
On the Undecidability of Logics with

Converse, Nominals, Recursion and Counting

P.A. Bonatti and A. Peron
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Abstract

The evolution of Description Logics (DLs) and Propositional Dynamic Logics pro-
duced a hierarchy of decidable logics with multiple maximal elements. It would
be desirable to combine different maximal logics into one super-logic, but then in-
ference may turn out to be undecidable. Then it is important to characterize the
decidability threshold for these logics. In this perspective, an interesting open ques-
tion pointed out by Sattler and Vardi [20] is whether inference in a hybrid µ-calculus
with restricted forms of graded modalities is decidable, and which complexity class
it belongs to. In this paper we improve a previous result [5] and prove that this
calculus and the corresponding DL µALCIOfa are undecidable. We show also that
nested fixpoints are not necessary for undecidability.

Key words: Description logics, hybrid µ-calculus, regular roles, graded modalities,
number restrictions.

1 Introduction

Description logics are popular knowledge representation languages, with im-
portant applications to the semantic web, software engineering and hetero-
geneous databases [1]. Description logics (DLs) are strictly related to propo-
sitional dynamic logics (PDLs) [19,9], that play an important role in soft-
ware and protocol verification based on automated reasoning techniques. The
analogies between the two frameworks are so tight that DLs and PDLs can be
regarded as syntactic variants of the same family of logics.

The simplest DLs can be easily embedded into a fragment of L2, that is,
first-order logic with two variables. Application requirements led researchers
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to extend these basic logics with more expressive constructs, such as gener-
alized forms of quantification—called number restrictions in DLs and graded
modalities in PDL [11,7]—, fixpoints and nominals [13,17,18,12,10,3]. In DLs,
nominals provide a means to denote individuals, while in PDLs nominals are
interpreted as unique labels for possible worlds. Modal logics with nominals
are called hybrid.

The search for a tradeoff between expressiveness and complexity produced—
and keeps on extending—a hierarchy of decidable logics with multiple max-
imal elements. Currently, two of the maximal decidable DLs are µALCIO
(featuring fixpoints and nominals [20,4]) and µALCQ (featuring fixpoints and
number restrictions). The corresponding PDLs are the hybrid µ-calculus and
the µ-calculus with graded modalities, respectively [20,16].

Of course, it would be desirable to combine the features of different maxi-
mal logics into one super-logic. For example, a combination of µALCIO and
µALCQ would help in describing the functional behavior of e-Services (cf. [4]
and related comments on SDL(X ) in Section 4). However, in the super-logic,
inference may turn out to be too complex, and in particular undecidable.
Therefore, it is important to investigate the decidability threshold for this
family of logics.

A related, interesting question pointed out by Sattler and Vardi [20] is whether
inference in the union of the hybrid µ-calculus and the µ-calculus with graded
modalities is decidable, and which complexity class it belongs to. More pre-
cisely, Sattler and Vardi mention a slightly simpler logic: a hybrid µ-calculus
with deterministic programs. Deterministic programs are a special case of
graded modality, whose counterpart in DLs are features, i.e., functional roles.

A partial negative answer to the above question was given in [5]. There, it was
proved that the description logic µALCIOf , supporting nominals, fixpoints
and injective functional roles is undecidable. Injective roles were obtained by
declaring inverse roles to be functional. In this paper we strengthen this result
in several ways:

• We prove that even if functionality assertions are restricted to atomic roles
only, roles can be forced to be injective, at least over an infinite subdomain.

• With this result, the description logic µALCIOfa , featuring fixpoints, nom-
inals and functionality assertions over atomic roles is proved to be unde-
cidable. This result is then rephrased for the corresponding dynamic logic,
namely, a hybrid µ-calculus with converse programs, where only atomic
programs can be declared to be deterministic.

• We prove that nested fixpoints are not necessary for undecidability. The
undecidability proof in [5], on the contrary, made use of nested fixpoints.

In the next section we recall the basic notions about DLs and the µ-calculi.

2



Section 3 is devoted to the undecidability proof for µALCIOfa and the hybrid
µ-calculus with deterministic atomic programs. Finally, Section 4 concludes
the paper with a discussion of these results and some directions for further
research.

2 Preliminaries

The vocabulary of the description logics we deal with in this paper consists
of the following pairwise disjoint countable sets of symbols: a set of atomic
concepts At, a set of nominals Nom, a set of concept variables Var, and a set
of atomic roles AR.

The set of roles is the smallest superset of AR such that if R, R′ are roles then
R−, R t R′, and R+ are roles.

Let R be a role, X ∈ Var and n ∈ N. The set of concepts is the smallest superset
of At ∪ Nom ∪ Var such that if C, C ′, D are concepts, then ¬C, C u D, ∃.C,
∃6nR.C, and µX.C ′ are concepts, provided that all the free occurrences 1 of
X in C ′ lie within the scope of an even number of operators ¬ and ∃6n. 2 A
concept is closed iff it has no free occurrences of any variable.

Semantics is based on interpretations of the form I = 〈∆I , ·I〉 where ∆I is
a set of individuals and ·I is an interpretation function mapping each A ∈
At ∪ Nom on some AI ⊆ ∆I, and each R ∈ AR on some RI ⊆ ∆I × ∆I .
Furthermore, nominals must be mapped on singletons. A valuation on I is
a function ρ : Var → ℘(∆I). As usual, ρ[X/S] denotes the valuation such
that ρ[X/S](X) = S and for all Y 6= X, ρ[X/S](Y ) = ρ(Y ). The meaning of
inverse roles is

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI} ,

while (R t R′)I = RI ∪ R′I , and (R+)I denotes the transitive closure of RI .

The meaning of compound concepts is determined by pairs (I, ρ). By ] S we

1 A variable occurrence is free if it is not in the scope of operator µ.
2 Usually, nesting of ∃6n and role operators is restricted, too, in order to avoid
compound expressions that easily lead to undecidability. We do not restrict syntax;
however, in our results we apply ∃6n only to atomic roles.
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denote the cardinality of a set S.

AI
ρ = AI (A ∈ At ∪ Nom) (¬C)Iρ = ∆I \ CI

ρ

XI
ρ = ρ(X) (X ∈ Var) (C u D)Iρ = CI

ρ ∩ DI
ρ

(∃R.C)Iρ =
{

x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI
ρ

}

(∃6nR.C)Iρ =
{

x | ] {y | 〈x, y〉 ∈ RI ∧ y ∈ CI
ρ } 6 n

}

(µX.C)Iρ =
⋂

{

S ⊆ ∆I | CI
ρ[X/S] ⊆ S

}

.

Sometimes, subscript ρ will be omitted when it applies to a closed concept
(i.e., such that all variables are bound by µ).

In order to improve readability, given a concept C(X1, . . . , Xn) with free vari-
ables X1, . . . , Xn, and given sets of individuals of ∆I , S1, . . . , Sn, we shall
abbreviate C(X1, . . . , Xn)

I
ρ[X1/S1]...[Xn/Sn] with CI

ρ (S1, . . . , Sn).

A concept C is satisfiable iff there exists an interpretation I such that CI 6= ∅.

Other standard constructs can be derived from the above concepts. We use
the symbol , to define abbreviations.

> , A t ¬A (for some A ∈ At) ∀R.C , ¬∃R.¬C

⊥ , ¬> ∃>n+1R.C , ¬∃6nR.C

C t D , ¬(¬C u ¬D) νX.C , ¬µX.¬C[X/¬X] .

Here C[X/¬X] is the concept obtained from C by replacing all free occurrences
of X with ¬X.

The syntactic restriction on concept variables makes every concept C(X1, . . . , Xn)
with free variables X1, . . . , Xn monotonic with respect to X1, . . . , Xn, that is,
for all I and ρ, if Si ⊆ S ′

i for 1 ≤ i ≤ n, then CI
ρ (S1, . . . , Sn) ⊆ CI

ρ (S ′
1, . . . , S

′
n).

Under this restriction, µX.C(X) and νX.C(X) denote exactly the least and
the greatest fixpoints of C(X), that can be characterized with the standard
iterative constructions. In particular, (µX.C(X))Iρ =

⋃

α<β Xα, where β is a
suitable ordinal and X0, . . . , Xα, . . . ⊆ ∆I is the monotonically nondecreasing,
transfinite sequence defined below:

X0 = ∅

Xα+1 = CI
ρ (Xα)

Xλ =
⋃

α<λ

Xα where λ is a limit ordinal.
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If C is continuous in X, then β = ω (where ω denotes the least transfinite
ordinal). Recall that C is continuous in X iff for all monotonic sequences
X0, . . . , Xi, . . . ⊆ ∆I with i < ω,

CI
ρ (
⋃

i≥0

Xi) =
⋃

i≥0

CI
ρ (Xi) . (1)

The following lemma will be needed later on. Recall that a concept is in
negation normal form (NNF) iff negation is applied only to atomic concepts.

Lemma 1 If C is in NNF and contains only the operators ¬,u,t, ∃, then C
is continuous in every variable X. 3

Proof. By structural induction on C. The base case (C ∈ At ∪ Nom ∪ Var)
is trivial. For the induction step, let X0, . . . , Xi, . . . ⊆ ∆I be any increasing
chain, and consider all the possible shapes of C.

If C = ¬A, then A is an atom (by hypothesis), and syntactic restrictions
impose that A 6∈ Var, that is, C ∈ At ∪ Nom. Then CI

ρ[X/S] = AI is constant
w.r.t. S and hence equation (1) is trivially satisfied.

If C = D u E, then

CI

ρ

[

X/
⋃

i≥0
Xi

] = DI

ρ

[

X/
⋃

i≥0
Xi

] ∩ EI

ρ

[

X/
⋃

i≥0
Xi

] =

=
⋃

i≥0

DI
ρ[X/Xi]

∩
⋃

i≥0

EI
ρ[X/Xi]

(by induction hyp.)

=
⋃

i≥0

(

DI
ρ[X/Xi]

∩ EI
ρ[X/Xi]

)

(by monotonicity of D, E, {Xi}i≥0)

=
⋃

i≥0

(

CI
ρ[X/Xi]

)

so equation (1) holds. The proof for C = D t E is similar.

Finally, let C = ∃R.D. Then,

CI

ρ

[

X/
⋃

i≥0
Xi

] =







x | there exists 〈x, y〉 ∈ RI s.t. y ∈ DI

ρ

[

X/
⋃

i≥0
Xi

]







=

=







x | there exists 〈x, y〉 ∈ RI s.t. y ∈
⋃

i≥0

DI
ρ[X/Xi]







(by ind. hyp.)

=
⋃

i≥0

{

x | there exists 〈x, y〉 ∈ RI s.t. y ∈ DI
ρ[X/Xi]

}

3 Recall that C must always satisfy the syntactic restriction on concept variables.
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=
⋃

i≥0

CI
ρ[X/Xi]

.

This completes the proof. 2

Remark 2 The above lemma can be extended to concepts with least fixpoints.
We do not include the extended version here because we are deliberately avoid-
ing any use of nested fixpoints.

An assertion has the form C v D, where C and D are closed concepts.
Assertion C v D is satisfied by I (equivalently, I is a model of the assertion)
iff CI ⊆ DI. A TBox is a finite set of assertions. Symmetric pairs of assertions
such as C v D and D v C will be abbreviated by C ≡ D. A TBox is satisfiable
iff it has a model, that is, an interpretation I that satisfies all the assertions
in the TBox. A TBox T entails C v D if every model of T satisfies C v D.

The description logic ALC is a fragment of the logic described so far, freely
generated by atomic concepts, atomic roles, ¬, u and ∃R.C (plus all the
constructs definable from these). In ALC, Nom = ∅.

By convention, the name of a description logic contains ALC if the logic ex-
tends ALC. Moreover, the name contains an I if inverse roles (R−) are sup-
ported, an O if Nom 6= ∅, a Q if number restrictions (∃6nR.C) are supported,
and a µ if fixpoints are supported. For example, ALCIO denotes the exten-
sion of ALC with inverse roles and nominals. Subscript f , as in µALCIOf ,
indicates that all roles are functions. Note that functional roles are a special
case of number restriction, as they can be expressed with axioms of the form
> v ∃61R.>. We use subscript fa to specify that these assertions (equiva-
lently, functionality restrictions) are applied to all the atomic roles and no
compound role. If the logic supports role operators besides inversion, we list
those operators as superscripts. For example ALCIt,+ denotes the extension
of ALCI with union and transitive closure over roles.

Description logics can be regarded as variants of the propositional µ-calculi.
Individuals correspond to possible worlds and roles correspond to accessibility
relations. Atomic concepts play the role of propositional symbols. In particu-
lar, µALCIOfa can be embedded into the hybrid µ-calculus with deterministic
atomic programs and graded modalities (〈n, P 〉F and [n, P ]F ) via the follow-
ing satisfiability-preserving translation [19,9]. For all propositions p, and for
all n > 0,

ε(p) = p ε(F u G) = ε(F ) ∧ ε(G)

ε(¬F ) = ¬ε(F ) ε(∃>nP.F ) = 〈n − 1, P 〉 ε(F )

ε(µX.F ) = µX.ε(F ).
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Moreover, functional roles are mapped on deterministic programs (whose ac-
cessibility relation is a function), and nominals are mapped on their equiv-
alents (called nominals, too), that in PDL terms are propositional symbols
that are true in exactly one world. Program o denotes the universal program
whose accessibility relation consists of all pairs of possible worlds. The reader
is referred to [20,16,8] for further details.

3 Undecidability of µALCIOfa and of the corresponding hybrid µ-

calculus

This section is devoted to the proof of the following theorem.

Theorem 3 In µALCIOfa , concept satisfiability, TBox satisfiability and TBox
entailment are all undecidable.

We find it convenient to prove this theorem by first reducing domino problems
to TBox satisfiability, and then extending this result to the other decision
problems.

Recall that domino problems consist in placing tiles on an infinite grid, satis-
fying a given set of constraints on adjacent tiles. Formally, a domino problem
is a structure D = 〈T, H, V 〉, where T is a finite set of tile types and H, V ⊆ T 2

specify which tiles can be adjacent horizontally and vertically, respectively. A
solution to D is a tiling, that is, a function τ : N

2 → T , such that

(1) if τ(x, y) = t and τ(x + 1, y) = t′ then (t, t′) ∈ H, and
(2) if τ(x, y) = t and τ(x, y + 1) = t′ then (t, t′) ∈ V .

The existence of a solution for a given domino problem is known to be unde-
cidable (cf. [2]).

Domino problems are reduced to reasoning problems by characterizing (i) the
grid and (ii) correct tilings. Formally, the grid is a structure G = 〈N2, hG, vG〉,
where hG(x, y) = (x + 1, y), and vG(x, y) = (x, y + 1), for all x, y ∈ N.

In description logics, hG and vG can be denoted by two roles. For technical rea-
sons, we use roles l− and v, respectively (l stands for “left”, v for “vertical”). If
the two roles characterize the grid correctly (see Figure 1), then characterizing
the solutions of a domino problem is easy, even within simple (and decidable)
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Fig. 1. Modeling the grid Gwith roles v and l

description logics such as ALC, by means of the following assertion:

> v
(

t
t∈T

Ct

)

u

(

u
t∈T

u
t′∈T\{t}

¬(Ct u Ct′)

)

u

u
t∈T

[

¬Ct t

(

∃l−. t
(t,t′)∈H

Ct′ u ∃v. t
(t,t′)∈V

Ct′

)]

.

(2)

Here for each tile type t, a distinct concept name Ct is introduced. Assertion
(2) basically states that each individual is a tile (first line), that each tile has
one type (second line), and that the tiling preserves the constraints specified
by H and V (third line).

The real problem is characterizing the grid, because there is no direct way to
force l− and v to commute. Here we shall provide a projective characterization
of the grid variant G ′ = 〈N, (h−)G, vG〉 illustrated in Figure 1, that is, we shall
capture a class of expanded interpretations (i.e., interpretations defined over
a set of roles larger than {h, v}) whose projection over l and v is isomorphic
to G ′. Intuitively, this means simply that we are going to use auxiliary roles
to model the grid.

Informally speaking, we are going to check whether the horizontal and vertical
roles commute by means of a fixpoint whose constructive characterization cor-
responds to a visit of the grid along diagonals directed north-west (Figure 4).

The next subsection is devoted to the proof of some auxiliary technical lem-
mas. Then Section 3.2 contains the main results (grid characterization and
undecidability).
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3.1 Technical lemmas

First some terminology and notation.

The restriction of a binary relation R to a set D, denoted by R ↓ D, is the
relation

R ↓ D = {〈x, y〉 | 〈x, y〉 ∈ R and x ∈ D} .

Given an interpretation I and a role R, an R-path from x0 to xn is a sequence
x0, . . . , xn such that 〈xi, xi+1〉 ∈ RI , for 0 ≤ i < n.

Given an interpretation I, the set of individuals R-reachable from a concept
C, denoted by reach(C, R), is the set of all x such that there exists an R-path
from y to x with y ∈ CI. Sometimes, in the following, we will slightly abuse
notation and denote with a nominal the unique member of its extension.

Proposition 4 For all concepts C and roles R, reach(C, R) is definable in
µALCIOfa .

Proof. It is immediate to see that reach(C, R) is defined by

µX.[C t ∃R−.X].

2

Henceforth, we shall sometimes abuse notation and abbreviate the fixpoint
µX.[C t ∃R−.X] to reach(C, R). The context shall clarify whether a specific
occurrence of reach(C, R) denotes the syntactic or the semantic notion.

We say that a set S ⊆ ∆I is an isolated R-chain from x0 if there exists an
enumeration x0, . . . , xi, . . . (i ≥ 0) of S satisfying the following conditions:

I1. 〈xi, xi+1〉 ∈ RI , for all consecutive elements xi, xi+1 in the sequence,
I2. there is no element x ∈ ∆I such that 〈x, x0〉 ∈ RI ,
I3. RI ↓ S is a function,
I4. (R−)I ↓ S is a function.

Lemma 5 Given a nominal N and a functional atomic role R, the class of
all interpretations where reach(N, R) is an infinite isolated R-chain from N
can be characterized in µALCIOfa .

Proof. The desired class of interpretations can be characterized with the
following assertions:
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N v∀R−.⊥ (3)

reach(N, R)v∃R.> (4)

reach(N, R)vµY.[N t (∃R−.Y u ∀R−.Y )]. (5)

We have to prove that an arbitrary interpretation I is a model of the above
assertions iff reach(N, R) in I is an infinite isolated R-chain from N .

First let I be an arbitrary model of the assertions. To simplify notation, in
the following we identify each concept C with its interpretation CI . Recall
that reach(N, R) can be characterized by the concept µX.[N t ∃R−.X]. It
is not hard to see that the following sequence equals the standard iterative
characterization of this fixpoint.

X0 = ∅

X1 = N

Xα+1 = Xα t ∃R−.Xα (α > 0) (6)

Xλ =
⋃

α<λ

Xα (λ a limit ordinal) .

By Lemma 1, Xω+1 = Xω , that is, Xω is the least fixpoint of the above
sequence. By a straightforward induction it can be verified that for all ordinals
i < ω,

Xi = {x0, . . . , xi−1} (7)

where x0 = N and each xj+1 (0 ≤ j < i) is the unique element (by the
functionality of R) such that 〈xj, xj+1〉 ∈ R.

From the above properties of the sequence we immediately derive I1. Condition
I2 is enforced by assertion (3). Condition I3 is an immediate consequence of
the functionality of R. So we are left to prove that (i) the set {x0, . . . , xi, . . .}
is infinite (i.e., the sequence x0, . . . , xi, . . . is acyclic), and (ii) I4 holds. For this
purpose, consider the following sequence, that equals the standard iterative
construction of the fixpoint occurring in the right-hand side of (5).

Y0 = ∅

Y1 =N

Yα+1 =Yα t (∃R−.Yα u ∀R−.Yα) (α > 0) (8)

Yλ =
⋃

α<λ

Yα (λ a limit ordinal) .

We claim that for all ordinals α, Yα = Xα. The proof is by natural induction
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on the above sequence. The claim is obvious for α ∈ {0, 1}, and an immediate
consequence of the induction hypothesis for all limit ordinals. Now consider
the induction step for a successor ordinal α+1 with α > 0. We have Yα = Xα

by induction hypothesis. Then a simple inspection of (8) and (6) shows that

Yα+1 \ Yα ⊆ (∃R−.Xα u ∀R−.Xα) ⊆ (∃R−.Xα) ⊆ Xα+1 \ Xα . (9)

Moreover, Xα+1 \ Xα contains at most one element, because for α + 1 < ω
we have Xα+1 \ Xα ⊆ {xα} by (7), and for α + 1 > ω, Xα+1 \ Xα = ∅, since
Xω is the least fixpoint of the sequence {Xi}i≥0. Then there are only two
possibilities: either Yα+1 \ Yα = Xα+1 \ Xα, or Yα+1 \ Yα = ∅. In the former
case, the claim follows easily from the induction hypothesis. In the latter case,
Yα+1 is the least fixpoint of the sequence {Yα}α≥0 and hence, by assertion (5),

Xα+1 ⊆ µX.[N t ∃R−.X] ⊆ µY.[N t (∃R−.Y u ∀R−.Y )] = Yα+1 .

The opposite inclusion (Yα+1 ⊆ Xα+1) follows easily from (9). This completes
the proof of the claim.

Now we can prove that the sequence x0, . . . , xi, . . . is acyclic (and hence in-
finite). Suppose not, and let m be the least index such that xm = xm+k, for
some k > 0. The cycle includes the edge 〈xm+k−1, xm〉 = 〈xm+k−1, xm+k〉 ∈ R,
and hence,

〈xm, xm+k−1〉 ∈ R−.

A first consequence is that m > 0, otherwise assertion (3) would be false (a
contradiction). Now, by (7) and the claim, xm ∈ Xm+1 = Ym+1. Note that by
the minimality of m, x0, . . . , xm are pairwise distinct, and this implies Ym+1 \
Ym = {xm}. By (9)—that can be applied because m > 0—it follows that xm

belongs to ∀R−.Xm. But then, xm+k−1 belongs to Xm = {x0, . . . , xm−1}, and
the minimality of m is contradicted. This proves that x0, . . . , xi, . . . is acyclic
and hence the corresponding set of elements is infinite.

Using these properties, we can finally prove I4. Suppose that it does not hold,
and let xn be an element of reach(N, R) that violates it, that is, for some pair
of distinct elements y and z in ∆I , both 〈xn, y〉 ∈ R− and 〈xn, z〉 ∈ R−. By
analogy with the acyclicity proof, it can be shown that assertion (3) ensures
that n > 0 and then (9) implies xn ∈ (∀R−.Xn), therefore y = xj and z = xk

for some j 6= k smaller than n. Since R is functional, it follows that xj+1 =
xn = xk+1, with j + 1 6= k + 1. But then the sequence would be cyclic, a
contradiction. This completes the proof that each model I of the assertions
belongs to the desired class of interpretations.

We are left to show that every interpretation where reach(N, R) is an infi-
nite isolated R-chain from N satisfies assertions (3)–(5). Let I be such an
interpretation.
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By I2, there is no element x such that 〈x, x0〉 ∈ R and, therefore there is no
element x such that 〈N, x〉 ∈ R−, thus assertion (3) is satisfied.

Since reach(N, R) is infinite, I1 implies that for each element xi ∈ reach(N, R),
there exists y such that 〈xi, y〉 ∈ R, thus assertion (4) is satisfied.

Next recall that reach(N, R) is a shorthand for µX.[N t ∃R−.X]. Then (5) is
µX.[N t ∃R−.X] v µX.[N t (∃R−.X u ∀R−.X)]. By I4, we have that for any
xi ∈ reach(N, R), there exists one and only one y ∈ ∆I such that 〈xi, y〉 ∈ R−.
Hence, for any subset X ⊆ reach(N, R), ∃R−.X equals ∃R−.X u ∀R−.X. It
follows easily that assertion (5) is satisfied. 2

Lemma 6 Given a nominal N and a functional atomic role R, the class of
interpretations where reach(N, R−) is an infinite isolated R−-chain from N ,
can be projectively characterized in µALCIOfa .

Proof. The projective characterization is based on an auxiliary functional role
P such that the set reach(N, P ) is an infinite isolated P -chain from N , and
such that P ↓ reach(N, R−) equals R− ↓ reach(N, R−).

By Lemma 5, we can characterize all the interpretations where reach(N, P ) is
an infinite isolated chain from N , by means of a set Γ of µALCIOfa assertions.
The additional assertions that force P and R− to coincide in reach(N, R−) are
the following:

reach(N, P )vµX.[N t ((∃P−.X) u (∃R.X) u (∃P−.∀R−.∃P−.X))] (10)

reach(N, R−)v reach(N, P ) (11)

N v∀R.⊥ . (12)

First we show that in any model I of Γ and (10)–(12), the set reach(N, R−) is
an infinite isolated R−-chain from N . As in the previous Lemma, we identify
each concept C with CI to simplify notation.

If I satisfies Γ, then there exists an enumeration x0, . . . , xi, . . . of reach(N, P )
satisfying the instance of properties I1–I4 obtained by replacing R with P
and S with reach(N, P ). We shall refer to these properties by I1P–I4P . We
are going to show that the same enumeration satisfies also the instance of
properties I1–I4 where R is replaced with R− and S = reach(N, R−). These
properties shall be denoted by I1−–I4−.

Consider the fixpoint in the right-hand side of assertion (10). It is not hard to
see that the first ω steps of its standard iterative construction coincide with
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the ω-chain X0 ⊆ X1 ⊆ . . .Xi ⊆ . . ., where X0 = ∅, X1 = N and for all i > 0,

Xi+1 = Xi t ((∃P−.Xi) u (∃R.Xi) u (∃P−.∀R−.∃P−.Xi)). (13)

We prove by induction that, for each ordinal i such that 0 ≤ i < ω, the set Xi

satisfies the following properties:

P1. Xi = {x0, . . . xi−1}, (where 〈xj, xj+1〉 ∈ P , for all 0 ≤ j < i − 1)
P2. 〈xj, y〉 ∈ R− if and only if y = xj+1, for all 0 ≤ j < i − 1.

Base case. The properties are obvious for i = 0, 1.

Induction step. Assume that i > 1, and that properties P1 and P2 hold for Xi.
By assertion (10), we have that Xi+1 \ Xi 6= ∅ since reach(N, P ) is an infinite
set and Xi is finite by induction hypothesis. Let y be any member of Xi+1\Xi.
By (13), y must be a member of ∃P−.Xi, and hence there must be j < i such
that 〈xj, y〉 ∈ P . Moreover, by property P1 of the induction hypothesis, there
exists only one individual x ∈ Xi such that 〈x, y〉 ∈ P and y 6∈ Xi, and such
an element is xi−1. Therefore xj = xi−1 and (by the functionality of P ) y = xi.
Since y is an arbitrary element of Xi+1 \Xi, it follows that Xi+1 = Xi ∪ {xi},
which proves property P1.

Next we show that Xi+1 satisfies property P2. We deal only with the unique
case not directly covered by the corresponding induction hypothesis, that is,
we prove that 〈xi−1, y〉 ∈ R− if and only if y = xi. Recall that xi is the
unique member of Xi+1 \ Xi, by P1. By conjunct ∃R.Xi of Eq. (13), xi must
be connected by R to some element of Xi. This element must be xi−1, because
induction hypothesis P2 implies that any other member of Xi is connected by
R−-edges only to another element of Xi, and xi 6∈ Xi. Therefore, 〈xi, xi−1〉 ∈ R,
and 〈xi−1, xi〉 ∈ R−. So, to complete the proof of P2, it suffices to show that
there exists no y 6= xi such that 〈xi−1, y〉 ∈ R−.

Assume that such a y exists. By Eq. 13, xi belongs to ∃P−.∀R−.∃P−.Xi, and
this implies that there exists xj ∈ Xi (j < i) such that 〈xj, y〉 ∈ P (see
Figure 2). Then y = xj+1, because P is functional.

Note that j < i−1 (otherwise y = xi, a contradiction), and hence (i) xj 6= xi−1

and (ii) induction hypothesis P2 tells us that 〈xj, y〉 ∈ R−. Moreover, recall
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that 〈xi−1, y〉 ∈ R−. It follows that R is not functional. This contradiction
completes the proof of P2 and the whole induction.

Now we can use P2 and assertion (11) to prove that the sequence x0, . . . , xi, . . .
is an enumeration of reach(N, R−) satisfying I1−–I4− (and hence, reach(N, R−)
is an infinite R− chain from N).

Assertion (11) ensures that reach(N, R−) ⊆ {x0, . . . , xi, . . .}. The opposite
inclusion follows easily from P2. Then x0, . . . , xi, . . . is an enumeration of
reach(N, R−). Now property I1− is nothing but the if-part of P2. Property
I2− is enforced by assertion (12). Property I3− is the only-if part of P2. Fi-
nally, property I4− is an immediate consequence of the functionality of R.

To complete the projective characterization, we are only left to show that
every interpretation I of N , R such that reach(N, R−) is an infinite isolated
R−-chain from N , can be expanded to a model I ′ of Γ and (10)–(12). Define I ′

by setting P I′

= (R−)I . Then reach(N, P ) is an infinite P -chain from N , and
hence Γ is satisfied. Moreover, since P equals R−, it can be easily verified that
the iterative construction {Xi}i≥0 of the fixpoint in assertion (10) satisfies

Xi = {(R−)j(N) | j < i} , (i > 0)

therefore the two sides of assertion (10) are equal and the assertion is satisfied.
The truth of assertion (11) follows from the identity of P and R−. The same
equality and property I2P imply that (12) is satisfied. 2

Next we show how to characterize the interpretations that contain the sub-
structure illustrated in Figure 3.

Lemma 7 Given a nominal N and three functional atomic roles l, v, and d
it is possible to projectively characterize in µALCIOfa the class of interpre-
tations where atomic concepts Bv and Bh equal reach(N, v) and reach(N, l−),
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respectively, and:

(1) reach(N, v) and reach(N, l−) are infinite isolated v-chain and l−-chain,
respectively, from N ,

(2) reach(N, v) ∩ reach(N, l−) = N , l− ↓ reach(N, v) = ∅ and
v− ↓ reach(N, l−) = ∅,

(3) d is a function from reach(N, v) to reach(N, l−) \ N such that for any
individual x of reach(N, v) and y of reach(N, v), 〈x, y〉 ∈ d if and only if
〈N, x〉 ∈ vi and 〈N, y〉 ∈ (l−)i+1, for some i ≥ 0.

Proof. By Lemma 5 and Lemma 6, with a set of µALCIOfa assertions Γ we
can projectively characterize the class of interpretations where reach(N, v) and
reach(N, l−) are infinite isolated chains. We denote by yi (resp. xi) the i-th
individual of the v-chain (resp. l−-chain) from N . The additional assertions
needed are:

Bv ≡ reach(N, v) (14)

Bh ≡ reach(N, l−) (15)

Bh u Bv ≡N (16)

Bv v∀l.⊥ (17)

Bh v∀v−.⊥ (18)

Bv ≡∃d.> (19)

Bh u ¬N ≡∃d−.> (20)

Bh t Bv vµX.[ Nt

(Bh u (∃l.[X u Bh]) u (∃d−.X))t

(Bv u (∃v−.[X u Bv]) u (∃v−.∃d.X))] .

(21)

We have to prove that an arbitrary interpretation I is a model of Γ and the
above assertions if and only if I satisfies the three conditions listed in the
statement of the Lemma (that describe the structure illustrated in Figure 3).
As before, we identify each concept C with CI to improve readability.

First assume that I is a model of the assertions. Condition 1 is enforced by
Γ. Condition 2 is enforced by assertions (14)–(18). In the following we prove
condition 3.

Let us consider the following ω-chain, that equals the standard iterative con-
struction of the least fixpoint in the right-hand side of assertion (21). The
chain consists of X0 ⊆ X1 ⊆ . . .Xi ⊆ . . ., where X0 = ∅, X1 = {y0} = N and

Xi+1 = Xi t

(Bh u (∃l.[Xi u Bh]) u (∃d−.Xi)) t (22)
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(Bv u (∃v−.[Xi u Bv]) u (∃v−.∃d.Xi)) (23)

Let y0, y1, y2, . . . and y0, x1, x2 . . .} be the enumerations of chains Bv and Bh,
respectively; note that y0 is the unique member of N . We prove by induction
that, for each i ≥ 0, Xi satisfies the following properties:

P1. Xi = {y0, x1, y1 . . . , yj−1, xj}, if i = 2j for some j > 0, and
Xi = {y0, x1, y1 . . . , yj−1, xj, yj}, if i = 2j + 1, for some j ≥ 0;

P2. for any xk ∈ Xi, with k > 0, it holds that 〈yk−1, xk〉 ∈ d, and if 〈xk, z〉 ∈
d−, with z ∈ Xi, then z = yk−1.

Base case: The properties are obvious for i = 0, 1. Induction step. Assume
that properties P1 and P2 hold for Xi, with i > 0. We start by observing
that Xi+1 \ Xi 6= ∅ as a consequence of assertion 21, because Xi is finite by
induction hypothesis P1, and Bv t Bh is infinite by (14) and (15).

To prove P1, we first treat the case in which i is even. If i = 2j, for some j,
then Xi has the form Xi = {y0, x1, y1 . . . , yj−1, xj}.

First we prove that Xi+1 \ Xi ⊆ Bv, by showing that disjunct (22) does
not produce any elements in Xi+1 \ Xi. Suppose this is false, and assume
z ∈ Xi+1 \Xi and z 6∈ Bv. Cleary, z is not a member of (23); then z must be in
(22). From the conjunct ∃l.[XiuBh] of (22), it follows that z = xj+1. Moreover,
by the conjunct ∃d−.Xi in (22), there should be yk ∈ Xi, with k < j, such
that 〈yk, xj+1〉 ∈ d. By induction hypothesis P2, and by the functionality of
d, we have xj+1 = xk+1. This is a contradiction because k < j and we know
that the chain Bh = reach(N, l−) contains no loops.

Therefore, it must be the case that z ∈ Bv and z belongs to (23). Now, we
can prove that Xk+1 \ Xi = {yj}. By conjunct ∃v−.[Xi u Bv] of (23), we have
〈yj−1, z〉 ∈ v, because all members of Xi u Bv but yj−1 are connected by v to
other members of Xi, and z 6∈ Xi. Clearly, 〈yj−1, z〉 ∈ v implies z = yj. Since
z is an arbitrary member of Xi+1 \Xi, this proves that Xi+1 \Xi = {yj}. This
completes the proof of P1 when i is even.

Next, let i = 2j + 1, for some j ≥ 0. By induction hypothesis,

Xi = {y0, x1, y1 . . . , yj−1, xj, yj} .

By analogy with the previous case, we are going to prove that disjunct (23)
does not yield any elements in Xi+1 \Xi, and hence Xi+1 \Xi ⊆ Bh. Suppose
not, and let z ∈ Xi+1\Xi and z 6∈ Bh. Clearly, z must belong to (23). From the
conjunct ∃v−.[Xi uBv] of (23), we have 〈yj, z〉 ∈ v (because all members of Xi

but yj are connected by v to other members of Xi and z 6∈ Xi) which implies
z = yj+1. Therefore yj+1 belongs to ∃v−.∃d.Xi in (23), and hence yj belongs
to ∃d.Xi and there should be xk ∈ Xi, with k ≤ j, such that 〈yj, xk〉 ∈ d.
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By induction hypothesis P2, it follows that yj = yk−1 (j 6= k − 1). This is
a contradiction, because the sequence reach(N, v) = y0, . . . , yi . . . should be
acyclic.

This proves that Xi+1 \ Xi ⊆ Bh. As a consequence of conjunct Bv of (23)
and (16), we know also that Xi+1 \Xi is contained in (22). Now we can prove
that Xi+1 \ Xi = {xj+1}. Let z be any element in Xi+1 \ Xi. By the above
discussion, z belongs to Bh and (22). By analogy with the previous case, it
can be proved that conjunct ∃l.[Xi u Bh] of (22) connects z to some element
of Xi u Bh via an l-edge, and the latter element can only be xi, so z = xj+1.
This completes the proof of property P1.

Next we show that Xi+1 satisfies property P2. If i + 1 is even (i = 2j), then
P2 follows from the corresponding induction hypothesis, because Xi and Xi+1

contain the same elements x1, . . . , xj. If i is odd and i = 2j + 1, then the
induction hypothesis covers all the elements but xj+1, so we only have to
show that (i) 〈yj, xj+1〉 ∈ d, and (ii) if 〈xj+1, z〉 ∈ d−, then z = yj.

Recall that xj+1 belongs to Bh, so xj+1 must be a member of (22). The conjunct
∃d−.Xi of (22), assertion (19) and P1 imply that for some k ≤ j, 〈yk, xj+1〉 ∈ d.
By property P2 of the induction hypothesis, we have that for all k < j, yk is
connected by d only to xk+1, and xk+1 6= xj+1 because k+1 < j+1. Therefore,
it must be yk = yj. This proves (i).

To prove (ii), assume it does not hold, that is, there exists z 6= yj such that
〈xj+1, z〉 ∈ d−. By assertion (19), z ∈ Bv, so z = yk for some k < j, and
〈yk, xj+1〉 ∈ d. However, by induction hypothesis P2, 〈yk, xk+1〉 ∈ d, and
xk+1 6= xj+1 because k < j. Then d is not functional, a contradiction.

This completes the proof of P2. Now the third condition in the Lemma’s
statement follows easily from assertions (19)–(20) and P2. More precisely,
(19)–(20) force d to be a function from reach(N, v) to reach(N, l−)\N , while P2
states that for any individuals x ∈ reach(N, v) and y ∈ reach(N, v), 〈x, y〉 ∈ d
if and only if 〈N, x〉 ∈ vi and 〈N, y〉 ∈ (l−)i+1, for some i ≥ 0.

To complete the characterization proof, we are only left to show that every
interpretation I belonging to the class defined in the statement of the Lemma,
satisfies assertions (14)–(21). Then we know that I can be expanded to a model
of Γ by lemmas 5 and 6. Assertions (14)–(15) are satisfied by assumption.
Assertions (16)–(18) are true as an immediate consequence of the constraints
in condition 2. I satisfies assertions (19)–(20) by the definition of d’s domain
and range in condition 3 of the Lemma statement. Finally, consider (21), and
the fixpoint in its right-hand side. By a straightforward induction it can be
verified that the iterative construction {Xi}i≥0 of the fixpoint is such that each
Xi, with i even, contains the first i/2 elements of reach(N, v) and reach(N, l−)
(as in P1). It follows that the limit of the sequence covers all the nodes of Bv
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and Bh, and hence assertion (21) is satisfied. 2

3.2 Main results

We are now ready to prove that the grid can be characterized.

Lemma 8 The structure G ′ illustrated in Figure 1 can be projectively charac-
terized in µALCIOfa .

Proof. By Lemma 7, with a set Γ of µALCIOfa assertions we can projectively
characterize the class of structures where

(1) Bv ≡ reach(N, v) and Bh ≡ reach(N, l−),
(2) reach(N, v) and reach(N, l−) are infinite isolated chains, whose members

will be denoted by e0,0, e0,1, . . . , e0,i, . . . and e0,0, e1,0, . . . , ei,0, . . ., respec-
tively, (note that N = {e0,0}),

(3) reach(N, v) ∩ reach(N, l−) = N , l ↓ reach(N, v) = ∅ and
v− ↓ reach(N, l−) = ∅,

(4) 〈x, y〉 ∈ d iff x = e0,i and y = ei+1,0, for some i ≥ 0.

These properties characterize the horizontal and vertical borders of the grid,
Bh and Bv, as well as the auxiliary role d that shall be of help to visit the grid.
The grid structure of the internal nodes is imposed by the following additional
µALCIOfa assertion:

> v µX.[ Nt

((∃l.X) u (∃d−.X))t

((∃l−.∃v−.X) u (∃v−.∃l−.X))] .

(24)

We have to prove that the projection of any model I of Γ and (24) on v and
l− is isomorphic to G ′. As usual, for all concepts C, we identify C with CI to
enhance readability.

First, some notation. For all functional roles R and S, let R ◦ S denote the
composition of the two roles (where R is applied after S). In the following, we
shall denote by ei,j, with i, j ≥ 0, the individual y such that 〈N, y〉 ∈ vj ◦ (l−)i

(cf. Figure 4; this notation is clearly compatible with the one adopted in
condition 2). Note that if 〈N, y1〉, 〈N, y2〉 ∈ vj ◦ (l−)i, then y1 = y2, because l−

restricted to Bh is a function (by the properties of isolated chains) and v is a
functional role.
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For all k ≥ 0, we denote by Tk the set of individulas {ei,j : i + j ≤ k} (i.e. the
triangle with vertices e0,0, e0,k, and ek,0), and by Dk,n the set of individuals
{ei,j : i + j = k, j ≤ n} (i.e. the first n elements of the right-to-left diagonal
starting from individual ek,0). Figure 5 illustrates Tk and Dk,n with an example.

As usual, the iterative construction X0 ⊆ X1 ⊆ . . .Xi ⊆ . . . of the fixpoint
in (24) can be equivalently defined as follows: X0 = ∅, X1 = N and for all
0 < i < ω,

Xi+1 = Xi t

((∃l.Xi) u (∃d−.Xi)) t (25)

((∃l−.∃v−.Xi) u (∃v−.∃l−.Xi)) (26)

The elements beyond ω equal Xω by Lemma 1.
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Informally speaking, we are going to prove that the sequence X0 ⊆ X1 ⊆
. . .Xi ⊆ . . . “visits” the grid as illustrated in Figure 4, in the sense that at
each step, Xi+1\Xi contains exactly the i-th visited element. If the underlying
interpretation I were not (an expansion of) a grid, then the visit would stop
after a finite number of steps (that is, as soon as an element which is not
properly connected to its neighbours is reached). But then infinitely many
elements of the borders would not be included in the fixpoint, so assertion
(24) would be violated.

To prove this formally, we are going to show that for all i > 0, the set Xi

satisfies the following properties:

Q1. either Xi = Tk or Xi = Tk ∪ Dk+1,n for some k ≥ 0 and n < k + 1;
Q2. 〈ei,j−1, ei,j〉 ∈ v, for all ei,j ∈ Xi \ Bh and 〈ei,j, ei−1,j〉 ∈ l, for all ei,j ∈

Xi \ Bv;
Q3. 〈ei,j, ei−1,j+1〉 ∈ v ◦ l, for all ei,j ∈ Xi \ ({last(Xi)} ∪ Bv);
Q4. 〈ei,j, ei−1,j+1〉 ∈ l ◦ v, for all ei,j ∈ Xi \ ({last(Xi)} ∪ Bv),

where last(Xi) is the element ek,j ∈ Xi such that k+j = max{s+t : es,t ∈ Xi}
and j = max{t : es,t ∈ Xi, s + t = k + j}. Intuitively, last(Xi) is the last
visited element. If Xi = Tk, then last(Xi) = e0,k. If Xi = Tk ∪ Dk+1,n, then
last(Xi) = ek+1−n,n.

The base case holds trivially for i = 0, and for i = 1 since X1 = T0. For the
induction step, let i > 0, and assume that properties Q1-Q4 hold for Xi.

Note that Xi+1 \ Xi 6= ∅ as a consequence of assertion (24), since Xi is finite
by induction hypothesis Q1, whereas > is infinite because it contains the two
infinite borders.

Now, Xi has either the form Tk or the form Tk ∪ Dk+1,n, for some k ≥ 0 and
n < k + 1. Consider the former case first. Note that last(Xi) = e0,k. Let z be
any member of Xi+1 \ Xi.

We claim that z is not an element of disjunct (26). Otherwise, if z belonged to
(26), then it would be a member of ∃v−.∃l−.Xi. This would imply the existence
of ei,j ∈ Xi = Tk such that

〈ei,j, z〉 ∈ v ◦ l (27)

where z 6∈ Xi. Then, ei,j should belong to {last(Xi)}∪Bv, because all the other
members of Xi, by induction hypothesis Q3, are connected by v◦l to a member
of Tk = Xi. Since last(Xi) = last(Tk) = e0,k ∈ Bv, ei,j belongs necessarily to
Bv. But simultaneously, (27) implies that there is an edge 〈ei,j, y〉 ∈ l, thereby
violating property l ↓ reach(N, v) = ∅ in condition 3 (at the beginning of the
proof). This proves the claim.
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Therefore, z must belong to the other disjunct, (25), and hence, z belongs
to the conjunct ∃d−.Xi. Since the domain of d is Bv, for some s ≤ k we
have 〈e0,s, z〉 ∈ d, from which we obtain z = es+1,0 (by condition 4). Moreover,
e0,s = last(Xi) = e0,k, because for s < k, es+1,0 is already contained in Tk = Xi.
Then z = ek+1,0. Since this holds for an arbitrary z ∈ Xi+1 \ Xi, we conclude
Xi+1 \ Xi = {ek+1,0}, and property Q1 immediately follows, by noting that
Xi+1 = Xi ∪ {ek+1,0} = Tk ∪ Dk+1,0.

Now we prove property Q2. The first part holds by definition of ei,j. The
second part (〈ei,j, ei−1,j〉 ∈ l) immediately follows from the structure of Bh.

To prove property Q3, it sufficies to prove it for last(Xi) since for all the
other elements it holds by inductive hypothesis. The property holds vacuously
because last(Xi) = e0,k ∈ Bv. Property 4 is proved by a similar argument.

Next we prove Q1–Q4 for the case where Xi = Tk ∪Dk+1,n, with n ≤ k. Under
this hypothesis, we have that last(Xi) = ek−n+1,n. Let z ∈ Xi+1 \Xi. We claim
that z does not belong to disjunct (25). If this were not true, then z would be
an element of conjunct ∃d−.Xi in (25). This implies that there exists e0,j ∈ Xi

such that 〈e0,j, z〉 ∈ d, with j ≤ k. Then z = ej+1,0, with j + 1 ≤ k + 1
(by condition 4). This fact leads to a contradiction, because ej+1,0 ∈ Xi while
z 6∈ Xi. The claim is proved.

It follows from the claim that z belongs to the other disjunct, (26). As a
consequence, there are x1, x2 ∈ Xi such that

〈x1, z〉 ∈ l ◦ v and 〈x2, z〉 ∈ v ◦ l . (28)

We have x1, x2 ∈ {last(Xi)} ∪Bv, because all the other members of Xi would
be connected to a member of Xi (while z 6∈ Xi), by induction hypotheses Q3
and Q4. Moreover, it cannot be the case that x1, x2 ∈ Bv, because there can
be no outgoing l-edges from Bv (condition 3), while (28) implies that such
edges exist if x1 or x2 belong to Bv. This proves that

x1 = x2 = last(Xi) = ek−n+1,n (29)

(i.e., v and l commute from last(Xi)).

Now, by induction hypothesis Q2, we have that 〈ek−n+1,n, ek−n,n〉 ∈ l and (by
definition of ek−n,n+1) 〈ek−n,n, ek−n,n+1〉 ∈ v, which proves that z = ek−n,n+1.
Since this holds for an arbitrary z in Xi+1 \ Xi, we conclude that Xi+1 =
Xi ∪ {ek−n,n+1}, and hence,

Xi+1 = Tk ∪ Dk+1,n ∪ {ek−n,n+1} = Tk ∪ Dk+1,n+1 .
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This completes the proof of property Q1 for Xi+1.

Let us consider property Q2. The first part holds by definition of ei,j. The
second part, by induction hypothesis Q2, holds for all elements but the new
element ek−n,n+1. So, it suffices to prove that if ek−n,n+1, 6∈ Bv (i.e. if k−n 6= 0),
then 〈ek−n,n+1, ek−n−1,n+1〉 ∈ l.

Consider ek−n,n (the element below the new element ek−n,n+1). Since k−n 6= 0
and ek−n,n 6= ek−n+1,n = last(Xi), we have ek−n,n ∈ Xi \ {last(Xi)} ∪ Bv.
Then induction hypothesis Q4 and the functionality of l and v tell us that
〈ek−n,n+1, ek−n−1,n+1〉 ∈ l, which proves Q2.

We are only left to prove properties Q3 and Q4. It sufficies to prove the two
properties for last(Xi) = ek−n+1,n (for the other elements the properties are
implied by the corresponding inductive hypotheses), that is, we have to prove
that 〈ek−n+1,n, ek−n,n+1〉 ∈ v ◦ l and 〈ek−n+1,n, ek−n,n+1〉 ∈ l ◦ v.

Actually, we have already proved these facts while proving Q1, because they
follow immediately from (28) and (29).

This completes the proof of Q1–Q4.

Now we use Q1–Q4 to prove that the projection of I over l− and v is a grid.
By assertion (24), every domain element x belongs to some Xi, and hence,
by property Q1, x = ei,j, for some i and j. Moreover, Q2 ensures that x is
properly connected to its neighbours on the left and below, namely, ei−1,j and
ei,j−1. Since v and l are functional, there can be no further edges. Then the
projection of I over l− and v is isomorphic to G.

To complete the characterization proof, we are only left to show that G ′ can
be expanded to a model of Γ and assertion (24). Let I be the expansion of
G ′ where dI = {〈(0, j), (j + 1, 0)〉 | j ∈ N}. It is not hard to see that in
the iterative construction {Xi}i≥0 of the fixpoint, each Xi contains the first i
elements of the grid according to the visit illustrated in Figure 4. It follows
that the limit of the sequence covers all the nodes, and hence assertion (24) is
satisfied. Moreover, I satisfies Γ by Lemma 7. 2

Since µALCIOfa is powerful enough to projectively characterize the grid and
the µALCIOfa assertion (2) is satisfied only by correct tilings, we derive the
following theorem.

Theorem 9 Satisfiability of µALCIOfa TBoxes is undecidable.

We are left to extend this lemma to concept satisfiability and entailment. This
is done through the following reductions.
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Lemma 10 In all extensions of µALCI,

(a) TBox satisfiability can be reduced to concept satisfiability.

(b) Concept unsatisfiability can be reduced to entailment.

Proof. We use a standard technique based on greatest fixpoints (cf. [6]).

To prove (a), note that every TBox T = {C1 v D1, . . . , Cn v Dn} is equiv-
alent to the TBox T ′ = {> v CT }, where CT = un

i=1(¬Ci t Di)}. Now
let DT be the concept νX.[CT u ∀R1.X u ∀R−

1 .X u . . . u ∀Rm.X u ∀R−
m.X],

where R1, . . . , Rm are all the roles occurring in T . Clearly, this fixpoint dis-
cards exactly the individuals e that violate the assertions of T , as well as the
individuals connected to such e by a composition of roles. If DI

T 6= ∅, then the
restriction of I to DI

T must be a model of T . Conversely, if I is a model of T ,
then DI

T = ∆I 6= ∅. It follows that T is satisfiable iff DT is. This completes
the proof of (a).

To prove (b), note that C is unsatisfiable iff the empty TBox entails C v ¬>.
2

By Theorem 9 and Lemma 10, we conclude that the main result of this section,
Theorem 3, holds.

Finally, with Theorem 3 and the standard embedding of description logics into
propositional dynamic logics, we immediately obtain the following result.

Corollary 11 Formula satisfiability in the hybrid µ-calculus with determin-
istic atomic programs is undecidable.

4 Discussion and conclusions

Description logics evolved into a hierarchy of decidable logics with multiple
maximal elements. Some support fixpoints, inverse roles, and either nominals
or number restrictions (but not both, in the presence of fixpoints) [20,16]. Oth-
ers support rich sets of role operators, including union and transitive closure.

The results of this paper show that the above features cannot be easily com-
bined into one decidable logic. In particular, no decidable extension of ALCI
can simultaneously support fixpoints, nominals and number restrictions, even
in the very special case where number restrictions are confined into function-
ality assertions for atomic roles, and fixpoint nesting is forbidden.

As a corollary, the hybrid µ-calculus with converse programs and deterministic
atomic programs is proved to be undecidable.
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These results have immediate implications on DLRµ [6], a rich DL with n-
ary relations and fixpoints. It is known that µALCIQ can be embedded into
DLRµ [6]. Then Theorem 3 implies that decidability is not preserved by ex-
tending DLRµ with nominals. 4

It is interesting to compare the expressive power of fixpoints and transitive
role closure (i.e., recursion over unary and binary relations). Consider the logic
ALCQt,+ (the extension of ALCQ with unrestricted role union and transitive
closure).

Theorem 12 ALCQt,+ is undecidable.

This theorem can be proved by a simple adaptation of the construction in [15,
Sec. 5]. That construction makes use of transitive roles and role inclusion; it is
not hard to see that they can be replaced with + and role union, respectively.

By substituting fixpoints for transitive closure in ALCQt,+, we obtain a decid-
able logic, namely, µALCQt. Its decidability can be proved by showing that
each expression in µALCQt is equivalent to an expression in the decidable
logic µALCQ, thanks to the equivalence

∃6n(R1 t R2).C ≡ t
0≤k≤n

(∃6kR1.C u ∃6n−kR2.C) ,

by which role union can be eliminated.

Theorem 12 and the decidability of µALCQt show that transitive closure
is more powerful than fixpoints in the context of ALCQt (the extension of
ALCQt with fixpoints is decidable, while the extension with + is not).

An interesting question arising from our results concerns the family of service
description logics SDL(X ) [4]. These logics are analogous to DLRµ, in the
sense that SDL(X ) operates on mappings, and mappings can be regarded
as n-ary relations. SDL(X ) differs from DLRµ because the former supports
set abstraction and composition, while DLRµ supports number restrictions.
Service descriptions in SDL(X ) are supposed to extend an underlying ontol-
ogy written in a standard description logic X (modelling concepts and roles
only). The main reasoning tasks for SDL(X ) are proved to be decidable by
embedding SDL(X ) into decidable extensions of both µALCIO and X . Un-
fortunately, by the undecidability of µALCIOfa , this technique cannot be ap-
plied when X supports number restrictions, or simply functional atomic roles.
Then the (un)decidability of SDL(X ), when X supports number restrictions
of some sort, remains an interesting open issue.

4 This application of our results constitutes an alternative proof of a known result
(De Giacomo, personal communication).
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We do not yet know whether inverse roles are essential to prove the undecid-
ability of µALCIOfa . In particular, the complexity of inference in µALCOQ
and its fragment µALCOf = µALCOfa is currently unknown. Recall that the
complexity of µALCIQ is unknown, too. This leaves two gaps in our under-
standing of the decidability threshold below µALCIOQ.
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