ 2n. Then there exists a f.i.t. tree with a root r such that
r 6|= B~σ. Since r is inaccessible from any point of the tree, the condition r 6|= B~σ is
independent of a valuation of variables at r, so we change |= by putting r |= pi iff
σi = >. Then r 6|= A and so GL 6` A.

To apply the same argument to L ∈ {K,K4,K5,K45}, we only need to prove
the following: If L 6` A then there exists an L-frame (W, ↑), a valuation |=, and an
element r ∈W such that r 6|= A and ∀x ∈W ¬(x↑r).

But this is simple: By completeness of L, if L 6` B then there is an L-frame (W, ↑),
a valuation |= and an element r ∈W such that r 6|= B. Now add to W a new element
r, thus obtaining W := W ∪ {r}, put ⇑ := ↑ ∪ {〈r, x〉 | r↑x}, and extend |= to r
by putting r |= p iff r |= p, for all p ∈ Var. In each of our four cases, (W,⇑) is an
L-frame, ∀x ∈W ¬(x⇑r), and r |= F iff r |= F , for all F ∈ Fm. Thus, r 6|= A. a

Lemma 4.6 If L is a modalised logic and X is a set of modalised formulas then LX
is a modalised logic.
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Proof. If LX ` A then L `
∧

Γ→ A for some finite set Γ of substitution instances
of formulas in X. Since formulas in Γ are modalised, from the decomposition (?) of
the formula A we obtain

(
∧

Γ→ A)←→
∨

~σ∈2n

(
~p ~σ ∧ (

∧
Γ→ B~σ)

)
,

hence L `
∧

Γ→ B~σ, for all ~σ ∈ 2n, and finally LX ` B~σ. a

Corollary 4.7 GLα, Dβ, and GL−β are modalised, for any α, β ⊆ ω, β cofinite.

Theorem 4.8 Suppose a logic L ⊇ KB is normal, a logic M ⊇ E is modalised, and
L ↪→M . Then L ⊇ Λ©>.

Proof. We prove a bit more: if L ⊆M(∇) for some ∇ then Λ©> ⊆M(∇).
Let the decomposition (?) of the formula ∇p be

∇p←→ [(p ∧∆p) ∨ (¬p ∧∆′p)],

where the formulas ∆p and ∆′p are modalised.
Since L contains the distributivity axiom, M ` ∇(p→ q) → (∇p→ ∇q). The

decomposition (?) splits this into the four conditions (we omit ‘M`’):

(a) ∆(p→ q)→ (∆′p→ ∆′q);
(b) ∆(p→ q)→ (∆′p→ ∆q);
(c) ∆′(p→ q)→ (∆p→ ∆′q);
(d) ∆(p→ q)→ (∆p→ ∆q).

Further, the decomposition (?) applied to the∇-translation of the symmetry axiom
(AB) yields the only one condition (since the other one is a tautology):

(¬∆′¬p ∧∆¬∇¬p) ∨ (∆′¬p ∧∆′¬∇¬p),

which is truth-functionally equivalent to a conjunction of the following two conditions
(we replaced ¬p by p; this is correct, for we could first substitute ¬p for p and then,
equivalently even in E, replace ¬¬p by p):

(e) ∆′p→ ∆′¬∇p;
(f) ∆′p ∨∆¬∇p.

Finally, L is closed under (Nec), hence the set of ∇-translations of theorems of L
is closed in M under the rule

(g) A ` ∆A.

Now, since M ` ∆(p→ p), substituting p for q in (b) yields
(h) ∆′p→ ∆p. By (e), from (f) it follows that
(i) ∆′¬∇p ∨∆¬∇p, whence by the scheme (h), we have
(j) ∆¬∇p; by the decomposition (?) of ∇p, it is equivalent (even in E) to
(k) ∆[(∆p→ ¬p) ∧ (∆′p→ p)]. Now (d) and (g) imply that L(∆) is a normal logic,
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hence we have a principle of monotonicity:
(l) ∆(r ∧ s)→ ∆r, which applied to (k), due to (Sub), yields
(m) ∆(∆p→ ¬p), whence by the distributivity (d), we have
(n) ∆∆p→ ∆¬p. From (m) we infer by the rule (g), that
(o) ∆∆(∆p→ ¬p); we apply the scheme (n) to this and get
(p) ∆(p ∧∆p); by monotonicity (l), we obtain finally
(q) ∆p. Thus, the decomposition (?) of ∇p turns into
(r) ∇p↔ (p ∨∆′p), in particular,
(s) ∇⊥ ↔ ∆′⊥. Now by (q), from (a) we have ∆′p→ ∆′q, hence
(t) ∆′p↔ ∆′⊥. From (s) and (t) we have ∆′p↔ ∇⊥, therefore (r) turns into
(u) ∇p ↔ (p ∨ ∇⊥). By the axiomatics of Λ©> (see Theorem 2.5), we have proved
the required inclusion: Λ©> ⊆M(∇). a

Before deriving corollaries, note that if L ⊃ Λ©> then either L = Λ© = Triv or
L = Λ> = Ver. Indeed, L ` �p ↔ p ∨�⊥ and hence L is a prime logic (since it is
the logic of the modality � equivalent to the prime modality p ∨�⊥), but Λ© and
Λ> are the only prime logics strictly containing Λ©>.

Now we prove an auxiliary lemma.

Lemma 4.9 Suppose a normal logic L is given by a set of axioms and the rules (MP),
(Sub), and (Nec), and L(�) ⊇ L. Then L(�) = L+ {�p→ p}.

Proof. The inclusion ‘⊇’ is obvious. To see that L(�) ⊆ L1 := L+{�p→ p} observe
that L1 ` �p↔ �p, hence L1 ` A ↔ tr�(A), for all A ∈ Fm. So, if A ∈ L(�), i.e.,
tr�(A) ∈ L ⊆ L1 then A ∈ L1. a

It is known (cf. [3, Chapter 12]) that GL(�) = Grz. From Lemma 4.9 we con-
clude: K(�) = T, K4(�) = S4, and KB(�) = B.

Theorem 4.10 Suppose L is a normal logic containing KB (e.g., any extension
of S5) and different from Triv, Ver, and Triv ∩Ver; M is one of the following
logics: K, K4, K5, K45, T, S4, Grz, GLα, Dβ, GL−β (α, β ⊆ ω, β cofinite). Then
L 6↪→M .

Proof. That all extensions of S5 are normal is shown in [16]. Insofar as the logics
K, K4, K5, K45, GLα, Dβ , and GL−β are modalised (by Lemmas 4.5 and 4.6), for
them the claim follows from Theorem 4.8. For T, S4, and Grz this follows from
T ↪→ K, S4 ↪→ K4, Grz ↪→ GL, and the transitivity of ‘↪→’. a

We conclude with a positive result.

Theorem 4.11 GL ↪→ GLα, for any finite α ⊆ ω.

Proof. In [1] GL is stated to be iterative: GL(�n) = GL, for all n> 1. Take n> 1
such that α ⊆ [0, n) and consider two cases. Recall that An = tr�n(A).

Case 0 /∈ α. We claim that GLα(�n) = GL(�n). The inclusion ‘⊇’ is clear.
Now assume that A ∈ GLα(�n), i.e., GLα ` An. Then the trace t(An) ⊆ α ⊆ [0, n).
So An could be falsified only at the root of some f.i.t. tree of height less than n.
Obviously, An is true at a point of depth less than n iff tr>(A) is. But since 0 /∈ α,
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GLα ⊆ Λ>, so tr>(A) is a tautology and is true in any tree, hence so is An. Thus
GL ` An and A ∈ GL(�n).

Case 0 ∈ α. We argue that GLα(�n+1) = GL(�n+1). Again, ‘⊇’ is obvious.
Put m := n+ 1 and Fα :=

∧
n∈α Fn. Clearly, GLα ` A iff GL ` Fα → A. Assume

that A /∈ GL(�m), then there exists a f.i.t. tree (W, ↑, |=) with the root r such that
r 6|= Am.

If d(r) < n then we add to this tree a chain xn↑xn−1↑. . .↑xd(r) := r (so that
d(xn) = n) and extend |= so that xn and r validate the same variables. Then it is
readily seen that xn and r validate the same formulas of the form Fm, in particular,
xn 6|= Am.

So, without loss of generality we can assume that d(r) > n. Then r |= Fα, since
t(Fα) = α ⊆ [0, n). Hence r 6|= Fα → Am, GL 6` Fα → Am, GLα 6` Am, and finally
A /∈ GLα(�m). a
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